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Abstract

Motivation: We face an increasing flood of genetic sequence data, from diverse sources, requiring rapid computa-
tional analysis. Rapid analysis can be achieved by sampling a subset of positions in each sequence. Previous
sequence-sampling methods, such as minimizers, syncmers and minimally overlapping words, were developed by
heuristic intuition, and are not optimal.

Results: We present a sequence-sampling approach that provably optimizes sensitivity for a whole class of se-
quence comparison methods, for randomly evolving sequences. It is likely near-optimal for a wide range of
alignment-based and alignment-free analyses. For real biological DNA, it increases specificity by avoiding simple
repeats. Our approach generalizes universal hitting sets (which guarantee to sample a sequence at least once) and
polar sets (which guarantee to sample a sequence at most once). This helps us understand how to do rapid
sequence analysis as accurately as possible.

Availability and implementation: Source code is freely available at https://gitlab.com/mcfrith/noverlap.

Contact: mcfrith@edu.k.utokyo.ac.jp or spouge@ncbi.nlm.nih.gov

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Let us start with a curious puzzle. Suppose we randomly pick one of
the 45 DNA sequences of length 5. Is the probability that it contains
the substring acgt equal to the probability that it contains aaaa?

There seems to be a strong intuition that the answer is ‘yes’: let
us check. There are four length-5 sequences that start with acgt,
and another four that end with acgt, for a total of eight. On the
other hand, there are seven sequences containing aaaa: aaaaa plus
three others starting with aaaa and three others ending with aaaa.
It is remarkable that such a simple puzzle can be so counterintuitive.

This curious property of sequences is not just a shallow trick, be-
cause it can be leveraged into useful methods. For example, it is the
basis of spaced seeds (Ma et al., 2002). Here, we build upon it a the-
ory of optimal sequence-sampling, for rapid analysis of big data.

The main way of analyzing genetic sequences is by comparing
them to each other. For large data, this is usually done via ‘seeds’,
by which we mean simple similarities that can be found quickly
(Shaw and Yu, 2022). The simplest seeds are fixed-length exact
matches, but they can also be inexact (Altschul et al., 1990; Ma
et al., 2002; Noé and Kucherov, 2004; Sahlin, 2021) and/or variable
length (Cs}urös, 2004). These seeds are used in diverse ways to infer
relationships between sequences.

The seed-and-extend approach extends seeds into detailed align-
ments. The simplest ‘one hit’ method attempts extension from each
seed (Altschul et al., 1990). A ‘two hit’ alternative triggers extension
from a pair of nearby, non-overlapping seeds (Altschul et al., 1997).
Another ‘coverage’ method triggers extension from a group of pos-
sibly overlapping seeds if the number of letters covered by the seeds
exceeds a threshold (Benson and Mak, 2008; Myers, 2014; Noé and
Kucherov, 2004; Noé and Martin, 2014).

There are also alignment-free approaches (Vinga and Almeida,
2003), which often use seeds, also called ‘micro-alignments’ (Yi and
Jin, 2013). These methods are used to infer evolutionary relation-
ships, e.g. by estimating evolutionary distances between sequences
(Bernard et al., 2019; Morgenstern, 2021). For example, they are
used to classify sequences taxonomically, based on seed matches to
a database of reference genomes (Ounit and Lonardi, 2016; Wood
et al., 2019), which is phylogenetic placement (Linard et al., 2019).

For faster or larger-scale sequence comparison, perhaps the most
promising approach is sampling, for example, just use seeds starting
with a. Sampling methods include anchor strings (Manber, 1994),
minimizers (Roberts et al., 2004; Schleimer et al., 2003), syncmers
(Edgar, 2021) and minimally overlapping words (Frith et al., 2020).
Those studies showed that some sampling methods are better than
others in some situations.
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Previous sampling methods, however, were developed by
heuristic intuition, and are unlikely to be optimal. It is also possible
that a sampling method is superior in some scenarios but not
others, e.g. for closely but not distantly related sequences, or for
alignment-based but not alignment-free methods. Thus, we lack a
non-heuristic criterion to optimize sampling.

