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Abstract

Motivation: Machine learning (ML) methods are motivated by the need to automate information extraction from
large datasets in order to support human users in data-driven tasks. This is an attractive approach for integrative
joint analysis of vast amounts of omics data produced in next generation sequencing and other -omics assays. A
systematic assessment of the current literature can help to identify key trends and potential gaps in methodology
and applications. We surveyed the literature on ML multi-omic data integration and quantitatively explored the
goals, techniques and data involved in this field. We were particularly interested in examining how researchers use
ML to deal with the volume and complexity of these datasets.

Results: Our main finding is that the methods used are those that address the challenges of datasets with few sam-
ples and many features. Dimensionality reduction methods are used to reduce the feature count alongside models
that can also appropriately handle relatively few samples. Popular techniques include autoencoders, random forests
and support vector machines. We also found that the field is heavily influenced by the use of The Cancer Genome
Atlas dataset, which is accessible and contains many diverse experiments.

Availability and implementation: All data and processing scripts are available at this GitLab repository: https://
gitlab.com/polavieja_lab/ml_multi-omics_review/ or in Zenodo: https://doi.org/10.5281/zenodo.7361807.

Contact: gonzalo.polavieja@neuro.fchampalimaud.org or panos.firbas@research.fchampalimaud.org or dylan.feldner@
research.fchampalimaud.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Algorithmic and hardware developments, including graphics proc-
essing unit computation, have spurred a revolution in machine
learning (ML) (Dally et al., 2021). At the same time, the amount of
data generated by -omic (genomic, transcriptomic, etc.) high-
throughput-sequencing and other techniques has been growing ex-
ponentially (Lightbody et al., 2019). This growing body of informa-
tion needs statistical models that can extract accurate and
explainable predictions from it.

The concept of ‘training’ defines ML techniques. A subset of the
original data is used to train, or change the model’s parameters, so
that the model can then make the best possible predictions or

decisions. ML models typically work better with large training data-
sets and as such should be particularly well tailored for multi-omic
data integration. The ML field is an exciting frontier and several
reviews have been published in this area recently. Reel et al. (2021)
rated ML algorithms based on their data-hungriness, prediction ac-
curacy and other characteristics. The review by Cai et al. (2022)
highlighted the use of The Cancer Genome Atlas (TCGA) in multi-
omics research, including further independent benchmarking of ML
techniques on another dataset—the Cancer Cell Line Encyclopedia
(Ghandi et al., 2019; Nusinow et al., 2020). Marcos-Zambrano
(2021) and Moreno-Indias (2021) explored ML multi-omics in the
context of microbiome research. While these reviews have illustrated
that ML applications can handle and thrive on large volumes of data
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from multi-omics datasets there is one caveat: the modelling of these
datasets often suffers from the low sample size compared to the vast
dimensionality.

Ideally, ML techniques would use more samples than features
(Bellman, 1961). In practice, however, a single -omic dataset can
contain tens of thousands of features (e.g. the result of RNAseq on a
tumour sample can include measurements for over 20 000 human
genes). This makes multi-omics datasets high-dimensional. On the
other hand, most datasets contain at most only a few hundred sam-
ples, i.e. one per subject.

Aware of this dimensionality issue, we set out to explore how
prevalent it is in the field of ML data integration in multi-omics,
what strategies are used to overcome it, and what can be achieved
with ML in multi-omics. We took a quantitative approach to gather-
ing characteristics of papers (e.g. techniques used, goals for using
ML) from papers and used the PRISMA-ScR framework (Tricco
et al., 2018) as a guideline for performing a more structured review.

Following the PRISMA-ScR guidelines, we developed an explicit
statement of the questions being addressed in this scoping review
(Table 1).

2 Materials and methods

2.1 Protocol and registration
For this work, we used the PRISMA Extension for Scoping Reviews
(PRISMA-ScR) (Tricco, 2018) which is available on the PRISMA
website (https://web.archive.org/web/20220322230828/http://www.
prisma-statement.org/Extensions/ScopingReviews). A brief overview
of our selection process can be found in Figure 1. Further details
around the methodology in line with PRISMA-ScR are included in
the Supplementary Material.

