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Significance

Predictability of open-chromatin 
regions, using their DNA 
sequences, is a new means for 
evaluating epigenomic data. 
While most existing methods are 
based on the enrichment of 
mapped reads in known 
elements, the DNA sequence–
based assessment solves a 
bottleneck in analyzing single-cell 
genomics data: comprehensive 
identification of peaks from rare 
cell types. Our method, gkmQC, 
can identify more peaks from 
rare cell types with low read 
depths by finding optimal 
peak-calling thresholds, and 
these additional peaks explained 
a significant proportion of the 
heritability of traits relevant to 
the cell types. gkmQC will 
accelerate the genomic discovery 
of human diseases from the 
viewpoint of transcriptional 
regulation by enabling us to 
focus on high-quality epigenomic 
data and rare cell types.
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Chromatin accessibility assays are central to the genome-wide identification of gene 
regulatory elements associated with transcriptional regulation. However, the data have 
highly variable quality arising from several biological and technical factors. To surmount 
this problem, we developed a sequence-based machine learning method to evaluate and 
refine chromatin accessibility data. Our framework, gapped k-mer SVM quality check 
(gkmQC), provides the quality metrics for a sample based on the prediction accuracy of 
the trained models. We tested 886 DNase-seq samples from the ENCODE/Roadmap 
projects to demonstrate that gkmQC can effectively identify “high-quality” (HQ) sam-
ples with low conventional quality scores owing to marginal read depths. Peaks identified 
in HQ samples are more accurately aligned at functional regulatory elements, show 
greater enrichment of regulatory elements harboring functional variants, and explain 
greater heritability of phenotypes from their relevant tissues. Moreover, gkmQC can 
optimize the peak-calling threshold to identify additional peaks, especially for rare cell 
types in single-cell chromatin accessibility data.

quality control | chromatin accessibility | sequence-based model | gkmQC

Open chromatin at specific genomic sites is the hallmark of cis-regulatory element (CRE) 
activity that modulates transcription of a target gene (1). Thus, identifying open-chromatin 
regions of the genome is a fundamental step toward defining the gene regulatory program 
encoded in the genome. Significant advances in experimental techniques to detect these 
regions have been made over the last decade. Sequencing-based assays, such as ATAC-seq 
(2) and DNase-seq (3, 4), detecting transposase-accessible and DNase-hypersensitive 
regions as open-chromatin regions, are now widely used to enable genome-wide mapping 
of regulatory elements (5). These assays have shown that epigenetic landscapes are dynamic 
and actively regulated across different biological states, cell types (6), developmental stages 
(7), aging (8), and species (9). Moreover, multiomic analyses integrating these data with 
genome-wide association studies (GWAS) are now significantly accelerating mechanistic 
understanding of how noncoding variation drives transcriptional regulation (10–12), the 
largest contributor to complex traits.

Defining the regulatory landscape requires rigorous assessment of the quality of chro-
matin accessibility data, and this remains a challenge due to several reasons, such as the 
lack of gold standard datasets for benchmarking and difficulties in functional validation. 
Several methods proposed to rectify this include quantifying quality using statistics like 
the fraction of reads in peaks (FRiP) (13), Signal Portion of Tags 2 (SPOT2) (14), and 
promoter (TSS) enrichment scores (15), which measure the degree to which reads are 
enriched in functional elements (i.e., identified open-chromatin peaks and promoters). 
Irreproducible discovery rate (IDR) is yet another quality assessment statistic measuring 
the reproducibility of peaks between replicates (16). However, these metrics, such as FRiP 
and SPOT2, may not be optimal for samples with low sequencing depth where a smaller 
number of peaks are detected (17, 18). This is problematic, especially for single-cell analysis 
or rare cell types. IDR is also limited when robust replicates are unavailable. Consequently, 
chromatin accessibility data with suboptimal quality currently can mislead downstream 
analyses.

As an improvement, we developed a complementary and biologically motivated quality 
metric for chromatin accessibility data based solely on their underlying DNA sequences. 
This metric is based on the concept that CREs, such as promoters, enhancers, and insu-
lators, typically have multiple transcription factor binding sites (TFBSs) (19). Thus, 
open-chromatin peaks in high-quality (HQ) samples (those containing HQ open- 
chromatin peaks) are likely to harbor such TFBSs, which can be accurately captured by 
sequence-based predictive models (20–24). This leads to our main hypothesis that the 
accuracy of a sequence-based model directly correlates with the quality of the peaks derived 
from chromatin accessibility data. Our method, called gapped k-mer SVM quality check 

OPEN ACCESS

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:aravinda.chakravarti@nyulangone.org
mailto:dongwon.lee@childrens.harvard.edu
mailto:dongwon.lee@childrens.harvard.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212810119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212810119/-/DCSupplemental
http://orcid.org/0000-0001-9312-2864
http://orcid.org/0000-0001-8647-9662
http://orcid.org/0000-0002-6420-8703
http://orcid.org/0000-0002-1568-2249
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2212810119&domain=pdf&date_stamp=2022-12-10


2 of 11   https://doi.org/10.1073/pnas.2212810119� pnas.org

(gkmQC), is based on a sequence-based machine learning tech-
nique, gkm-SVM (21, 25), which can predict CREs using their 
primary DNA sequence only. We demonstrate that “HQ” samples 
defined by gkmQC, compared with low-quality samples 1), have 
more CREs better aligned at functional regulatory elements 2), 
harbor more putatively functional variants from GWAS, and 3) 
explain greater heritability of traits from their relevant tissues. We 
also show that gkmQC can identify additional peaks by optimiz-
ing a peak-calling process, especially for rare cell types in single-cell 
chromatin accessibility data.