Here, we develop sampling methods, for exact-match seeds,
which provably optimize sensitivity for one-hit-based sequence com-
parison, for randomly evolving sequences. We argue that they are
likely near-optimal in a wide range of alignment-based and
alignment-free scenarios. We then show evidence that they work
well for real biological DNA. The main advance over previous heu-
ristics (Frith et al., 2020) is improved theoretical understanding of
how to sample positions in a sequence near-optimally for a wide
range of applications.

2 Illustration of our sampling approach

The main idea is that related sequences have runs of overlapping
matches (Fig. 1), and we maximize the probability of sampling these
runs. To make things simple, we assume a random DNA sequence
of independent, equally probable bases, evolving by random substi-
tutions. Let us consider two sampling schemes: matches starting
with ry and matches starting with rr. (r means puRine: a or g, and
y means pYrimidine: c or t.) Each scheme samples 1 in 4 matches
on average. A run of, say, 2 overlapping matches is hit when ry (or
rr) occurs at the start of either match, i.e. when it occurs in a se-
quence of length 3. A quarter of all length-3 sequences start with
ry, and a different quarter end with ry (because it’s impossible to
start and end with ry), so the total hitting probability is
1/4þ1/4¼1/2. In contrast, 1/4 of length-3 sequences start with rr
and an overlapping quarter end with rr, so the total hitting prob-
ability is lower (3/8). Thus, ry is more likely than rr to sample a
run of 2 overlapping matches.

In fact, ry is more likely than rr to sample a run of x overlap-
ping matches, for any x � 2. This means that ry is more likely than
rr to sample at least one match between two related sequences.
Thus, ry is more sensitive, for one-hit-based sequence comparison.
Moreover, it is more sensitive for any level of sequence divergence:
for closely or distantly related sequences.

3 Materials and methods

3.1 Sampling positions, matches and runs
We sample positions in a sequence, and thereby sample matches be-
tween two sequences. For example, if we sample positions where a
occurs, and then find matches starting at those positions, we will
sample matches starting with a.

We are interested in sampling runs of overlapping matches
(Fig. 1). Sampling such a run is equivalent to sampling a run of con-
secutive starting positions of the matches in one sequence.

3.2 Word-based sampling
A word-based sampling scheme specifies a set Q of length-k words,
e.g. Q ¼ frrry;ryrr;ryyr;yyyrg and selects the positions in a
sequence where those words occur. This can be used to select seeds
starting at those positions. We will focus on exact-match seeds of
fixed length m � k. Some previous publications (e.g. Edgar, 2021)

have focused on the case m¼k, so that both words and matches are
k-mers, but here words are k-mers and matches are m-mers.
Fundamentally, we are sampling positions in a sequence, and what
we do with those positions is secondary.

Word-based sampling can be implemented with a lookup table
of size jAjk, where jAj is the alphabet size, to look up whether any
word is in the set. This is fast and practical, as long as the table is
small enough to fit in the computer’s fast cache memory. We use a
purine/pyrimidine alphabet A ¼ fr;yg because:

• In biological DNA, r and y have 50:50 frequencies, whereas

a, c, g and t have varying frequencies (Chargaff, 1950).

This makes the frequency of r/y words more predictable.
• Vertebrates have a high rate of cg! tg/ca substitutions (Zhou

et al., 2020). This cg effect does not fit our model of independent

letters with uniform substitution probability, but it does fit the

model when the sites are encoded as r/y (Bérard et al., 2008).
• A reduced alphabet makes it easier to use longer words, because

the lookup table is smaller. Longer words can help to optimize

sampling, by constraining the spacing between sampled

positions.
• r/y word-based sampling is compatible with inexact seeds that

allow a $ g and c $ t substitutions at some positions: such

seeds often work well because these substitutions are frequent

(Noé and Kucherov, 2004).

3.3 Run-hitting probabilities
We wish to know the probability that a word-based sampling
scheme hits a run of x consecutive start positions (Fig. 1). This
equals the probability that any word in our set occurs in a sequence
of length xþ k� 1.

