
PNAS  2022  Vol. 119  No. 51  e2210773119 https://doi.org/10.1073/pnas.2210773119   1 of 12

RESEARCH ARTICLE | 

Significance

Our spatiotemporal assessment 
of wheat diversity using a century 
of varietal-use evidence for the 
United States provides a more 
nuanced view on crop diversity 
than the widely held views 
regarding genetic erosion in 
modern agriculture. Our research 
has direct implications for UN 
and related policy forums 
regarding modern science and its 
impact on crop biodiversity. As 
revealed in the win-win outcome 
brought about by scientifically 
selected crop varieties, 
investments in modern crop 
breeding can help achieve, not 
undercut, the UN’s SDG 
biodiversity goals.
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A prevalent and persistent biodiversity concern is that modern cropping systems lead to 
an erosion in crop genetic diversity. Although certain trait uniformity provides advan-
tages in crop management and marketing, farmers facing risks from change in climate, 
pests, and markets are also incentivized to adopt new varieties to address complex and 
spatially variable genetics, environment, and crop management interactions to optimize 
crop performance. In this study, we applied phylogenetically blind and phylogeneti-
cally informed diversity metrics to reveal significant increases in both the spatial and 
temporal diversity of the US wheat crop over the past century. Contrary to commonly 
held perceptions on the negative impact of modern cropping systems on crop genetic 
diversity, our results demonstrated a win-win outcome where the widespread uptake 
of scientifically selected varieties increased both crop production and crop diversity.

wheat | diversity | crop variety | variety adoption

Halting biodiversity loss is crucial to achieving many of the UN’s sustainable development 
goals and is a leading development target in its own right (1, 2). Agriculture is seen as 
both a key cause of the global “biodiversity crisis” (1, pp.19 and 52, 3, 4) and a principal 
means of addressing it (5, p. 20). The nexus between biodiversity and agriculture is 
complex and multidimensional. With 36.7% of the world’s land mass in cropping and 
animal agriculture (6), promoting sustainable agricultural productivity growth is key to 
feeding a large and still growing world population at affordable prices, while at the same 
time stalling growth in or shrinking the footprint of agriculture to return areas to wild 
or at least more natural, biodiverse landscapes. In 2019, more than half (51.4%) of the 
8,270 quadrillion calories consumed directly by humans were sourced from just five 
crops—rice (18.3% of total calories), wheat (18.2%), sugar (6.6%), maize (5.4%), and 
soybeans (2.9%) (6). This translates into large areas of the world growing the same crop 
type, for example, 216 million hectares (15.0% of total harvested area) of wheat, 197 
million hectares (13.8%) of corn, and 162 million hectares (11.3%) of rice in 2019 (6). 
Another long-standing biodiversity concern is genetic erosion within cropping agriculture 
(e.g., refs. 7 and 8), which Brush (9, p. 154) succinctly defined as “...the loss of variability 
in crop populations” (see also Khoury et al. (10) and the discussion and references 
therein). Within modern cropping systems, the transition from growing landraces, essen-
tially farmer-bred crop varieties, to scientifically bred varieties is seen as a pivotal point 
in the narrowing of genetic diversity within agriculture (8, 11). But the subsequent 
decades of using varieties developed by scientists rather than farmers are perceived as a 
further, if not the primary, cause of a narrowing genetic variability in crop populations 
(12, Appendix I; 7, ch. 7).

However, there is a lack of assessment on the diversity of the cropping materials used 
in farmers’ fields, which matters most in terms of the environmental and economic con-
sequences of those production systems. As Khoury et al. (10) point out, with few excep-
tions (e.g., refs. 13–15), most of the 105 studies they reviewed “…analyzed trends in the 
diversity of modern cultivars that were available, registered or bred in a given area, not 
the extent of their cultivation (e.g., planted area) or the varietal turnover rate” (10, p. 99). 
In fact, genetic erosion due to scientific selection is neither inevitable, nor necessarily the 
most probable outcome in farmers’ fields. Duvick (16) noted two countervailing forces 
regarding crop diversity. On the one hand is the substantial economic gains to be had 
from the lower unit costs of food production, processing, and consumption that come 
from uniformity in particular phenotypic traits in certain cropping systems (e.g., uniform 
crop emergence, flowering and harvesting times; plant, seed, or fruit size, shape or com-
position; and so on). On the other hand, there are other economically valuable crop 
traits—e.g., resilience to changes in biotic and abiotic stresses over time, or responsiveness 
to locational differences in the agro-ecological attributes that affect crop production—that 
promote the development and use of more diverse germplasm. Another factor that incen-
tivizes more diverse cropping systems is the (time and space) variation in market demand 
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for different quality attributes in modern wheat varieties, includ-
ing their protein and oil content; test weight; and grain color, size, 
and shape (see, e.g., ref. 17).