Results

Open-Chromatin Peak Signals Correlate with Sequence-
Based Prediction Performance. Typical chromatin accessibility 
data exhibit a wide range of peak signals (i.e., an abundance of 
mapped reads or peak heights). We hypothesized that a peak with 
a stronger signal, or a higher peak, is more likely to be a true CRE, 
harboring clearer predictive sequence features and leading to the 
higher classification accuracy of sequence-based predictive models. 
To test this, we analyzed 886 samples of ENCODE DNase-seq 
(26). For each sample, we first divided the entire set of peaks, 
stratified by peak signal strength, into subsets comprising an equal 

number of peaks (5,000). We call these “peak subsets.” We then 
trained gkm-SVM (25) for each peak subset against an equal 
number of random genomic regions and performed fivefold cross-
validation to calculate the area under the ROC curve (AUC; i.e., 
peak predictability). Consistent with our hypotheses, we found a 
strong correlation between the AUC and peak signals for almost 
all datasets (SI Appendix, Fig. S1). Based on this, we defined an 
overall quality score for a sample as the average AUC score over its 
degradation rate across peak subsets, dubbed “gkmQC (sample) 
score” (Fig. 1 and Materials and Methods).

Peak Predictability Complements Conventional Methods of 
Quality Assessment. We next evaluated whether the gkmQC score 
could be used as an alternative sample quality metric. We reasoned 
that HQ samples would have greater gkmQC scores as more HQ 
peaks in the samples lead to high AUCs and slower degradation 
of AUC across peak subsets. Using the ENCODE DNase-seq 
dataset again, we systematically compared their gkmQC scores 
with the other five conventional quality metrics widely used for 
DNase- and ATAC-seq analyses (Materials and Methods). To 
evaluate QC methods, we analyzed how well peaks are aligned 
with known regulatory elements (i.e., precision of peak location; 
Fig. 2A). Specifically, we quantified genomic distance (
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Fig. 1. A schematic of peak quality assessment in gkmQC. gkmQC sorts peaks by their signal strengths, groups them into subsets of an equal number of peaks, 
and calculates the area under the ROC curves (AUCs) using sequence-based predictive models (gkm-SVM) with cross-validation. The AUC represents the overall 
predictability of peaks in a subset. For a typical dataset, AUCs strongly correlate with their peak signal strengths. The curve of AUC scores across subsets reflects 
its overall sample quality, and the extent of the degradation and the average of AUC across bins are represented by the gkmQC sample score.
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summits of DNase-seq peaks and the center of overlapping 
CAGE enhancers, CTCF-binding peaks, or H3K27ac histone 
modification ChIP-seq peaks. We found that the gkmQC score 
strongly correlated with 

∼

m (ρ = 0.53 for CAGE; Fig. 2 B and C) for 
CAGE enhancers and CTCF-binding peaks, while other quality 
metrics showed less correlation (ρ = 0.23 for CAGE; Fig. 2C and 
SI Appendix, Fig. S2A), suggesting that gkmQC can prioritize HQ 
samples defined by those peaks with a precise location for their 
functional regulatory elements. Interestingly, gkmQC scores are 
most negatively correlated with m̃ when using H3K27ac histone 
modification ChIP-seq peaks, consistent with the fact that CREs 
are typically flanked by histones (27).

Compared with other metrics, gkmQC scores are less correlated 
with peak counts, a hallmark of peak-calling sensitivity (Fig. 2D 
and SI Appendix, Fig. S2B). However, the peak count is known to 
be significantly dependent on read depth or sample types (15). We 
thus hypothesized that gkmQC is better at identifying HQ samples 
with low peak counts than other methods. Correlations among 
quality metrics revealed samples with highly discordant quality 
scores between gkmQC and the other methods (SI Appendix, Fig. 
S2C). For a systematic and unbiased comparison, we determined 
sample quality (high vs. low) using the median score (the 50th 
percentile) as a cutoff (SI Appendix, Fig. S3A). About 13 to 18% 
of samples are classified as high quality by gkmQC but as low 
quality by SPOT2 (111; 13%), TSS enrichment (156, 18%), 
FRiP [Peak] (129, 15%), FRiP [promoters] (206, 23%), or IDR 
(116, 13%; Datasets S1 and S2). These samples contain fewer peaks 
than the remaining gkmQC HQ samples (SI Appendix, Fig. S3B) 
but have similar precision of peak locations, which is significantly 

higher than that of low-quality samples (SI Appendix, Fig. S3C). 
We also assessed whether other technical conditions, such as sample 
types, treatments, and sequencing steps, affected these quality met-
rics and confirmed that no other confounding factors significantly 
affected the gkmQC score and other metrics (SI Appendix, Fig. S4).  
In sum, our results suggest that gkmQC can reclassify some 
low-quality samples as determined by the other QC methods into 
HQ samples.