This can be calculated by dynamic programming. Define C(i, w)
to be the number of possible length-i sequences, with alphabet A,
which have no substring that is in our set Q, and end in a length-k
word w. The base case is:

Cðk;wÞ ¼
(

0 if w 2 Q
1 if w 62 Q

(1)

If we define w0 to be w with its final letter removed, and �

is string concatenation:

Cðiþ 1;wÞ ¼
(

0 if w 2 QP
a2A Cði; a � w0Þ if w 62 Q

(2)

Finally, from the definition of C(i, w), the probability of any
word in our set occurring in x overlapping positions is:

Hx ¼ 1�
P

w Cðxþ k� 1;wÞ
jAjxþk�1

(3)

This dynamic programming method is similar to computation of
hit probability for multiple-spaced seed patterns (Li et al., 2003).

3.4 Upper bound
The run-hitting probabilities have a simple upper bound (Shaw and
Yu, 2021). This is illustrated by the ry example in Section 1. ry
occurs with probability 1=s (s¼4 in this case), the probability of hit-
ting a size-2 run is at most 2� ð1=sÞ, and this upper bound is
achieved when it’s impossible to sample both positions. In general,
the probability of hitting a size-x run is at most: minðx=s;1Þ.

3.5 Optimizing run-hitting probabilities
We wish to find a set of words with high run-hitting probabilities.
We will try to maximize the average run-hitting probability, for runs
of size 1; 2; 3; . . . u. When u is very large, this is equivalent to

Fig. 1. Example of related sequences, with length-7 exact matches (blue bars). The

matches occur in runs of size 1, 3 and 2. If we sample matches starting with ry, we

‘hit’ the size-2 run if ry is at either of the sites marked by braces, in other words, if

ry occurs in the length-3 sequence marked by arrows
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minimizing the variance of distance between consecutive sampled
positions (see Supplementary material).

We used two optimization methods: exact and heuristic. In both
cases, we fix the word length k and the number of words n. The
exact method evaluates all possible sets of n length-k words, and
outputs all sets that have maximum average run-hitting probability.
This is feasible only when k and n are small; we used it when n � 8.
The heuristic method uses simulated annealing (see Supplementary
material): it does not guarantee to find the maximum average run-
hitting probability. These methods are available in maxhit-words
from https://gitlab.com/mcfrith/noverlap.

3.6 Reversing to minimize yr count
So far, we have assumed that differences between related sequences
are random and sequence independent. This is not really true: in par-
ticular, vertebrates have a high rate of cg ! tg/ca substitutions
(Zhou et al., 2020). This suggests that words with fewer yrs may be
better. As a first step in this direction, we reversed all words in our
set if doing so would reduce the total yr count. Such reversal does
not change the run-hitting probabilities calculated as above.

3.7 Syncmer run-hitting probabilities
These were calculated using distance-distribution-para-
metrized-syncmer.py from https://tinyurl.com/frith-ISCB-V-
Taiwan, which builds on ‘parametrized syncmer’ concepts (Dutta
et al., 2022).

4 Results

4.1 Run-hitting probabilities
To start with our introductory example of ry versus rr, we calcu-
lated the probabilities of ry or rr occurring in runs of overlapping
positions (Fig. 1). ry has higher probability of occurring in a run of
between two and at least seven positions (Fig. 2). This indicates that
matches starting with ry between related sequences are more likely
to occur than matches starting with rr.

We then calculated run-hitting probabilities for some word sets
found previously by heuristic criteria (Frith et al., 2020). A set of
eight length-5 words (Fig. 2), which also samples 1 in 4 positions,
has higher run-hitting probabilities than ry. Another set of sixteen
length-6 words, named RY4-6, has even higher run-hitting probabil-
ities (Fig. 2). The eight 5-mers have the maximum average
run-hitting probability, for run size 1 to u¼7, among all sets of
eight 5-mers (according to our exact optimization method). This
shows that longer words enable higher run-hitting probabilities.

4.2 Every sth sampling is optimal
For comparing two sequences, one sampling method is to select
every sth position in one sequence, and every position in the other.
This scheme samples 1 in s matches on average. It hits a run of x< s
overlapping matches with probability x/s, and x � s matches with
probability 1. Thus, it perfectly achieves the best-possible upper-
bound run-hitting probabilities.

This scheme has a disadvantage: it just samples one sequence. In
constrast, if we use e.g. matches starting with a, we can rapidly skip
all non-a positions in both sequences.