From this economic framing, it naturally follows that an inform-
ative assessment of crop genetic diversity considers both the tem-
poral and the spatial dimensions of diversity and ideally factors in 
the adoption not just the availability of crop genetic resources. To 
do this, we use a purpose-built dataset to quantify the changing 
spatiotemporal pattern of varietal diversity in the US wheat crop 
over the past century spanning the years 1919 to 2019; a period 
that encompasses most of the time that scientific crop breeding 
was informed by Mendelian methods of genetic selection (18–20). 
To do so, we draw on phylogenetically informed metrics of diver-
sity developed in the ecological literature and introduce the notion 
of a “metacommunity” to enable the joint assessment of changes 
in temporal and spatial crop diversity. We used the generalized 
phylogenetic diversity (PD) measure proposed by Chao et al. (21) 
and applied the Hill numbers (or the effective number of varieties) 
framework to quantify the changing varietal diversity of the US 
wheat crop during the past 100 y. The generalized PD and Hill 
numbers framework incorporates both varietal relatedness and 
varietal abundance to allow for the joint assessment of the spati-
otemporal dynamics of varietal diversity within a cropping system 
that is heavily reliant on scientifically selected varieties.

Results

Phylogenetically Blind Measures of Wheat Biodiversity. The 
United States planted wheat area peaked in 1981 (88.3 million 
acres), thereafter declining steadily to just 45.5 million acres by 
2019 (22). In recent years, around 70% of the acreage was planted 
to winter wheat, with spring wheat averaging around 25% and 

durum wheat less than 5% (22). Among all three classes of wheat 
that were commercially grown across 16 major wheat-producing 
states during the period 1919 to 2019, we identified a total of 
1,353 unique named varieties, each accounting for at least 0.5% 
state-level area share by market class in the year they were grown.

As shown in Fig. 1, the area dynamics of major varieties exhibit 
a strong regularity. First, the acreage shares attributed to the top 
wheat varieties decline over time (see decrease in overall colored 
areas in Fig. 1). In 1919, the top five varieties accounted for 88% 
of the US wheat planted acreage, by 1964 that share had shrunk 
to just 34%. The colored plus darker gray elements of Fig. 1 signify 
the share of area planted to the top 20 varieties (99% in 1919 
down to 68% in 2019). Second, the temporal pattern of major 
variety uptake typically follows an S-shaped function (consistent 
with Griliches’ 1957 classic study (23) of the US adoption of 
hybrid corn), followed by a period of dis-adoption as newer vari-
eties gained popularity. Finally, Fig. 1 graphically illustrates the 
waves of faster varietal turnover that have consistently swept 
through the US wheat crop over the past century. Specifically, 
earlier varieties (such as Turkey) that were once dominant for sev-
eral decades are no longer major varieties, while in recent years the 
top varieties tend to completely turnover within a period of 5 y.

Fig. 2 plots several phylogenetically blind diversity metrics that 
summarize important dimensions of the varietal dynamics shown 
in Fig. 1. Our data reveal that the number of major commercially 
grown wheat varieties increased steadily over time, from just 33 
in 1919 to 186 in 2019. On a per-million acre basis, the intensity 
of varietal use indicates an increasingly diverse spatial pattern. In 
1919, varietal intensity averaged 0.8 varieties per million acres. A 
century later, farmers were using a much more diverse portfolio 
of varieties; varietal intensity had increased more than tenfold to 
average 9.1 varieties per million acres in 2019.

Fig. 1. Turnover of the top wheat varieties in the United States, 1919 to 2019. Notes: Colored varieties represent varieties that were among the top five in 
area share in at least 1 y; “OTHER-TOP20-VARIETIES” represent varieties that were among the top 20 in area share in at least 1 y (excluding the top five varieties 
colored already); “OTHER-SMALL-VARIETIES” represent the remaining named varieties (excluding unknown varieties).



PNAS  2022  Vol. 119  No. 51  e2210773119 https://doi.org/10.1073/pnas.2210773119   3 of 12

In 1919, just 1.3% of the planted area was sown to new varieties 
(i.e., <5 y old). By 2019, more than one-third (35.9%) of the US 
wheat area was planted to new varieties, such that the area-
weighted age of commercially grown varieties declined dramati-
cally from 36.4 y in 1919 to 16.0 y in 1960, and down to just 
9.3 y in 2019. The decline in the area share of older varieties 
(i.e., >15 y since release) was particularly pronounced: 68.8% in 
1919 and only 13.7% in 2019.

The average trends on varietal longevity mask a good deal of 
variation in the commercially useful life of individual varieties. 
For example, the winter wheat variety Cheyenne, bred at the 
Nebraska Agricultural Experiment Station and released for com-
mercial use in 1933, was planted for a period of 80 y, disappearing 
from the varietal statistics in 2014. Its area peaked at around 2.5 
million acres in 1959, falling steadily to less than 5,000 acres in 
2013. In our collection, a total of 360 (26.6% of the 1,353 total) 
wheat varieties were long-lived (i.e., commercially grown for more 
than 15 y). In contrast, 146 varieties were especially short-lived, 
with recorded commercial use of just 1 y.

Spatiotemporal PD Patterns. While the phylogenetically blind 
measures presented above unequivocally reveal increasing varietal 
diversity in the US wheat crop, they can be potentially misleading 
indicators of the extent of genetic erosion associated with the use 
of scientifically selected crop varieties. It is the perception of a 
narrowing of the genetic variation in modern cropping systems that 
is most closely associated with the concerns over the resilience of 
these systems to current and prospective climate and pest shocks. 
Phylogenetically blind measures of diversity will overstate the 
degree of genetic diversity within a given population or area extent 
(e.g., a field, state, or country) when the varieties in that population 
or locale are genetically related through shared breeding materials.