HQ Samples Reproduce Precise Locations of Peaks Relevant to 
GWAS Variants. Accurate identification of regulatory elements 
is crucial to interpreting changes in the regulatory functions 
of relevant GWAS variants (28). We hypothesized that open-
chromatin peaks that contain functional regulatory variants are 
more precisely identified in HQ than in low-quality samples 
(Fig. 3A). We assumed that the consensus peak summit (i.e., 
centroid) of open-chromatin peaks across multiple replicates 
represents the core functional regulatory element as previously 
shown by Meuleman et al. (29). We then tested whether peaks 
in HQ samples are in greater proximity to these centroids. We 
first focused on a few loci with putative causal GWAS variants 
for a major kidney functional trait, estimated glomerular 
filtration rate (eGFR) (30), using developing kidney DNase-
seq samples (26). For example, rs11261022 is a likely causal 
regulatory variant affecting eGFR via change of KLHDC7A 
expression (30). This variant is in an open-chromatin peak in 
kidney samples (Fig. 3B). However, most lower-quality samples 
either do not have an overlapping peak or have a peak less 
optimally aligned with the variant. Similarly, rs77924615 is 
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another putative functional regulatory variant identified by fine-
mapping and colocalization analysis. Again, while HQ samples 
have an open-chromatin peak well aligned with this variant, 
low-quality samples failed to detect open-chromatin peaks in 
this locus (Fig. 3C). Moreover, peaks in HQ samples exhibit 
stronger signals than those in low-quality ones, demonstrating 
their greater utility in identifying regulatory elements containing 
GWAS variants (Fig. 3 B and C).

To generalize this finding, we calculated genomic distances 
between the peak summits from each sample and the centroids of 
the consensus peaks near each putative causal GWAS variant (c̃; 
Materials and Methods). We found that HQ samples determined 
by gkmQC have smaller average distances than low-quality sam-
ples. Overall, the gkmQC score strongly correlated with c̃ (ρ = 
0.57 and P = 3.3 × 10−4; quality–rank correlation; Fig. 3D), while 
other conventional metrics had lower correlations (Fig. 3E). Thus, 
peaks in HQ samples determined by gkmQC more precisely 

delineate functional regulatory elements with functional GWAS 
variants.

HQ Samples Systematically Improve the Discovery of the 
Genetic Architecture of Complex Traits. The above examples 
suggested that HQ samples could improve the systematic 
identification of genome-wide polygenic signals. To test this, 
we adapted the stratified LD score regression (S-LDSC) and 
performed partitioning heritability analyses of many human 
traits. Specifically, we calculated a normalized S-LDSC coefficient, 
which corresponds to a statistical significance of the per-SNP 
heritability (Materials and Methods and Dataset S3) (31, 32). 
Using replicate kidney samples during development, we found 
that the gkmQC score significantly correlated with S-LDSC 
coefficients for the eGFR (ρ = 0.76 and P = 1.3 × 10−7; Pearson 
correlation coefficient; Fig.  4A) (30). This suggests that the 
gkmQC scores for sample quality significantly explain the variance 
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in heritability across biological replicates. Next, we extended our 
analysis to multiple tissues and traits (Materials and Methods). 
Using 200 samples from eight tissues/cells from the ENCODE 
project and 30 different traits from the UK Biobank (33), we 
discovered that HQ samples stratified by gkmQC consistently 

gave higher heritability signals, especially for relevant trait–tissue 
combinations (Fig. 4B and SI Appendix, Figs. S5 and S6 A and B).  
Most samples with gkmQC scores >70 achieved S-LDSC z 
>1.0 for their relevant traits (SI Appendix, Fig. S5), suggesting 
that this is a reasonable threshold for identifying good quality 
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samples. With this threshold, peaks from HQ samples explained 
significantly greater per-SNP heritability than those from low-
quality samples, as measured by median z scores of S-LDSC 
coefficients (z= 2.31 vs. 1.18).

As previously noted, several samples are differentially classified 
by gkmQC compared with other conventional quality metrics. We 
thus asked whether peaks in HQ samples determined by gkmQC 
are more informative than those identified by the other QC meth-
ods (Fig. 4C). Specifically, we performed the heritability analysis 
again using S-LDSC by further stratifying regions based on overlaps 
across HQ samples determined by gkmQC and other QC methods 
(Materials and Methods). When using phenotypes relevant to the 
samples, we found that gkmQC-HQ unique peaks achieved a 
higher per-SNP heritability than peaks in HQ samples uniquely 
identified by another QC method (Fig. 4C). Taken together, our 
results suggest that functionally important tissue-specific regulatory 
elements are better detected in HQ samples and that gkmQC is a 
better method in identifying such HQ samples.

gkmQC Optimizes the Sensitivity on Peak Calling. A benefit of 
gkmQC is that its peak predictability can be used for recovering peaks 
that do not pass the statistical threshold based on read enrichment 
but have strong sequence signatures nonetheless. While analyzing 
the full set of ENCODE data, we noticed that 58 samples with 
lower read depth exhibited high AUC for all subsets in the sample 
(i.e., minimum AUC [MinAUC] > 0.75; SI Appendix, Fig. S7A). 
This result suggested that additional CREs with strong sequence 
signatures were undetected. We reasoned that this might be due to 
an overly stringent peak-calling threshold given low read depths. Our 
approach can, however, naturally alleviate this issue by identifying 
a more accurate threshold based on peak predictability. To test this, 
we recalled peaks using a conventional peak caller but with a relaxed 
threshold and then applied gkmQC to find a new peak-calling 
threshold that maximizes the number of peaks with MinAUC > 0.7  
(Fig. 5 A and B and Materials and Methods). We note that other 
quality metrics for peak subsets with moderate peak intensity were 
not as correlated with the rank of the peak subsets as gkmQC  
(SI Appendix, Fig. S8). Therefore, gkmQC is more reliable for 
optimizing peak-calling thresholds than conventional quality metrics.