Another idea is to use matches whose start coordinates, in both
sequences, are divisible by

ffiffi
s
p

, which samples 1 in s matches on
average. This scheme hits runs of size x �

ffiffi
s
p

with optimal prob-
ability x/s. But for longer runs the hitting probability flatlines at
1=

ffiffi
s
p

.

4.3 Optimizing run-hitting probabilities
We sought word sets whose run-hitting probabilities are as high as
possible, for sparsity s ¼ 4, 8, 16 and 32. If we use r/y words of
length k, the number of words must be n ¼ 2k=s. Longer words can
achieve higher hitting probabilities but are harder to optimize be-
cause there are more possible word sets. So, we compromised by

using heuristic optimization with n¼128 (Table 1). We sought

word sets with maximum average hitting probability, for run sizes
from 1 to u ¼ 2s� 1. This upper value u is arbitrary but covers the

range where the probabilities are most different from the upper
bound (Figs 2 and 3). (Actually, we set a hard upper limit on u:
uþ k� 1 � 64, because our software does not handle higher

values.)
We found word sets with higher run-hitting probabilities, for

each sparsity, than the best word sets we found previously (Fig. 3).
The names indicate sparsity and word length, e.g. RY4-9 has spars-
ity 4 and word length 9. The improvement is small but clear.

4.4 Optimizing a weighted average
By optimizing the average run-hitting probability, we attach equal

importance to each run length, which is not necessarily correct.
Actually, short runs are more important for comparing highly
diverged sequences, and long runs are more important for compar-

ing highly similar sequences. This is because runs of overlapping
matches tend to be shorter in more-diverged sequences.

So, we also tried optimizing a weighted average of the run-
hitting probabilities, where the weight decreases by a factor d for

each increment in run length. For sparsity 4, with d¼4 we found a

Fig. 2. For each of four word sets, probability of occurring at least once in a se-

quence of random, independent, equally probable r and y

Table 1. Sets of r/y words analyzed in this study

Name Sparsity Word

length

Number of

words

Min Max Count of

Separation yr Ry

Old

RY4-6 4 6 16 2 1 17 25

RY8-8 8 8 32 3 1 59 53

RY16-8 16 8 16 6 1 28 31

RY32-10 32 10 32 9 1 79 55

New

RY4-9 4 9 128 2 1 248 268

RY4push 4 9 128 3 1 245 270

RY4pull 4 9 128 1 6 254 258

RY8-10 8 10 128 4 1 268 314

RY16-11 16 11 128 7 1 320 321

RY32-12 32 12 128 10 1 309 384
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set of length-9 words named RY4push (Fig. 4). These words exactly
achieve the upper-bound run-hitting probability for run size �3.
This means that these words cannot occur at more than 1 out of 3
consecutive positions, in other words, they sample positions with
minimum separation 3. This is optimal for sparsity 4: a minimum
separation of 4 would require that the spacing is always exactly
4, which is impossible in e.g. a homopolymer sequence like
rrrrrrrrrr. A word set with guaranteed minimum separation has
been termed a ‘polar set’ (Zheng et al., 2021).

We also tried attaching higher weight to longer runs. For sparsity
4, with d¼1/8 we found a set of length-9 words named RY4pull

(Fig. 4). These words achieve the upper-bound run-hitting probabil-
ity, which is 1, for run size � 6. In other words, they sample posi-
tions with a maximum separation of 6. Since these words are
guaranteed to occur in a finite sequence, they are an example of a
universal hitting set (Orenstein et al., 2016).

In practice, RY4-9 is likely near-optimal for both closely and dis-
tantly related sequences, because its run-hitting probabilities are
never much lower than those of RY4push and RY4pull (Fig. 4).

4.5 One-hit specificity
Our approach increases the sensitivity of one-hit-based sequence
comparison, but it’s important to consider specificity too. Sensitivity
means probability of finding truly related sequences, and specificity
means probability of avoiding unrelated sequences. (The definition
of ‘truly related’ depends on what we want to find, e.g. it could be
homology or orthology.) For example, we can trivially increase sen-
sitivity by using shorter matches, but that produces more matches
between unrelated sequences, i.e. decreases specificity. Low seed
specificity harms the run time of downstream seed-processing steps.