One hundred papers were selected for the main inquiries.
Following the same process, we conducted a second search using
only the terms: ‘ML AND integration’. For this dataset, many off-
topic papers were excluded, as well as any multi-omic papers that
were included in the first dataset. This second dataset was used to
explore what kind of ML techniques was used in a broader ‘ML in-
tegration’ field in comparison to the ‘multi-omic ML integration’
field.

3 Results

3.1 What is multi-omic data in practice?
3.1.1 Which types of -omics features made up the ‘data

dimensions’?

Using the papers from the ‘ML AND multi-omics AND integration’
search, we compiled the types of -omics data that were used by
researchers. Transcriptomics were by far the most popular measure-
ment and were used 152 times (many works use multiple types of
transcriptomics such as mRNA and miRNA). This accounted for
42% of all the -omics data uses (Fig. 2a). Epigenomics and genomics
data follow with 79 (22%) and 77 uses (21%) respectively. After
that were proteomics (21 uses, 6%), metabolomics (6 uses, 2%),
metagenomics (2 uses, 1%) and other (24 uses, 7%). This distribu-
tion is heavily influenced by the TCGA (Tomczak, 2015) database,
but the trend remains when excluding this database (see
Supplementary Fig. S1).

Most papers we surveyed used three or more different -omics
types (Fig. 2c). The -omics types that most often appeared together
were transcriptomics and epigenomics, followed by transcriptomics
and genomics. The top two combinations remained unchanged
when we ignored the papers that relied on TCGA (see
Supplementary Fig. S1).

3.1.2 How is the data structured: how many features versus

samples?

There were far more features than samples in most cases (Fig. 3).
The median number of features used in the surveyed publications
was 33 415 while the median number of samples was 447. Due to
outliers, these are different from the mean number of features,
73 996 and the mean number of samples, 1767. Most multi-omics
ML method development research relies on existing data. TCGA
was used in 73% of the surveyed papers. Creating multi-omics data-
sets has high costs in terms of money and time, but also requires a
broad range of expertise not often found in a single research group.
Besides this, the recent push for FAIR (Findability, Accessibility,
Interoperability and Reusability) principles (Wilkinson, 2016) and
the open science movement is helping to make data more easily ac-
cessible. Now researchers can tap into the community’s shared
resources in order to supplement their own data, or simply to experi-
ment with new iterations of ML techniques. Databases where bio-
logical data are uniformly processed make this process even easier
and allow many different techniques to be tested, facilitating
progress.

After splitting publications into those that relied on TCGA and
those that relied on other datasets, we found no significant differ-
ence in the number of samples used, but we did observe a difference
in the number of features (P<0.01 using the Mann-Whitney U
test).

3.2 What analysis has been done on multi-omics data?
3.2.1 Which ML techniques were used?

To build a perspective of the role of ML in multi-omics integration,
we investigated how it differed from ML’s role in data integration in
general. In this view, we gathered 100 more papers, this time search-
ing for ‘ML AND Integration’, omitting the multi-omics term. With
these and our initial set, we recorded which ML techniques were
used in each paper.

In Figure 4a, we show the number of appearances of different
ML techniques in the surveyed literature, omitting those that only

Table 1. Review questions

Review questions

1. What is multi-omic data in practice?

1.1. Which types of -omics features made up the ‘data dimensions’?

1.2. How is the data structured: how many features versus samples?

2. What analysis has been done on multi-omics data?

2.1. Which ML techniques were used?

2.2. What were the goals of the ML application?

2.3 What were the targets/labels of classification tasks?

3. Can we explain trends using an analysis of the citation of

papers since 2015?

Fig. 1. Overview of paper selection process
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appeared once. For the full results, see Supplementary Figure S2.
Using Fisher’s exact test, we tested for a statistically significant dif-
ference in the number of appearances of each technique in the multi-

omics group versus the general ML group. We found such differen-
ces in autoencoders and Cox PH where these were more common in
the multi-omics group (see Supplementary Fig. S3).