Among the DNase-seq data of bulk tissues and cells, 58 of 200 
samples with low read depths had MinAUC > 0.75. gkmQC 
optimization of these samples recovered an additional ~27.2% of 
total peaks per sample on average (SI Appendix, Fig. S7B and 
Dataset S4). To check the functional relevance of recovered peaks, 
we repeated the S-LDSC analyses again for traits relevant to the 
samples. To account for potentially inflated heritability caused by 
SNPs in strong LD, we analyzed the newly identified peaks in 
S-LDSC while controlling for default peaks (Materials and 
Methods). We achieved positive S-LDSC coefficients in 76.4% of 
all datasets and an increased proportion of the heritability for 
89.2% of the datasets, suggesting that the newly identified peaks 
by gkmQC were trait relevant (Fig. 5C). We also observed that 
the optimized vs. default peaks achieved consistently higher her-
itability (SI Appendix, Fig. S7C). In Fig. 5E, we provide a specific 
example of newly identified peaks at the kidney-specific gene, 
SLC22A2 locus. Here, we focused on three kidney samples with 
MinAUC > 0.75, in which additionally discovered peaks with 
AUC >0.7 produced positive S-LDSC coefficients (Fig. 5 B and 
C). Significantly, recovered peaks at this locus (pink bars) over-
lapped those identified in HQ samples of the kidney (Fig. 5E and 
SI Appendix, Fig. S7D; KLHDC7A).

Inspired by the cases of KLHDC7A and SLC22A2, we next 
hypothesized that gkmQC optimization could improve the 
reproducibility of peaks given the quality variation across 

replicates (Fig. 5F). To validate this systematically, we investi-
gated whether the newly found peaks were replicated in other 
HQ samples with the same tissue entity. Specifically, we calcu-
lated the fraction of the newly found peaks by optimization that 
overlaps with peaks in high-quality samples from the same tissue 
(Materials and Methods). We used low-quality samples from the 
same tissue and HQ samples from different tissues as negative 
controls for comparison. We found that the peak overlaps with 
high-quality replicates significantly more than low-quality rep-
licates (Fig. 5G; P = 1.8 × 10−11; paired t test) and HQ samples 
from different tissues (P = 0.0018). Thus, our gkmQC optimi-
zation can considerably recover tissue-relevant peaks that are 
present in HQ samples.

Extensive Peak Calling by gkmQC Improves Single-Nucleus 
ATAC-Seq Inference. Because gkmQC successfully optimized bulk 
data with marginal read depth (Fig. 5), we surmised that gkmQC 
could also be helpful in improving peak identification in single-cell 
chromatin accessibility data, especially for rare cell types, which by 
nature have lower numbers of reads (34). To test this, we applied 
the peak optimization process to kidney single-nucleus ATAC-seq 
data (snATAC-seq) (35) (Dataset S5). We first analyzed a rare but 
important kidney cell type of the glomerular filtration barrier, the 
podocyte (<1% of the total kidney cells) (Fig. 6A and SI Appendix, 
Fig. S9 A–D and Materials and Methods) (35). Our gkmQC peak-
calling optimization recovered ~35,000 additional peaks (~27%) 
in podocytes compared with peaks called with a default threshold. 
Also, the variants in these recovered peaks significantly contributed 
to the heritability of the urine albumin-to-creatinine ratio (UACR;  
z = 3.357 and S-LDSC coefficient; Fig. 6B), a kidney trait affected by 
podocytes. In contrast, no significant contribution to the heritability 
of unrelated traits such as schizophrenia (36) was observed (SCZ;  
z = 0.010). Fig. 6C shows a specific example of peaks recovered at 
the podocyte-relevant LMX1B locus, a well-known podocyte-specific 
transcription factor for kidney development and the maintenance 
of differentiated podocytes (37, 38). We note that a recovered peak 
upstream of LMX1B was also detected in bulk developing kidney 
tissues (Fig. 6C). Since this peak was not detected in any other kidney 
cell types (SI Appendix, Fig. S9E), it demonstrates that optimization 
using gkmQC can uncover new peaks even in rare cell types, which 
are more likely to have peaks missed because of their lower numbers.

To systematically test if the optimization process is generalizable 
to other cell types and tissues, we analyzed the heritability 
contributed by variants in recovered peaks from the other 11 kidney 
cell types and peripheral blood mononuclear cells (PBMCs)  
(SI Appendix, Fig. S10 and Dataset S5). We discovered that, in 
general, cell types with lower cell counts had higher MinAUCs (SI 
Appendix, Figs. S9D and S10D), showing that the optimization 
process is more effective in rarer cell types. Expectedly, we confirmed 
that the newly identified peaks in rare cell types with counts <1,000 
explained a significant proportion of heritability (S-LDSC coeffi-
cient > 2.0) for relevant traits (SI Appendix, Figs. S9F and S10E).