Is there any difference in specificity of ry- and rr-sampling?
One way to measure specificity is by the number of sampled matches
between unrelated random sequences: then there is no difference be-
tween ry and rr. However, one-hit seed-and-extend methods do
not really attempt extension from every match: they avoid redun-
dant extensions from overlapping matches. This suggests that two
levels of specificity should be considered: all matches (which must
be checked for overlap) and non-redundant matches (which trigger
extension).

Let us investigate the number of sampled non-redundant matches
between unrelated random sequences. The definition of non-
redundant varies but suppose that each match (of length m) is imme-
diately extended into a maximally long exact match, and subsequent
matches in such extensions are skipped. Then, specificity can be
measured by the number of sampled maximal exact matches
between unrelated random sequences. The frequency of length-y
maximal exact matches is proportional to py (where p ¼1/4 for
DNA), and the probability of getting sampled is Hy�mþ1. So, the
expected fraction of maximal exact matches (of length � m) that get
sampled iS

ð1� pÞ
X1
x¼1

Hxpx�1: (4)

For example, ry samples a fraction 0.327 of maximal exact
matches between unrelated random sequences, and rr samples
0.291. The upper bound, which applies to every-fourth sampling, is
0.332. So our approach has a downside: it maximizes non-
redundant matches between unrelated sequences.

4.6 Methods other than one-hit
Our sequence-sampling approach is beneficial not only for one-hit-
based sequence comparison. Firstly, we conjecture that it maximizes
the sensitivity of two-hit methods. Their sensitivity depends on find-
ing two nearby, non-overlapping seeds: these seeds could be in the
same run, or in separate runs (Fig. 1). Our approach optimizes the
probability of hitting separate runs, and of non-overlapping hits in
one run (see Supplementary material). Thus, it seems likely to im-
prove the sensitivity of two-hit methods.

Our approach is also likely to increase the sensitivity of
coverage-based sequence comparison. That is because it provably
increases the expected number of letters covered by matches in a
true alignment. This is proportional to the probability that one letter
is covered, which was shown (Shaw and Yu, 2021) to equal

Xm
x¼1

HxPrunðxÞ; (5)

where m is the match length, and PrunðxÞ is the probability that
exactly x matches overlap one letter. Thus, higher run-hitting

Fig. 3. Run-hitting probabilities, for sampling schemes with sparsity: (A) 4, (B) 8,

(C) 16 and (D) 32. For each run size (horizontal axis), the probability difference

from the upper bound is shown (vertical axis). The gray triangles show the best

schemes we found previously (Frith et al., 2020), and the black dots show new

schemes. The triangles in (A) are equivalent to the triangles in Figure 2

Fig. 4. Run-hitting probabilities, for three 1-in-4 sampling schemes. For each run

size (horizontal axis), the probability difference from the upper bound is shown

(vertical axis). The black dots are the same as in Figure 3A
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probabilities (Hx) imply higher expected coverage, for any level of
sequence divergence.

Alignment-free methods are diverse, but a fundamental example
is inferring the evolutionary distance between two sequences from
the number of seed matches between them (Bernard et al., 2019;
Morgenstern et al., 2015). To make this inference tight, we wish the
variance in number of seed matches, for any given evolutionary dis-
tance, to be as low as possible (Morgenstern et al., 2015). Our sam-
pling approach minimizes the variance of distance between sampled
positions, which seems likely to reduce variance of match count.

4.7 Comparison to syncmers
A recent sequence-sampling approach is syncmers (Edgar, 2021):
how does it compare? Syncmers are a special case of word-based
sampling. To define whether a length-k word is a syncmer, we first
map each of its length-j subwords to an integer, by an arbitrary hash
function. The number of subwords is w ¼ k� jþ 1. If the minimum
j-mer is the first or last one in the k-mer, then the k-mer is a ‘closed
syncmer’. If the minimum j-mer is the one at offset t (1 � t � w),
then the k-mer is an ‘open syncmer with offset t’. Finally, a d-fold
‘down-sampled’ open or closed syncmer is one where the hash func-
tion of the k-mer is � h=d, where h is the maximum possible hash.

To make syncmer properties simple, we shall assume the sub-
word size j is large enough that tied hash values are rare. Then, open
syncmers sample 1 in w positions, and closed syncmers sample 2 in
w positions. Also, the run-hitting probabilities of open syncmers are
maximized when t ¼ dw=2e (Shaw and Yu, 2021), so we shall as-
sume this value for t.