Using modern and extensive gene array technologies utilizing 4,009 
unlinked polymorphic markers across 454 wheat varieties, Fradgley et 
al. (24) demonstrated a high correlation between pedigree- and mark-
er-based kinship coefficients, confirming the value of using pedigree 

information to inform and manage wheat genetic diversity. Prior to 
this study, there had been numerous conflicting reports as to whether 
pedigree- and marker-based kinship coefficients were in agreement 
(e.g., refs. 25–31). However, Fradgley et al. (24) showed very clearly 
this earlier disagreement was almost entirely due to the artifacts of using 
low marker numbers (a few hundred at most, compared with 4,009 
in the modern study) and erroneous pedigree or seed source data.

Based on the usefulness of pedigree-based diversity measures 
revealed in prior studies, in this study we utilize a comprehensive 
collection of US wheat pedigree information to infer the genetic 
relatedness among them (see Materials and Methods). The phy-
logenetic tree on the LHS of Fig. 3 graphically depicts the genetic 
relatedness of 1,353 commercial wheat varieties grown in the US 
during the period 1919 to 2019. The genetic distance between 
each pair of wheat varieties is represented by the pedigree branch 
length between them, based on their respective coefficient of par-
entages (COPs) that we calculated using the method described by 
Murphy et al. (32). The horizontal, colored lines in Fig. 3, Panel A 
indicate the presence or absence of each of these commercially 
grown wheat varieties for each of the years 1919 to 2019, while 
Panel B indicates the presence or absence of each of these varieties 
within each state during the same time period.

The phylogenetic variation among wheat varieties in the US 
increased over time, as revealed by the expanding coverage across 
the phylogenetic tree over time (Fig. 3, Panel A). The three market 
classes for wheat differ in their clustered locations within the phy-
logenetic tree. Most of the durum wheats (red lines) are concen-
trated within a closely clustered region on the phylogenetic tree. 
Winter wheats exhibit a much more diverse phylogenetic back-
ground than durum or spring wheats, with varieties ranging across 
the entire phylogenetic tree. In addition, the phylogenetic back-
ground of winter wheats constantly changes as the use of particular 
varieties waxes and wanes over time.

Our phylogenetic assessment of state-level data on wheat vari-
eties in Fig. 3, Panel B leads to a natural clustering in line with 
the agro-climatic regions (Figs. 4 and 5). States within the Central 

Fig. 2. Phylogenetically blind measures of US wheat diversity, 1919 to 2019.
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Plains region (including Texas, Nebraska, Wyoming, Colorado, 
Oklahoma, and Kansas) appear to plant phylogenetically similar 
winter wheat varieties, which are different from the winter wheat 
varieties planted in the Northern Plains, Southeast, or Pacific 
Northwest region. States in the Northern Plains region (including 

Montana, North Dakota, South Dakota, and Minnesota) share 
phylogenetically similar spring and durum wheat varieties, which 
are different from the spring varieties planted in Pacific Northwest 
states (Washington, Oregon, and Idaho). California is unique in 
terms of the winter wheat varieties planted there, since many of 

Fig. 3. Changes over time in the phylogenetic variation of commercially grown US wheat varieties, 1919 to 2019. Notes: Each colored dash line indicates the 
presence of a specific variety within each year (Panel A) or within each state during the study period (Panel B), where red lines represent durum wheat varieties, green 
lines represent spring wheat varieties, and blue lines represent winter wheat varieties. Varieties are ordered along the phylogenetic tree depicted on the y-axis.
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these varieties are genetically spring-type wheats but are sown in 
the autumn (33). For the purposes of this study, we classified the 
winter wheat varieties grown in California as spring wheats given 
that our phylogenetic assessment in Fig. 3, Panel B shows these 
varieties are genetically similar to the spring wheat varieties grown 
in the Northern Plains.

PD Indexes. We used the genetic relatedness among varieties based 
on their respective position within the phylogenetic tree, and the 
abundance of each variety based on its state-specific planted area 
shares, to calculate a PD index for each of the 16 major US wheat-
producing states and their corresponding agro-climatic regions 
during the period 1919 to 2019 using the method described by 

Fig. 4. Phylogenetic diversity for major US wheat-producing regions and states, 1919 to 2019. Notes: Lines represent the phylogenetic diversity indexes of the order 
1 for each region or state by different wheat market classes during 1919 to 2019. Similar trends are observed using PD indexes of order 2 (SI Appendix, Table S1).

http://www.pnas.org/lookup/doi/10.1073/pnas.2210773119#supplementary-materials


6 of 12   https://doi.org/10.1073/pnas.2210773119 pnas.org

Chao et al. (21). The overall, and dominant, trend is for the PD of 
wheat to increase over time in all three market classes and regions 
plotted in Fig. 4. Looking in more spatial detail, for winter wheat, 
many states—including Kansas, Kentucky, Montana, Nebraska, 
Oklahoma, Texas, and Washington—had substantial increases in 
PD, especially in the more recent decades, while some of the 
smaller wheat growing states (Oregon, Wyoming, and Indiana) 
had rather stagnant PD over the longer run. The PD indexes 
for spring wheat are generally similar to those for winter wheat 

within states growing both market classes (such as South Dakota, 
Montana, and Washington). In Montana and South Dakota, the 
PD indexes for durum wheats are almost always less than those for 
winter wheat, whereas in North Dakota the PD of durum wheat 
is comparable to that of spring and winter wheat.