Last, we subsampled 200, 500, and 1,000 cells from five abun-
dant cell types from the kidney and PBMCs (i.e., proximal tubule 
(PT), loop of Henle (LH), and distal convoluted tubule (DCT) 
for the kidney and CD4+ memory T cells (CD4M) and CD14+ 
monocytes (CD14M) for PBMCs) to simulate rare cell popula-
tions and to test whether gkmQC peak-calling optimization for 
subsampled cells can recapitulate peaks identified in the original 
populations of the cells (Materials and Methods). We found that 
30 to 40% of peaks added by gkmQC optimization overlapped 
the original peaks from the corresponding cell types (Fig. 6 D and 
E and SI Appendix, Fig. S10F). The fraction of the overlapped 
peaks was significantly higher than that of original peaks from 
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different cell types (P < 10−20; paired t test). Taken together, these 
results show that the peak-calling optimization using gkmQC 
helps us to identify additional cell-type-specific regulatory ele-
ments, particularly for rare cell types.

Discussion

Comprehensive quality control (QC) analysis of chromatin acces-
sibility data is a critical need for proper analysis of genome regula-
tory functions because of the lack of ground-truth datasets for 
benchmarking. By utilizing machine learning techniques which 
learn sequence features underlying open-chromatin peaks, we have 
established a computational framework for quality assessment and 
refinement of chromatin accessibility data. HQ samples determined 

by gkmQC yield more accurate data for more robust downstream 
genomic analyses, such as GWAS fine-mapping of complex traits 
and partitioning its heritability. Our method for optimizing 
peak-calling thresholds also improves single-cell chromatin accessi-
bility datasets by identifying more peaks in rare cell types.

Precise mapping of functional regulatory elements is now pos-
sible by applying several genomic technologies (39–41). A recent 
study demonstrated that the centroid of overlapping consensus 
DNase I–hypersensitive site summits can be used to robustly and 
accurately identify core regulatory regions where variants that 
disrupt TF bindings strongly perturb their regulatory activities 
(29). We show that peaks in HQ samples identified by gkmQC 
can also accurately locate these core regulatory regions (Fig. 3). 
Highly predictive sequence features presented in peaks in HQ 
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samples enable us to precisely locate these elements, while quality 
control using these sequence features can be used to test the pre-
cision of peak location without many replicates.

In our gkmQC analyses, we found that peak subsets with lower 
peak intensity tend to achieve lower predictability (SI Appendix, 
Fig. S1). These peak subsets with medium-level AUCs (0.85 to 
0.95) are enriched for distal enhancers and tissue-specific regulatory 
elements (SI Appendix, Figs. S11 and S12). In contrast, peak subsets 
with high AUCs (>0.95) mostly contain promoters and ubiqui-
tously open regions with homogeneous sequence features. These 
results imply that tissue-specific CREs and distal enhancers may 
have consistently lower peak predictability than housekeeping ones 
and promoters regardless of their sample qualities, leading to an 
alternative hypothesis: TFs that bind to distal and tissue/cell-specific 
enhancers are generally less learnable than those that bind to pro-
moters and ubiquitously open regions. It is also concordant with 
the known biology that regulatory activity of these tissue-specific 
and distal enhancers could be modulated by changes in TF expres-
sion or chromatin looping without strong sequence-specific binding 
of TFs (42). Thus, our strategy of evaluating multiple peak subsets 
stratified by signal strength independently, rather than building a 
single model on the whole peak set, makes it possible to assess 
sample qualities more accurately by allowing multiple models to 
capture different classes of CREs active in a sample.

Comprehensive identification of peaks for rare cell types is a 
big challenge in single-cell ATAC-seq analysis (34). We showed 
that our gkmQC optimization could find ~27% more peaks in 
rare cell types (Fig. 6 and SI Appendix, Figs. S9 and S10). It also 
enables us to estimate the minimum number of cells required for 
adequate peak identification, which is currently unknown. We 
have found that, in general, cell types with cell counts >1,000 can 
yield >100,000 peaks and do not need gkmQC optimization in 
general (SI Appendix, Figs. S9B and S10B). Considering that 
>100,000 peaks are typically identified in bulk DNase-seq and 
ATAC-seq from cell lines and primary cells, we speculate that at 
least 1,000 cells are needed for a comprehensive peak discovery.

We found a significant heritability enrichment for peaks added 
by gkmQC optimization (Figs. 5 and 6), illustrating the increased 
peak-calling sensitivity. However, increased sensitivity may also 
come with a potential loss of precision. Indeed, the per-SNP herit-
ability of the optimization-only peak set is consistently somewhat 
lower than those from the default setting as shown in Fig. 5D, 
suggesting this is the case. However, increased sensitivity outweighs 
the potentially reduced precision for the low-coverage data as the 
additional peaks determined by gkmQC optimization can explain 
additional heritability for the phenotypes relevant to the samples.