3.2.2 What were the goals of the ML application?

Classification (e.g. separating diseases into subtypes) was the most
common goal in the reviewed papers (Fig. 4b). In some instances,

this was used to discretize a regression problem. For example, sev-
eral papers focused on survival prediction. Instead of predicting the
number of years that a patient would survive (i.e. a regression task),

the labels were ‘survival time > 5 years’ versus ‘survival time <

5 years’ (i.e. a classification task). Dimensionality reduction was the

second most common goal, often applied before classification.
Regression, network inference and denoising followed.

3.2.3 What were the targets/labels of classification tasks?

The dominant category of labels was survival prediction (Fig. 4c),

followed by disease/patient/organism subtyping and response to
intervention. Other labels included disease progression and
classification.

3.3 Can we explain trends using an analysis of the

citation of papers since 2015?
Figure 5 suggests that 2018 sparked an interest in this field, especial-

ly for autoencoders. In that year Chaudhary et al. (2018) was pub-
lished and went on to become the most cited paper in this field.
More details on this paper are included in the discussion.

Fig. 2. (a) Number of uses of each -omics category in the reviewed papers. (b) Number of -omics used per paper in the reviewed papers. (c) The number of appearances -omics

pairs across papers

Fig. 3. ‘Shape’ of multi-omics datasets. Number of samples (x-axis), number of fea-

tures (y-axis)
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4 Discussion

Multi-omics datasets often contain large numbers of features (P) for
a relatively small number of samples (n). This has been described as
the n � P problem (see Fig. 6b). This is opposite of the ideal situ-
ation for many ML applications, where a dataset with n� P is con-
sidered ideal (Fig. 6a).

Mathematical analysis becomes more challenging in high-
dimensional spaces. A typical problem with high dimensionality
(large number of features) is data ‘sparsity’. Considering each data-
point as a coordinate, as the number of features increases (and

therefore the number of data dimensions increases), the volume of
the dimensional space spanned by the data points increases rapidly,
such that the available data becomes sparse. This, in turn, makes in-
ference and prediction particularly difficult unless large amounts of
data points are available for analysis. This phenomenon is known as
the ‘curse of dimensionality’, and the high heterogeneity of biologic-
al data amplifies this challenge for researchers.

We found that a vast share of ML multi-omic data integration
approaches revolve around overcoming this ‘curse’. Researchers
have to take steps to maximize the number of available samples and
minimize the number of features. After that, they still tend to rely on
models that are not too sensitive to having relatively few samples.

4.1 Reducing the number of features (P)
To minimize P, or the number of features, one can select a subset of
more relevant features. Alternatively, one can use an algorithm that
merges and transforms features in a smaller number of new ones, or
one can apply a combination of the previous two approaches.

4.2 Feature selection
In computational modelling, any ability to leverage prior knowledge
of the system into the model can be beneficial since appropriate
prior assumptions can help to find an optimal model. This principle
is often applied implicitly. For example, raw sequencing reads of
RNAseq are not analysed as-is, but rather mapped onto gene tran-
scripts as those have been defined in the latest genome assembly of a
model organism. Similarly, the genome-wide signal of DNA methy-
lation assays is typically discretized into a number of active/inactive
methylation sites (Yuan et al., 2019), since such sites can be consid-
ered functional units of gene regulation.