Temporal Decomposition of PD. The PD trends reported above 
track regional and state-level changes over time in a PD index, 
where that index is calculated by treating each agro-climatic region 

Fig. 5. Temporal decomposition of phylogenetic diversity for major US wheat-producing regions and states, 1919 to 2019. Notes: The x-axis represents the 
α-diversity (effective number of varieties per epoch), and the y-axis represents temporal β-diversity (effective epochs) for each region or state, where the overall 
rectangle area represents the overall γ-diversity.
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or state at each point in time as a discrete community of wheat 
varieties. Adopting an approach introduced by Whitakker (34) 
in his study of diversity changes in the vegetative cover of two 
forested regions, a more nuanced and more insightful measurement 
approach to analyzing the variation in PD among US wheat 
varieties is to introduce the concept of a metacommunity. In 
this first instance, we treat the wheat varieties grown over the 
entire century in each region or state as a distinct “temporal 
metacommunity,” such that the overall PD (aka γT-diversity) of each 
geographic-specific metacommunity can be decomposed into two 
components: an αT-diversity, which captures the average effective 
number of phylogenetically distinct varieties planted each year in a 
given geography, and a temporal βT-diversity, which measures the 
effective number of phylogenetically distinct epochs for each region 
or state. Thus, for example, geographies with higher numbers of 
phylogenetically distinct varieties in a year will have larger αT-
diversity values, while those geographies with higher turnover rates 
of phylogenetically distinct varieties will have higher βT-diversity 
values. Fig. 5 plots the αT-diversity (number of effectively distinct 
varieties per year) on the x-axis and temporal βT-diversity (number 
of effectively distinct epochs) on the y-axis for each region or state, 
where the rectangle area (equal to αT x βT) represents each region 
or state’s overall (spatiotemporal) γT-diversity.

Regional diversity is higher than the state-level diversity within 
each region, reflecting the larger geographic areas encompassed 
by each region, which include more farmers in total and intrinsi-
cally has more diverse agro-ecologies. That in turn leads to more 
spatially and temporally diverse demands for varieties by crop 
producers at the regional versus state level. Winter wheat states 
differ markedly in terms of their αT-, βT-, and γT-diversities. 
Washington, Idaho, and Texas are the top three ranked states in 
terms of their overall γT-diversities, with both high αT-diversity 
(averaging 6.7, 6.7, and 6.9 effectively distinct varieties per year, 
respectively) and high temporal βT-diversity (5.1, 5.0, and 4.7 
distinctly different epochs during the 101-y period spanning 1919 
to 2019). In contrast, Wyoming has the lowest overall γT-diversity, 
with both the lowest αT-diversity (averaging just 3.2 effectively 
distinct varieties each year) and lowest temporal βT-diversity (with 
just 2.7 phylogenetically distinct epochs). Kansas is the most 
βT-diverse state, with 5.7 phylogenetically distinct epochs during 
the period 1919 to 2019, indicative of a rapid rate of varietal 
turnover.

For spring wheat, North Dakota has the highest overall γT - 
diversity with 4.4 effective varieties each year (αT-diversity) and 
6.0 phylogenetically distinct years (βT-diversity). Idaho and 
Minnesota have the highest αT-diversity and βT -diversity, respec-
tively. In Washington, the αT-diversity for spring wheat (4.7) is 
smaller than it is for winter wheat (6.7), with a difference of 2.0 
effectively distinct varieties. Spring wheat in North Dakota and 
South Dakota has higher αT-, βT-, and γT-diversities than wheats 
in the other two market classes, suggesting both a higher effectively 
distinct number of varieties and a faster rate of replacement for 
spring wheat in these states.

Among the four durum wheat states, Montana planted 3.6 
effectively distinct varieties each year, higher than North Dakota, 
South Dakota, and California which ranged from 2.0 to 2.7 effec-
tively distinct varieties annually. California has the highest tem-
poral βT-diversity (4.5 distinct epochs) among all four states.

Spatial Decomposition of PD. To characterize the spatial variation 
of wheat varieties nationally, the collection of all major wheat 
growing states in the United States for each year is treated as 
a “spatial metacommunity.” In this instance, the γS-diversity 
represents the overall diversity in the United States, which can 

be decomposed into αS-diversity—representing the average 
number of effectively distinct varieties in a state—and the 
spatial βS-diversity—which represents the effective number of 
phylogenetically distinct states in the United States. For the 
three market classes of wheat in the United States, their overall 
γS-diversity and its αS- and βS-decompositions are plotted over 
time in Fig. 6. Generally, the diversity indexes are increasing over 
time for all three market classes of wheat in the United States, 
where winter wheat has the highest overall γS-diversity followed 
by spring wheat. Winter wheat and spring wheat have similar αS-
diversity indexes over time, suggesting that the state-level wheat 
varietal diversities are similar among these two market classes. 
However, winter wheat has much higher spatial βS-diversities than 
spring wheat, consistent with the fact that winter wheat is grown 
in more states over larger geographic areas than spring wheat. This 
is also consistent with the notion that market forces are likely to 
drive toward the development and deployment of varieties that 
better align varietal genetics across the diverse, location-specific 
agro-ecologies in which they are grown.