We also measured the computing speed, memory, and CPU 
requirements of gkmQC using randomly selected samples with dif-
ferent peak counts from snATAC- and DNase-seq datasets. The 
running time of gkmQC scales linearly with respect to the peak count 
with the ability to process 80 k peaks per hour using eight cores of 
Intel Xeon Platinum 8268 2.90 GHz and ~16 GB of memory (2 
GB/core) (Dataset S6). Thus, a typical sample with >100,000 peaks 
can be processed within ~1.2 h in a standard workstation equipped 
with similar resources (eight cores and 16 GB of memory).

Chromatin accessibility data have empowered us to function-
ally interpret disease-associated genetic variation. Over the last 
decade, a significant amount of chromatin accessibility data has 
been accumulated to create an atlas of functional regulatory 
elements across diverse tissues or cells. We anticipate that our 
quality assessment framework will further accelerate this process 
by prioritizing HQ samples, finding more CREs from rare cell 
types in snATAC-seq, and implicating sequence variants that 
disrupt these functions.

Materials and Methods

Sequence-Based Predictive Model for Quality Evaluation. We constructed 
gkm-SVM models following our previously established framework (25, 43). Briefly, 
we first defined open-chromatin regions derived from a DNase-seq dataset as the pos-
itive training set using a precalculated open-chromatin peak set available in ENCODE 
(26). A negative set for training was then generated by random sampling of an equal 
number of genomic regions that match the length, GC content, and repeat fraction 
of the positive set. We excluded regions with >1% N-bases and >70% repeats from 
the training datasets. To prevent potential bias caused by variable peak lengths, we 
fixed the size of peaks by extending 300 bp from the summit.

We split the genomic peaks into multiple subsets, each comprising 5,000 
peaks sorted by decreasing signal intensity scores from a peak caller. If a group 
of peaks with the same score were separated into two subsets, we randomized the 
order of these peaks to make sure that all neighboring peaks (i.e., peaks sorted 
by genomic position) were not grouped into the same subset. Then, we trained 
a gkm-SVM model for each peak subset using default parameters (word length 
l  = 10, informative columns k = 6, truncated filter d = 3, and weighted gkm 
kernel (wgkm) t = 4). Model performance was measured by the area under the 
ROC curves with five-fold cross-validation (i.e., an AUC score of the peak subset). 
We present AUC scores and ranks of peak subsets as a gkmQC curve on the Y 
and X axes, respectively.

To quantify overall sample quality, we derived a gkmQC score from a gkmQC 
curve using the following equation:

gkmQC score =

∑
i
AUCi

AUCmax − AUCmin
,

where i  is the rank numbers of peak subsets, and AUCmax and AUCmin are the 
maximum and minimum values of AUC scores in the curve, respectively. We 
limit analysis to the top 100,000 peaks (=20 subsets of 5,000 peaks per subset) 
to generate a gkmQC curve. We did so to reduce the computation cost based on 
the observation that most ENCODE samples have ~100,000 peaks.

To analyze sequence features of the models, we scored all possible 10-mers  
(l  = 10) using the trained SVM model and then performed a principal component 
analysis using their score vectors. We evaluated the first two principal components 
to compare models (SI Appendix, Fig. S11 D and E). To analyze tissue specificity 
of peak subsets, we calculated pairwise peak overlaps between the same rank 
subsets from the same tissues. To ensure these peak overlaps were comparable 
across different rank peak subsets, we further normalized them by calculating an 
overlap fold change for each rank. As a denominator, we used the average overlap 
between the same rank peak subsets from random tissue pairs.

Benchmarking Datasets and Evaluation Methods.
ENCODE DNase-seq datasets. We revisited the ENCODE DNase-seq datasets 
accessed on March 10, 2020. We excluded samples with <10,000 peaks, 
archived, or revoked status in the database. We ultimately obtained 886 DNase-
seq datasets across diverse samples, including in vitro differentiated cells, primary 
cells, and tissues. Metadata of the full datasets are in Dataset S2.
Validating peaks with orthogonal datasets. To obtain the precision of peak loca-
tion (m̃), we calculated the average genomic distance between peak summits and 
the center of peaks using three independent epigenomic datasets: overlapping 
CAGE (cap analysis gene expression) (44) enhancers, CTCF-binding peaks, and 
histone mark ChIP-seq peaks. CAGE enhancers from FANTOM (https://fantom.gsc.
riken.jp/5/datafiles/reprocessed/hg38_latest/extra/enhancer/F5.hg38.enhancers.
bed.gz) were called based on CAGE peaks with bidirectional balanced RNA signa-
tures distal to known exons (+/−100-bp region from boundaries) and transcrip-
tion start sites (+/−300 bp) (45). We considered an overlapping enhancer the 
most proximal enhancer that also overlaps with the 1-kb extended peak from the 
summit. The peak count, |P|, is the count of nonoverlapping peaks. For the CTCF-
binding and H3K27ac histone modification sites, we downloaded the bed files 
of (pseudo) replicated peaks with significant IDR derived from ENCODE CTCF and 
H3K27ac ChIP-seq experiments with matched tissues. For the matching, we com-
pared anatomy/cell ontology and sample types (in vitro, primary cells and tissues).