Beyond this discretization of the raw data, biological expertise
can offer critical advantages through feature selection (see Fig. 6c)

Fig. 4. (a) Number of ML techniques being used more than once in the reviewed papers. The publications on ‘machine learning AND multi-omics AND integration’ are plotted

in green, while the publications on ‘machine learning AND integration’ are plotted in purple. Significant differences were observed for autoencoders, and Cox proportional

hazards (Cox PH) (Cox, 1972). Fisher’s exact test P-values of <0.0001 in both cases, satisfying the Bonferroni correction for this number of tests. Number in the reviewed

multi-omics ML papers of ML goals (b) and labels used for classification (c)

Fig. 5. Number of citations per year, of papers published in different years
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by discarding features with low probability to be relevant. For in-
stance, Athreya et al. (2018) reduced over 7 million features con-
sisting of SNPs and metabolites, to 65 predictor variables. They
used a variety of reduction criteria including keeping SNPs that
had a strong association with metabolite concentrations.
Generally, some researchers will keep the most variable genes and
discard those with consistently low activity levels. Epigenomic
data can similarly be reduced by only considering the loci that are
found near relevant genes or by looking at regions encompassing
multiple methylation sites rather than looking at individual sites
separately.

Feature selection can also be done using computational algo-
rithms rather than biological expertise. One notably common appli-
cation in multi-omics studies is to combine feature selection with
survival analysis with the Cox PH model. The standard Cox PH
model utilizes linear regression techniques for selecting informative
features. This was the second most popular ML technique for multi-
omics, but not so in the broader non-multi-omic field (Fig. 4a). The
dominance of TCGA data, where survival analysis can often be
applied, and the need of feature selection in the multi-omic field like-
ly contributed to this disparity in popularity. Favourable characteris-
tics of feature selection with Cox PH model applications include
that the outcomes provide interpretable values representing the mag-
nitude and direction of the effect of multiple features on survival.
Furthermore, the Cox PH model is applicable also when the out-
comes in survival data of the samples are incomplete, or censored,
for example if a portion of patients are still alive and their survival
time is thus unknown (Cox, 1972). This can help to extract informa-
tion from the limited data, thus alleviating the low sample size issue.

4.3 Feature extraction
Even after feature selection, most multi-omic datasets will have a
high ratio of features/samples and will necessitate further reduction

of the count of features, for example, by feature extraction.
Principal component analysis (PCA), a popular technique in bio-
logical research, is an example of such a feature-extracting tech-
nique. Feature extraction (see Fig. 6c) is the process of condensing
features (e.g. gene activity levels) into a user-defined number of new
features. In PCA, these new features are the principal components,
the top two of which are typically plotted on the classic PCA plot. A
downside of PCA is that it only enables linear transformation of the
data, whereas relationships in biology are rarely linear in real life
(Zuin, 2022). Furthermore, a degree of explainability is lost from
the features as it is not always easy to explain what a principal com-
ponent exactly is.

Another example of feature extraction are autoencoders. These
neural networks run input data through a series of layers of a neural
network, with one of these being a smaller ‘bottleneck’ layer. As an
example, Chaudhary et al. (2018) used a network with three layers
of 500, 100 and 500 units, respectively. This middle bottleneck layer
produces the extracted features which can then be used for further
analysis. Aspects of this paper have been echoed in many subsequent
papers, such as using autoencoders, the TCGA database and K-
means clustering.

An advantage of autoencoders is that by adding several layers
with non-linear activation functions, the technique can model com-
plex nonlinear functions. Autoencoders were more popular for
multi-omic ML data integration than for general ML data
integration.

Autoencoders take in the original inputs, compress them into a
lower dimensional representation and then reconstruct the inputs
minimizing the difference between original and reconstructed inputs
(i.e. ‘reconstruction loss’). Denoising is particularly pertinent to
multi-omics. Here ‘noise’ can be thought of as something that ran-
domly changes pixel values of an image, so that the resulting image
is corrupted. Denoising autoencoders (Vincent et al., 2008) add to

Fig. 6. Shapes in datasets. (a) A dataset where n� P, the ideal ‘shape’ for many ML techniques. (b) In multi-omics analyses, researchers face very wide datasets, where n� P.

(c) Feature selection and extraction are often used to reduce the number of features. In feature selection, a subset of the original features is kept. In feature extraction, features

are merged and transformed into a smaller number of new ones
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the autoencoder framework by corrupting (adding noise to) the ori-
ginal inputs. An example is Seal et al. (2020), which added a ran-
domly drawn number to each input. The aim of this is that the
model learns to create a lower- dimensional representation that
retains the most important aspects of the original information.