With only four major durum wheat states, the spatial βS- diversity 
and overall γS-diversity for durum are the lowest among the three 
market classes. The overall γS-diversities for the US wheat crop are 
heavily influenced by both the αS-diversity and βS-diversity, 
 suggesting that both the within-state varietal diversity and across-
state spatial variations are important for the overall diversity of the 
wheat population across each of the three market classes.

Discussion

Adding to a growing body of empirical evidence of wheat crop 
diversity (see, e.g., the compilation in SI Appendix, Table S1), our 
results provide further, more comprehensive, evidence that the 
increasingly intensive use of scientifically selected crop varieties has 
led to more, not less, biodiverse cropping practices, at least regard-
ing diversity in the US wheat crop. This substantial increase in 
varietal diversity over the past century has been achieved in tandem 
with a fourfold increase in US average wheat yields. As we show in 
SI Appendix, Fig. S3, the preponderance of varieties planted in the 
United States was bred by public agencies. Wheat varietal improve-
ment in Canada is also largely a public affair (35). And while the 
private sector has made significant in-roads to wheat breeding in 
Europe and the United Kingdom (see, e.g., ref. 36), in Australia 
the shift toward privately led crop improvement still involves com-
plex collaborative research, funding and even co-ownership arrange-
ments with public entities (37). The private presence in other crops 
and other countries is variable. For example, Heisey et al. (38) 
reported almost all US corn acreage has been planted with privately 
bred hybrid varieties since the 1980s, whereas Pardey et al. (39) 
show that the private agricultural R&D presence is still compara-
tively small in many low- and middle-income counties. There is 
much commentary (e.g., refs. 36 and 38) on the extent to which 
the private versus public sourcing of varietal innovations affects the 
varietal diversity found in farmers’ fields, but little hard evidence 
to the level of detail we provide here on this important issue. 
Moreover, the fundamental supply and demand factors we broached 
above as the primary drivers of varietal diversity are in play for both 
public and private breeders.

To the extent our results are generalizable, they can profoundly 
reframe the policy and practical implications of a sizable body of 
literature and policy debate that ignores phylogenetic (within-crop 
species) diversity when assessing the implications of intensified 
cropping systems on agricultural biodiversity (e.g., ref. 40). While 
landraces (or farmer-bred varieties) may exhibit considerable spa-
tial diversity at any point in time (41), their comparatively slow 

http://www.pnas.org/lookup/doi/10.1073/pnas.2210773119#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210773119#supplementary-materials
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rates of varietal turnover (see. e.g., refs. 42 and 43) increase the 
vulnerability of these stands to unprecedented (in nature and mag-
nitude) biotic or abiotic shocks occasioned by relative rapid 
changes in climate and human- or naturally mediated invasions 
of foreign pests and diseases. In contrast, the relatively rapid turn-
over of crop varieties in more intensive agricultural systems that 
use scientifically selected material (9, ch. 7, 44, 45) opens up 
prospects for more rapid, and thereby more valuable, genetic 
responses to changing climate, pest, and disease circumstances. In 
addition, scientifically selected varieties that optimize their per-
formance in locationally variable agro-ecological environments 
mean that market forces are also likely to spur more spatially 
diverse seed development and deployments to achieve better-per-
forming G x E (genetics-by-environment) matchups.

Conserving or enhancing (within species) crop biodiversity in 
and of itself is a multi-instrument, multi-objective problem, where 
the crop biodiversity outcomes are envisaged as a means (instru-
ment) to other ends (e.g., yield growth; resilience to a multitude 
of climate or pest and disease shocks; and various food security, 
access, and equity outcomes). Beyond the genetic diversity of the 
crop per se, there is above and below ground (e.g., plant, microbe, 

and insect) biodiversity within cropping systems, the biodiversity 
inherent in dual animal-livestock production systems, and the 
much more encompassing notions of managed, natural, or wild 
systems of biodiversity involving land outside of agriculture to be 
considered. All of these factors enrich the biological diversity of 
the larger ecological and agricultural setting.

Setting policies, and subsequently putting them into practice, 
to achieve desired outcomes (in this instance agricultural biodi-
versity) requires close and careful alignment of policy instruments 
with targets (46–48). If enhancing crop (within species) diversity 
at consequential temporal and spatial scales is the target, our 
results show that the intelligent intensification of cropping systems 
using scientifically selected crop varieties can be an especially effec-
tive instrument. Moreover, in this particular instance, this same 
instrument has multiple other desired outcomes. The higher yields 
associated with more-intensive cropping systems clearly have pos-
itive food security implications by increasing crop output, lower-
ing the unit costs of production, or both. This in turn lowers the 
price of food, with especially equitable impacts on poorer people 
who spend a substantially larger share of their meager incomes on 
food (49). 