We used FANTOM5 enhancers again to analyze the enrichment of open-chromatin 
peaks for known enhancers. For the enrichment analysis with promoters, we used 
FANTOM5 promoters (https://fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_lat-
est/extra/CAGE_peaks/hg38_fair+new_CAGE_peaks_phase1and2.bed.gz). The 
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FANTOM5 promoters were called based on CAGE peaks of which signal is comparable 
to CAGE peaks near 5'-ends of known transcripts (within 500 bp) (46).
Conventional metrics for quality evaluation. To compare our findings with the 
default metrics provided by ENCODE, we used Signal Portion of Tags (SPOT2), 
the number of cleavages observed within HOTSPOT2 peaks divided by the total 
number of cleavages in a sample (14). We obtained precalculated SPOT2 scores 
from the metadata of the ENCODE database. To calculate TSS enrichment, we used 
the Python package, tssenrich (https://pypi.org/project/tssenrich) (47), following 
the ENCODE standards (https://www.encodeproject.org/atac-seq/). We used fea-
tureCounts (48) to calculate the fraction of reads in called peaks (FRiP), known 
promoters, and enhancers. IDR of peak calling across biological duplicates was 
calculated by the IDR package (16). To quantify a representative value of IDR values 
for a sample, we averaged −log10 of IDR P values of all peaks in a sample. To meas-
ure the quality affected by sample treatment, especially for autopsied tissues, we 
curated the duration of postmortem time from cardiac cessation to freezing of the 
sample from the case report in the ENTEx dataset (https://www.encodeproject.org/
entex-matrix/?type=Experiment&status=released&internal_tags=ENTEx) (49).

Validation of HQ Samples using GWAS Functional Variants.
GWAS datasets. For integrative analyses of open-chromatin peaks with rele-
vant GWAS variants, we focused on GWAS for eGFR (30), a quantitative kidney 
functional trait. We chose eGFR GWAS due to the significant heritability and the 
availability of fine-mapping datasets with eQTL colocalization. We specifically 
used a precalculated dataset of putatively functional SNPs from the European 
ancestry meta-analysis of the eGFR trait (30) based on posterior probability >0.5 
from approximate Bayes factor analysis (50).
Associating core regulatory elements near functional GWAS variants. We meas-
ured the average genomic distance (c̃) between peak summits in a sample and the 
centroids of overlapping peaks across biological replicates from the same tissue. 
We only considered peaks near putatively functional GWAS variants, defined as 
genomic regions harboring fine-mapped SNPs and their neighboring SNPs in high 
LD (r2 > 0.8) with a 1,000-base padding. To measure the centroid, we calculated 
average genomic positions of overlapping peak summits across 35 replicates of 
the developing kidney. Similar to the peaks, we only used the centroids near fine-
mapped GWAS variants. We used LocusZoom to plot association P values of GWAS 
variants with linkage disequilibrium information from a reference population (51). 
IGV was used to plot read pileup signals from open-chromatin data (52).

Validation of HQ Samples Using Partitioned Heritability Analysis.
GWAS datasets. We obtained GWAS summary statistics data for various pheno-
types from the UK Biobank project (53), as processed by Neale lab (https://nealelab.
github.io/UKBB_ldsc/index.html), and three quantitative kidney traits: eGFR, UACR, 
and blood urea nitrogen (30, 54). To analyze the relevant GWASs with a significant 
genetic association, we limited GWASs with heritability z scores >4 (z4 and z7) and 
medium/high confidence ratings (available in https://nealelab.github.io/UKBB_ldsc/
h2_browser.html). We also selected tissues with ≥5 replicates, for which relevant 
GWASs are available. Consequently, we derived six developing tissues, two primary 
cells, and 30 relevant GWAS traits (Dataset S3).
S-LDSC. To estimate a proportion of heritability (h2

SNP
) from GWAS summary 

statistics, we used LD score regression (LDSC) (31, 32). We employed stratified 
LDSC to calculate a proportion of heritability contributed to an SNP set (C) in 
open-chromatin peaks from a sample as follows:

PrC
(
h
2
SNP

)
=

h2
SNP

(C)

h2
SNP

.

Enrichment of the proportional heritability is presented by PrC
(
h2
SNP

)
 / PrC (M), 

where PrC (M) is the proportion of SNPs in C among the total SNP set. It represents 
a relative polygenic contribution of SNPs within open-chromatin regions to a 
given trait. To compute a representative parameter reflecting both an effect size 
and a statistical significance of the enrichment, we used a normalized S-LDSC 
coefficient driven by
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where ̂� c is a normalized coefficient of the proportional heritability to enable z-based 
scoring, and SD

(
�̂ c
)
jack

 is the SD of �̂ c calculated from a jack-knife estimation.
To take into account potential regulatory variants in the flanking regions of 

open-chromatin peaks, we defined genomic annotations of CREs as a 1-kb pad-
ding from the peak summits. To accurately test the contribution of open-chromatin 
peaks only, we calculated the partitioned heritability along with the baseline 
annotations of 97 functional regions, such as protein coding, evolutionary con-
served, promoter, enhancer, or UTR, as recommended by the original S-LDSC 
study (32). For reference LD scores, European ancestry population and the corre-
sponding allele frequencies in 1,000 genomes phase 3 data were used. All data, 
including the baseline LD annotation set (v2.2), were obtained from https://data.
broadinstitute.org/alkesgroup/LDSCORE/. When we compare multiple functional 
annotations (i.e., optimized vs. default open-chromatin peaks), we conducted 
S-LDSC regression jointly with multiple annotations, along with the full set of 
the baseline annotations in one model.