The success of autoencoders may largely be thanks to the appli-
cation of the backpropagation (Rumelhart et al., 1986) algorithm.
This is an optimization algorithm that has proven widely effective in
adjusting ML model parameters towards specific goals (e.g. mini-
mizing reconstruction loss). In addition, autoencoders are relatively
easy to use.

4.4 Increasing the number of samples (n)
An alternative to producing a problem-specific dataset and maxi-
mizing n by deeper sampling, is to turn to publicly available data.
Motivations for using public data could be either lack of resources
or because of different research interests. Researchers in the papers
we surveyed overwhelmingly relied on public databases of multi-
omic data, mainly, TCGA.

TCGA contains approximately 10 000 samples across 33 human
cancer types (Tomczak, 2015) in a well maintained, sophisticated
portal with an application programming interface (API). This high
number of datasets combined with its ease of use have made it a fa-
vourite source for researchers. A possible limitation of the field’s re-
liance on this dataset is its focus on cancer. Cancer is characterized
by highly dysregulated metabolism and aberrant signalling pathways
(Cairns, 2011), which may lead to relatively easily identifiable
-omics signals. This may not be congruent with other fields, such as
agriculture or nutrition where small interventions are made (e.g.
changing feed), and which may generate more subtle -omics signals
(Edmunds et al., 2012). Another disadvantage of the widespread use
of this database is that it does not contain certain types of omics,
such as ATACseq. If the multi-omics community relied too heavily
on TCGA, it may bias future research towards the -omics data types
contained in the TCGA dataset. On the other hand, Figure 3 shows
that TCGA and other datasets are fairly comparable (although stat-
istically different in number of features), TCGA could be generally
representative of other datasets.

Multi-omic datasets often include non-overlapping data, i.e.
where not all -omics data are obtained for each sample. This can lead
to a significant decrease in viable samples, reducing statistical power
for the analysis. For example, in Zhang (2018), data from 407 neuro-
blastoma patients were used. Of those, 380 had copy number alter-
ation data, 217 had gene expression data, but only 190 had both and
these 190 were subsequently used in the integration analysis.

4.5 After reshaping the data
Feature extraction techniques comprised the first, second and fifth
most popular techniques. The rest were techniques that perform ML
tasks such as classification, clustering, regression and inferring net-
works among other goals.

Several papers used ML to perform classification, primarily for
survival time prediction. There were varied reasons for using sur-
vival time as a label, ranging from elucidating mechanisms of tu-
mour progression (Poirion, 2021) to improving treatment decisions
(Mitchel, 2020).

4.6 New ML developments of potential use in

multi-omics
Looking forward, there have been several developments in ML in
the last five years and their implications for multi-omics research are
yet to be fully realized. These include a rekindled interest in under-
standing causality in systems, graph-based models and transformers.

Multi-omics research should, in theory, lend itself to causal inter-
pretation, according to the central dogma of biology (Crick, 1958,
1970) where DNA! RNA! Protein. Inferring causality in systems
is important, particularly when planning to intervene in the system
(e.g. manipulating DNA, RNA or protein to change a phenotype)
(Barsi, 2021). A recent multi-omics paper (Zenere, 2022) applied

graphical models (Pearl, 1988) to construct ‘protein coding units’
consisting of epigenomics, transcriptomics and proteomics data. The
general pattern of causal inference in research is to formulate poten-
tial causal relationships from the literature or another source of
prior knowledge and then test these relationships against a given
dataset (Baker, 2022). Dugourd et al. (2021) took this approach by
constructing prior knowledge networks from public datasets to iden-
tify potential causal relationships and then tested which of these
were reflected in the data. With their findings they were able to
make inferences about potential cancer treatment targets. Causal
discovery, i.e. learning the causal relations that define the graph
structure, without imposing prior knowledge is more difficult. One
way of approaching this, however, is to look for relations that are
stable across multiple experimental conditions. An example of this
Invariant Causal Prediction principle is (Meinshausen, 2016) who
looked at gene perturbation experiments. See also (Peters, 2016) for
further mathematical details. The structural assumption on the
causal relations can also be replaced by distributional assumptions,
e.g. as in LiNGAM (linear non-gaussian acyclic model) (Shohei,
2006) or CAM (causal additive model) (Bühlmann, 2014).
However, since reliable causal discovery requires more samples than
classical association and prediction models, these methods are still
uncommon in the multi-omics literature.