Fig. 6. Spatial decomposition of phylogenetic diversity for major US wheat-producing states, 1919 to 2019. Notes: Limitations in reported area-by-variety data 
since 2000 (and especially after 2016, dashed lines) account for the decline in the effective number of states for these more recent years (SI Appendix, Fig. S2 
details data availability).

http://www.pnas.org/lookup/doi/10.1073/pnas.2210773119#supplementary-materials
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If our results are generalizable such that increased yields and crop 
genetic diversity can both be achieved under intensive cropping sys-
tems, they are also likely to be impactful on biodiversity more 
 generally by shrinking the footprint of cropping agriculture. In the 
spirit of Waggoner (50) and Borlaug (51), Stevenson et al. (52), for 
example, carried out a counterfactual simulation to assess the land 
use consequences of global agriculture absent the Green Revolution 
yield gains associated with genetic improvement in wheat, rice, coarse 
grains, and other crops (cassava, lentils, beans, and potatoes) over the 
period 1961 to 2004. They concluded that “… the total crop area in 
2004 would have been between 17.9 and 26.7 million hectares larger 
in a world that had not benefited from crop germplasm improvement 
since 1965. Of these hectares, 12.0 to 17.7 million would have been 
in developing countries, displacing pastures and resulting in an esti-
mated 2 million hectares of additional deforestation (52, p. 8363).” 
In fact, US wheat production increased 3.3-fold over the past century 
(22), while planted area declined by 41%, with a fourfold increase 
in average yield (from 867.5 kg/ha in 1919 to 3476.9 kg/ha in 2019). 
Similarly, the 2019 global area in wheat was roughly comparable to 
the acreage in the late 1960s, so that output grew by threefold in-line 
with the increase in average global wheat yields (6). 

The choice of targets and instruments is naturally context sensitive. 
In poorer parts of the world, the priority policy target may be to 
improve the well-being of poor people, especially by way of increasing 
crop productivity (thus expanding the supply and lowering the price 
of food, with equitable implications for poorer consumers given larger 
shares of their incomes are typically spent on food). In this instance, 
our results indicate that an efficient instrument to cost-effectively 
achieve well-being targets for poorer people would be to intelligently 
intensify wheat production by way of expanding the use of scientifi-
cally selected wheat varieties; a strategy that calls for doubling down 
on the science and seed systems that at present often underserve 
farmers in poorer countries. Based on our study, this particular con-
figuration of policy instruments and targets is also likely to improve 
biodiversity outcomes, both directly by increasing the spatiotemporal 
diversity of wheat varieties in use and indirectly by stalling the expan-
sion or even shrinking the footprint of unnatural agricultural land-
scapes in favor of increasing areas in more natural environments.

Materials and Methods

Data on Wheat Varieties in the United States. Data on planted area-by- 
variety were collected for the US wheat crop for the period 1919 to 2019 by the 
authors and colleagues at the International Science and Technology Practice and 
Policy center and the GEMS Informatics Center, University of Minnesota. From 
1919 to 1984, acreage-by-variety data are reported quinquennially for a total of 
42 states by USDA’s Statistical Bulletins on the Distribution of the Varieties and 
Classes of Wheat in the United States. Thereafter, we sourced the required data 
from state-specific agricultural statistical services, which dropped to 16 states in 
2000 and the years following. These 16 states, as listed in Figs. 4 and 5, accounted 
for 89% of total US wheat area in 2019. Based on end-use purpose and growth 
habit, US wheat varieties can be categorized into six market classes; hard red 
winter, soft red winter, hard white, soft white, hard red spring, and durum (53, 54). 
Unfortunately, the area-by-variety data that are integral to the diversity metrics 
we developed are consistently reported for only three market classes based on 
growth habit—specifically, winter, spring (excluding durum), and durum—and so 
these are the class classifications used in this study.

The states for which we have area-by-variety data account for around 97% of 
total US durum acreage in 2019, 100% of spring acreage, and 84% of winter 
acreage. However, even within the 16 major wheat-growing states, not all states 
report area-by-variety data for all years. To construct a complete state-level panel 
on wheat variety areas, we filled in the missing years’ variety area information 
using linear interpolation based on years before and after any missing years. 
We used each variety’s year of release and last year of reported use nationally to 
determine the beginning and end year of each variety’s use when interpolating 

their state-specific areas. Information on each variety’s year of release was col-
lected from multiple sources, including the Genetic Resource Information System 
(GRIS) for Wheat and Triticale (55), the Germplasm Resources Information 
Network (GRIN) (56), the GrainGenes database (57), crop registration narratives 
from scientific journals such as Crop Science, Journal of the American Society of 
Agronomy, and Journal of Plant Registration, the Plant Variety Protection Office 
(58), and searches from elsewhere such as private company websites and uni-
versity websites.

Additionally, information on each variety’s name, market class, and crop pedi-
gree was also collected. Varieties often have aliases or different spellings depend-
ing on the time and location they were marketed and adopted. To avoid double 
counting the same varieties with different names across states and over time, we 
reconciled the aliases of different varieties and standardized the names across all 
the reported wheat varieties grown commercially in the United States from 1919 
to 2019. Multiple sources of wheat genetic and pedigree information were used to 
consolidate varietal names and their pedigrees, including the GRIS for Wheat and 
Triticale (55), the GRIN (56), the GrainGenes database (57), and the Plant Variety 
Protection Office (58). Where possible, the entire pedigree of each variety and their 
parents were traced back to either a landrace, a wild accession, or a local variety. The 
pedigree information for all reported commercially grown varieties in the United 
States was collected and processed. Inconsistencies among reported pedigrees (and 
varietal name) were reconciled by PedTools, a Python library developed by the GEMS 
Informatics Center at the University of Minnesota that maps input varieties for a crop 
to aliases, standardizes naming protocols and recursively reconstructs pedigrees in 
principle back to landraces through repeated observations of parent–child relation-
ships found in the literature. To process the 1,353 commercially grown varieties 
included in this study, PedTools was applied to 2,597 varieties (including non-com-
mercially grown crossing materials) for the final pedigree analysis.