gkmQC-Based Optimization of Peak-Calling Threshold.
The default pipeline for peak calling. As a default pipeline for peak calling, 
we adapted the previously established framework for DNase-seq and ATAC-seq 
analyses (43, 55). Specifically, we ran MACS2 (56) with no restricted model 
(--nomodel) using paired-end read pairs with MAPQ >30. We used 100 bp of 
window size (–extsize 100), −50 bp of shifts toward lagging strand (--shift −50), 
keeping duplicate reads (--keep-dup), and q value cutoff <0.01 (57). For ATAC-seq 
samples, we additionally trimmed +4 bp of the forward strand and −5 bp of the 
reverse strand to account for 9-bp duplicated regions by Tn5 (2).
gkmQC peak-calling optimization. We first determine whether a sample needs a 
peak-calling optimization based on the minimum AUC of all peak subsets (MinAUC). If 
the MinAUC is >0.75, we perform the following peak-calling optimization. To recover 
marginal peaks with suboptimal q values, we called peaks again using a relaxed 
threshold with nominal P < 0.005. We then calculated AUCs for all peak subsets using 
our gkmQC framework. Last, we recover all peaks that are more significant than the 
least significant peak in the minimum rank peak subset with AUC >0.7.
Analysis of the overlap of peaks added by optimization. To measure peak 
overlaps between samples, we calculated the fraction of the newly added peaks 
that overlap with peaks in other samples from the same tissue. We defined HQ 
replicates as samples with the top 50% percentile of gkmQC scores among all 
samples from the corresponding tissue. The rest were used as low-quality rep-
licates. Because the variation of peak counts across samples can be a potential 
confounding factor for this analysis, we randomly chose 100,000 peaks from a 
sample. We repeated this process ten times to obtain average overlaps across the 
ten different realizations of random peak sets.

Analysis of snATAC-seq Data.
Single-cell ATAC-seq datasets. Human kidney snATAC-seq data are from non-
tumor kidney cortex samples from five patients undergoing partial or radical 
nephrectomy (35). We specifically downloaded sequencing data from GEO under 
accession number GSE151302. For the dataset of PBMCs, we used public snAT-
AC-seq data with total ~15,000 cells from a healthy donor (Next GEM v1.1). We 
downloaded position-sorted BAM files derived from Cell Ranger ATAC 1.1.0 from 
the 10X Genomics support page (https://support.10xgenomics.com/single-cell-
atac/datasets/1.1.0/atac_pbmc_10k_nextgem; access date: 01/2021).
Single-cell ATAC-seq data processing. For the single-cell ATAC-seq data process-
ing, we employed both Cell Ranger ATAC 1.1.0 (https://support.10xgenomics.
com/single-cell-atac/software/downloads/latest) and snapATAC pipelines (58). 
Specifically, we first used count operation of the Cell Ranger ATAC pipeline to 
perform a quality assessment, preprocessing, and read alignment, yielding 
position-sorted, barcoded, and read-filtered BAM files. We then selected cells 
with 0.15 < FRiP < 0.5 and the number of reads with uniquely mapped identi-
fiers >10,000. Cells across all datasets were harmonized by Harmony (59) and 
clustered based on a K-nearest neighbor algorithm with a Louvain community 
detection (# of eigen dimensions = 47). Consequently, we derived unsupervised 
snATAC-seq cell clusters enriched to known 16 kidney cell types (SI Appendix, Fig. 
S9A) and 12 PBMC types (SI Appendix, Fig. S10A). Specifically, we annotated cell 
type of the unsupervised snATAC-seq clusters by label transfer from the cluster 
of snRNA-seq data that have differential gene expression of known cell markers. 
Label transfer is based on correlating open-chromatin activities of gene bodies 
and mRNA expressions transcribed from the corresponding genes. To visualize 
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the cell clusters, we used Uniform Manifold Approximation and Projection for 
Dimension Reduction (UMAP) (60).
Subsampling of cells and cross-validation of the optimized peaks. To simulate 
rare cell types, we subsampled cells with n = 200, 500, and 1,000 from each of 
the five abundant cell types in the kidney and PBMC snATAC-seq datasets: PT  
(n ≈ 8,000), LH (n ≈ 3,800), DCT (n ≈ 1,800), CD4M (n ≈ 1,800), and CD14M  
(n ≈ 4,500). We called peaks using reads aggregated across the same cell type 
(i.e., pseudobulk) from the subsampled cells and conducted the gkmQC peak-call-
ing optimization. We then compared the peaks recovered by the optimization to 
the peaks called from all cells. To quantify the degree to which the optimization 
process recovers true peaks, we calculated the fraction of the added peaks over-
lapping original peaks from all cells.

Data, Materials, and Software Availability. gkmQC is available in https://github.
com/Dongwon-Lee/gkmQC. IPython notebooks to reproduce the results are available 
in https://github.com/Dongwon-Lee/gkmQC-manuscript. All other data needed to eval-
uate the conclusions in the paper are present in the paper and/or the SI Appendix. [BED 
files (Datasets S4 and S5)] data have been deposited in [https://osf.io/egbqv/] (TBD).
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