The run-hitting probabilities of syncmers are shown in Figure 5.
Closed syncmers are universal hitting sets: for sampling sparsity s,
they guarantee to hit runs of size � 2s� 1. For shorter runs, how-
ever, their run-hitting probabilities are inferior. Open syncmers are
polar word sets: they have minimum separation ds=2e. They are less
sensitive than our word sets for sparsity 4 and 8, but more sensitive
for sparsity 16 and 32. It is not too surprising that these open syn-
cmers are more sensitive than our word sets, because they use longer
words. The word length of open syncmers, for sparsity s, is > s.
Thus, for sparsity 16 or 32, open syncmers can only be used with ra-
ther long matches, which have low sensitivity. Down-sampled open
syncmers can use shorter words, but their run-hitting probabilities
are inferior (Fig. 5). Overall, open syncmers are a good heuristic for
maximizing run-hitting probabilities.

4.8 Sparsity in biological DNA
To see if our sampling methods are likely to work well for real
DNA, we first checked the sparsity of our word sets in biological
data. We checked human DNA (the first million non-N bases of
hg38 chromosome 2), AT-rich Plasmodium falciparum DNA (the
first million bases of NC_000521.4), and repetitive centromeric
DNA [the 161 kb sequence 000736F from medaka strain Hd-rR
2.2.4 (Ichikawa et al., 2017)]. For the human and centromeric
DNA, the words’ sparsity is close to the expected values of 4, 8, 16
and 32 (Fig. 6). For the plasmodium DNA, some word sets are
sparser than expected, but not wildly different. This suggests that
our sampling schemes are applicable to a wide range of natural
DNA.

4.9 Specificity in biological DNA
We then measured specificity in real DNA, by counting the number
of sampled matches between two unrelated sequences: 106 bases of
human DNA (the same as above) and 106 bases of reversed (but not
complemented) mouse DNA (the first million non-N bases of mm39
chromosome 1). Some sampling schemes find more matches than
others (Fig. 7), so they are less specific. For example, RY4-6 finds
more matches than RY4-9: this is because RY4-6 includes the word
ryryry, and that word alone gets most of the long matches found
by RY4-6. This is presumably because ryryry samples simple
repeats like atatat, which are frequent in real DNA. Similarly,
RY8-8 finds more matches than RY8-10, because RY8-8 includes
the repetitive words yyyryyyr and yyryyryy. By avoiding simple

repeats, our new word sets are more specific than theoretically opti-

mal every sth sampling.

4.10 Sensitivity in biological DNA
Finally, we did one test of sensitivity in real DNA, by seeking short-
range rearrangements in the gibbon genome relative to the human

genome (e.g. Fig. 8). Specifically, we sought rearrangements that
may arise by short-range template switching during DNA replica-
tion, which are often overlooked (Löytynoja and Goldman, 2017).

We used a two-step genome alignment method with the LAST
software (Frith and Kawaguchi, 2015). First, it finds and aligns simi-

lar segments of the two genomes. Second, it cuts these alignments
down to a unique best alignment for each part of the gibbon gen-
ome. This is a reasonable way to find rearrangements that occurred

Fig. 5. Run-hitting probabilities (difference from upper bound) for syncmers versus

our word sets. The black dots are the same as in Figure 3. The down-sampled syn-

cmers are 2-fold down-sampled

Fig. 6. Sparsity of some sampling schemes in three biological DNA sequences
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in the gibbon lineage. The first step uses one-hit seed-and-extend,
with variable-length seeds: at each sampled position in the gibbon
sequence, it uses the shortest seed that occurs at most m times in
human. Here, we used exact-match seeds with m¼2.

As our ground truth, we used gibbon-human alignments found
by the same method without any sampling. This will not be perfectly
accurate, but it suffices to compare sampling methods’ abilities to
find related segments. We defined ‘short range’ rearrangements by
arbitrary thresholds (see Supplementary material), and deemed a
sampling method to find a rearrangement if it finds one with the
same start and end coordinates of the rearranged fragment.