Diversity Measures. A large number of biodiversity measures have been pro-
posed in the disciplines of ecology, genetics, economics, information theory, and 
other sciences (59–62). Among them, the most commonly used are phylogenet-
ically blind in the sense that they tally the distributions of each type of entity, 
regardless of each entity type’s taxonomic, genetic, or functional similarities. Such 
indexes include an entity richness index, the Shannon entropy index (61), and the 
Gini-Simpson index (63), all of which are special cases of the generalized Tsallis 
entropy measures (64, 65), also known as HCDT entropy indexes (66–68). HCDT 
indexes can be converted into so-called true diversity measures. Such measures, 
also known as the effective number of species or “Hill numbers,” represent the 
hypothetical number of equally abundant entities that would give the same 
diversity index value as was actually observed (65, 69). “Hill numbers” do not 
depend on the functional form of the index and satisfy the replication principle, 
whereby the index value doubles if each entity grouping was divided into two 
equal new groups (65, 70). Thus, Hill numbers allow for a unified and intuitive 
interpretation of diversity across locations.

For wheat, new varieties are typically developed by genetic crosses among 
existing varieties, and thus, the contribution of each new variety to the over-
all crop diversity depends on their relatedness to existing varieties. Commonly 
used phylogenetically blind biodiversity measures such as species richness and 
Shannon entropy are unsuitable to differentiate areas growing many genetically 
similar, but nonetheless differentiated (by name), crop varieties from those areas 
with many genetically distant crop varieties. Thus, characterizing the biodiversity 
of a crop species in modern agricultural landscapes requires a phylogenetically 
informed approach, which by construction incorporates the notion of varietal 
relatedness into the measure of diversity.

A growing number of phylogenetically informed biodiversity measures 
have been proposed to account for taxonomic, functional, or phylogenetic sim-
ilarities among species within a community, such as Rao’s quadratic entropy 
(71), taxonomic cladistics diversity (CD) (72), PD (73), pure diversity measure 
(60, 74), functional diversity (75), and many others (e.g., refs. 21 and 56–59). 
Among these alternatives, one common approach to account for the genetic 
relatedness among biological individuals is the PD measure proposed by Faith 
(73). This diversity measure is defined as the sum of all the phylogenetic 
branches along the minimum spanning path to quantify the evolutionary 
history shared among individuals. Weitzman (76 showed that a community’s 
diversity value can be represented by the branch length of the hypothetical 
phylogenetic tree.
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PD measures typically focus on the presence or absence of a species to meas-
ure the overall genetic variation within a community, without taking into account 
the relative abundance of each species. However, species abundance provides 
crucial additional information regarding the composition of the community, espe-
cially for agro-ecosystems where a few popular crop varieties may dominate the 
majority of the landscape, while numerous other varieties account for compar-
atively small portions of the overall cropped area. To incorporate both species 
abundance and species phylogenetic distances, Chao et al. (21) generalized the 
traditional phylogenetic measure and proposed a PD measure based on Hill 
numbers that quantifies “the mean effective number of species” and in so doing 
unified many of the existing measures of biodiversity.

To calculate a generalized PD, a phylogenetic tree is first constructed 
based on distances between species of the community using the UPGMA 
method (unweighted pair group method with arithmetic mean). Both 
molecular markers and pedigree information have been used in major 
crop genetic diversity studies to derive genetic distances among crop vari-
eties. For this study, we use the COP concept to infer genetic relatedness 
from pedigree information on all named US wheat varieties planted during 
the period 1919 to 2019. Following Murphy et al. (32), COP calculates 
the proportion of shared genetic material among varieties based on their 
respective pedigrees under the following assumptions: 1) A cultivar inherits 
half of its genes from each parent; 2) all parental lines are homozygous and 
homogeneous; and 3) all landraces are unrelated to each other. Defining 
a pair-wise dissimilarity index between variety i  and variety j  as dij, we 
can obtain a pair-wise dissimilarity matrix D for the collection of all wheat 
varieties over the entire study period in the United States. Based on the 
pair-wise dissimilarity matrix, a phylogenetic tree can be constructed for 
all US wheat varieties. Using the phylogenetic tree, the generalized PD 
(denoted as H) for a community of wheat varieties can then be calculated 
using Chao et al.’s (21) method as:

qH
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]

1
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where B is the number of branch segments in the tree, Ti denotes the length 
of branch i  (i = 1, 2, … , B), ai denotes the branch abundance (sum of relative 
abundance of all species descended from branch i ), and q denotes the exponent 
value (i.e., order) given to the branch abundance normalized by the mean branch 
length, which is defined as 

−

T =
∑B

i=1
Tiai. For special cases of the order q span-

ning the entire age of the phylogenetic tree, it is shown that 0H
(

T
)

 becomes the 
total branch length, which is the traditional Faith’s PD; 1H

(

T
)

 can be linked to a 
generalization of Shannon entropy to incorporate phylogenetic distances; and 
2
H
(

T
)

 can be linked to Rao’s quadratic entropy (21,77). The phylogenetic Hill 
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For a state with N equally common species that are completely distinct from 
each other along the phylogenetic tree, the diversity measure qD

(

T
)

 always 
gives exactly N. Thus, the phylogenetic Hill number qD

(

T
)

 can be interpreted 
as the effective number of maximally distinct lineages with equal relative abun-
dance (21).