Graph neural networks are a class of deep learning approaches
used for processing large amounts of data represented by graphs, in
order to learn tasks from such graphs (Muzio et al., 2021). Among
these, graph convolutional networks are particularly promising:
they use the convolutional layers architecture (LeCun, 1995) to
learn important features from input graphs, which can be used for
various tasks, including prediction (Singha, 2020) or classification
(Zitnik, 2018). In multi-omics, graph convolutional neural networks
have had various applications. For example, (Peng et al., 2022) used
them for predicting cancer drug response, and (Wang, 2021; Zhang,
2021) used them to do biomedical classifications (e.g. Alzheimer’s
disease diagnosis and pan-cancer classification, respectively). As
much as convolutional architectures have excelled in fields such as
vision, a newer technique, the attention mechanism (Bahdanau,
2014), has shown to be superior in various settings (Vaswani,
2017). And so, it is not surprising that graph-attention-based models
have also been used in multi-omics research, for example (Xing,
2022), which performed disease classification and survival
prediction.

The attention mechanism is also at the heart of what is today
probably the most powerful deep learning technique—transformers.
Transformers are deep learning models that employ the attention
mechanism instead of convolutional or fully connected layers. They
gained traction in the field of natural language processing (NLP)
where they have outperformed recurrent neural networks (RNN)
and long short-term memory (LSTM) models and are quickly
becoming the state-of-the-art solution in many fields, for example
object detection (Zhang, 2022).

Transformers are used to process sequential data, which is often
well suited for biological applications. An example is AlphaFold
(Jumper, 2021) which has revolutionized the field of protein folding
modelling, and which relies, in part, on transformers. Another ex-
ample is the ‘Big Bird’ model (Zaheer, 2020), an iteration on the
BERT model (Devlin, 2018). BigBird was shown to work both on
NLP but also on genomic tasks where it achieved improved perform-
ance on downstream tasks such as promoter-region and chromatin
profile prediction. Furthermore, transformers can be pre-trained in
an unsupervised way, an approach that could help ameliorate the
‘few samples’ problem by incorporating prior biological knowledge
into the model.

Although computationally expensive, their accuracy has already
propelled transformers to become state of the art in a number of bio-
logical applications (Avsec, 2021; Jumper, 2021).

5 Conclusion

Multi-omics datasets tend to contain orders of magnitude more fea-
tures than samples, making dimensionality reduction a key issue in
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their analysis. Typical steps included manual feature selection, fol-
lowed by algorithmic selection and/or extraction. Autoencoders and
Cox PH were commonly used. Causal models, graph neural networks
and transformers are some promising approaches for the field.

ML was most often used in classification problems, where tools
like random forests and SVM were most commonly used. Their low
barrier to entry, adaptability to many kinds of data types, and ability
to work with relatively few samples are possible reasons for their
popularity. These are both not new techniques, which may suggest
that there is a gap for classification techniques that cope well with
highly dimensional data and a low number of samples.

The dominance of TCGA as a source of data in the multi-omics
ML integration field, highlights the impact that such a database can
have. Datasets that are easy to discover and use propel innovation
by allowing fast iterations over different techniques. Curating data-
sets and goals for ML competitions could accelerate this even fur-
ther. Perhaps a good direction for the field would be to produce
more datasets like TCGA, but for different model organisms and
contexts (e.g. agricultural crops under different interventions).
Major projects like Holofood (2019) show that researchers and fun-
ders are maybe already aware of the importance of such datasets.
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