In this test, the sensitivities of the sampling schemes agree with
theoretical expectations. Firstly, every sth sampling always has the
highest sensitivity, e.g. every-16th sampling misses fewer rearrange-
ments than RY16-11 (Fig. 9A). Secondly, our new word sets are al-
ways more sensitive than our old word sets (Table 1), e.g. RY4-9
misses fewer rearrangements than RY4-6. Furthermore, RY4-6 is
more sensitive than RY. Finally, the word sets are more sensitive
when oriented to minimize yr count, in most cases.

The run times show the benefit of more-aggressive sampling
(Fig. 9B). Every sth seeding used more memory, because it uses an
index data-structure of all positions in the human genome, whereas
word-based sampling just indexes the sampled positions. Among the
1-in-4 sampling schemes, RY and YR are fastest: we speculate this is
because they have lower sensitivity so find fewer alignments.

5 Discussion

We have presented an approach to sampling a sequence, which
provably optimizes sensitivity for one-hit-based sequence compari-
son, for idealized random DNA. It is likely near-optimal for a wide
range of alignment-based and alignment-free methods. For real bio-
logical DNA, our approach has close to the expected sampling rates,
improves sensitivity in a limited test and even improves specificity
by avoiding simple repeats. Thus, our approach is promising for real
DNA.

Our sampling method may have further applications. For ex-
ample, various k-mer processing tasks are done by distributing
k-mers into bins (Nyström-Persson et al., 2021). k-mers could be
binned based on which (if any) of our words they contain. Because
our words are evenly spaced, this binning is likely to be efficient and
often put consecutive k-mers in the same bin.

Our sequence-sampling approach is a balance between universal
hitting sets and polar sets. Universal hitting sets guarantee to sample
a sufficiently long sequence at least once, whereas polar sets have
optimal hitting probabilities for sufficiently short sequences which
they sample at most once. It is impossible, however, for a word set
to be both universal and polar. This is because a polar set with min-
imum separation b must exclude repeats (like ryryry) with period
< b, but a universal set must include them. So, it may be interesting
to find ‘near-universal hitting sets’ that hit every sequence except
short-period repeats: such a set could perhaps be polar, with the spe-
cificity benefit of avoiding simple repeats.

There are several other directions for future advances. Firstly, it
would be useful to find better-optimized word sets than we found by
simulated annealing, with longer words. Related to this, it would be
interesting to know if optimal or near-optimal word sets have any
simple properties. It would be useful to optimize sampling of inexact
seeds (Frith et al., 2020), which we feel are under-used, though

Fig. 7. Specificity of some seed-sampling schemes, for mammal DNA. The vertical

axis is the number of pair-wise seed matches between: 106 bases of human DNA

and 106 bases of reversed (but not complemented) mouse DNA. In each panel, the

gray line shows the expected number of hits if each sequence were shuffled

Fig. 8. A short-range rearrangement in the gibbon genome relative to human. The

diagonal lines show alignments: red ¼ same strand, blue ¼ opposite strand. The ver-

tical stripes show repeat elements in the human sequence: red ¼ forward-oriented,

blue ¼ reverse-oriented. By visually scanning this figure from top to bottom, we can

see which part of the human sequence each part of the gibbon sequence comes from

A B

Fig. 9. Sensitivity for finding short-range rearrangements, and run time, when align-

ing human and gibbon genomes using LAST with various seed-sampling schemes.

The suffix rev indicates sets of reversed words, which thus maximize yr count
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they benefit alignment-based and alignment-free methods (e.g. Ma
et al., 2002; Morgenstern et al., 2015; Ounit and Lonardi, 2016).
In particular, transition seeds, which tolerate frequently occurring
a $g and c $t substitutions, are greatly neglected and promising
for improved sequence comparison (Noé and Kucherov, 2004). It
would also be useful to optimize protein sequence sampling, perhaps
using a reduced alphabet. Finally, it may be useful to optimize sam-
pling of specific sequences, such as a reference human genome
(Chikhi et al., 2014; Zheng et al., 2021): it will be interesting to see
how much this improves over sampling methods that are optimal
for random sequences.

We have clarified how to do optimal sampling of a sequence,
which is a fundamental way to rapidly analyze big sequence data. At
the same time, we have shown that random sequences of independ-
ent letters are surprisingly interesting.
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