Spatial and Temporal Diversity Decomposition. The generalized PD indexes 
introduced above are static measures of biodiversity for a single crop (in this 
instance wheat) community (e.g., a US state, agro-climatic region, or the United 
States as a whole). However, variation in both the spatial and temporal dimen-
sions of an ever-changing mix of crop varieties is one of the most fundamental 
features of modern agricultural systems. Thus, decomposing biodiversity into its 
spatial and temporal components provides a means of characterizing the dynamic 
changes over space and time in agricultural biodiversity. A growing number of 
long-term datasets have been used to examine the spatial and temporal pat-
terns of biodiversity change within ecological systems (e.g., ref. 78). This study 
incorporates both spatial and temporal decompositions into an assessment of 
the diversity dynamics of a major crop species.

Whittaker (34) first proposed the decomposition of the overall diversity 
(� -diversity) into within-community (� -diversity) and between-community 
(� -diversity) components, using either an additive or multiplicative rule. For 
spatial decomposition within each time period, each agroclimatic region or US 
state can be treated as a separate crop community, where the variation among 
different regions or states reflects the spatial diversity across the landscape. For 
temporal decomposition with each region or US state, each year can be treated as 
a separate crop community where the variation across years reflects the temporal 
diversity within each state.

Here we define a crop community as the collection of varieties planted within 
a given region or state for a given year for a given crop. Then a “spatial metacom-
munity” is defined as the collection of all communities within a single year (i.e., 
all states in the United States within a given year), and a “temporal metacom-
munity” is defined as the collection of communities over multiple years within 
the same geography (i.e., all years within a given region or state). With these 
definitions of spatial and temporal metacommunities, following Marcon et al. 
(79), the total species neutral HCDT entropy (� -entropy) for a metacommunity 
qH� can be decomposed as:

qH� =
qH� +
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wmm
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∑
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wmm
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where � - and � -entropies for the metacommunity (i.e., qH� and qH�) are 
the weighted sums of local entropies within each community (i.e., mqH� and 
m
qH� ). The weight wm adjusts for sample size differences among communities, 

which is commonly defined as wm = nm∕N where nm is the number of individ-
uals (here, crop varieties) in a local community and N is the total number of 
individuals for a m.etacommunity. The � - and � -entropies for a community 
are calculated as:
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Similarly, as a linear transformation of generalized entropy, the generalized 
PD for the metacommunity q

−

H� (T ) can be decomposed as:
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The corresponding decomposition of the diversity index qD� (T ), also known 
as the phylogenetic Hill number, is then obtained as:

qD� (T ) =
qD� (T )
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where
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Depending on the grouping of communities into a given “spatial metacom-

munity” or a “temporal metacommunity,” the above formula allows us to decom-
pose diversity into its respective spatial or temporal dimensions. Essentially, for a 
metacommunity (i.e., a collection of local communities), the overall � -diversity is 
decomposed into an average local community diversity (� -diversity) and a measure 
of the effective number of communities (� -diversity). Intuitively, for a given year 



PNAS  2022  Vol. 119  No. 51  e2210773119 https://doi.org/10.1073/pnas.2210773119   11 of 12

in the United States with an overall PD index value �, the � -diversity component 
of this “spatial metacommunity” indicates the average diversity of wheat varieties 
growing within a state (i.e., the average effectively distinct number of varieties from 
maximally distinct lineages with equal relative abundance in a state), while the 
� -diversity component of this “spatial metacommunity” indicates the effectively 
distinct number of states (i.e., the equivalent number of states that each has � 
effective number of varieties that are distinct from each other). Similarly, for a 
“temporal metacommunity” (i.e., multiple periods or epochs for a given geography) 
with an overall PD index value �, the � -component indicates the average diver-
sity of wheat varieties growing in each epoch in each region or state, while the � 
-component indicates the effectively distinct number of epochs (i.e., the equivalent 
number of epochs where each has � effectively distinct number of varieties). Using 
a unique long-run panel dataset for a major crop species, such spatial and temporal 
decompositions allow us to better understand the impact of crop varietal turnover 
on modern agricultural genetic diversity and address key questions concerning 1) 
the overall trends in the PD of the US wheat crop and 2) changes in either the spatial 
or temporal dimensions of diversity in the US wheat crop over the past century.

Data, Materials, and Software Availability. Some study data available (The 
state-level area-by-variety data generated and analyzed during the current 

study are the property of the GEMS Informatics Center at the University of 
Minnesota. They are maintained in the GEMS Informatics Platform (https://
gems.agroinformatics.org/) from where they can be requested from the corre-
sponding author YC for use to replicate the findings of this study. The R codes 
for generating the results and figures reported in the current study are avail-
able at GitHub (https://github.com/y-chai/US-Wheat-Diversity.git). PedTools 
used in the current study for wheat pedigree processing is a python package 
developed by the GEMS Informatics Center at the University of Minnesota, 
which is not publicly available and can be requested for use to replicate the 
findings of this study).
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