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Abstract

Background:Deep-learning algorithms (DLAs) have been used in artificial intelligence

aided ultrasonography diagnosis of thyroid and breast lesions. However, its use has

not been described in the case of dermatologic ultrasound lesions. Our purposewas to

train a DLA to discriminate benign form malignant lesions in dermatologic ultrasound

images.

Materials and methods:We trained a prebuilt neural network architecture (Efficient-

Net B4) in a commercial artificial intelligence platform (Peltarion, Stockholm, Sweden)

with 235 color Doppler images of both benign andmalignant ultrasound images of 235

excised and histologically confirmed skin lesions (84.3% training, 15.7% validation). An

additional 35 test imageswereused for testing the algorithmdiscrimination for correct

benign/malignant diagnosis. One dermatologist with more than 5 years of experience

in dermatologic ultrasound blindly evaluated the same 35 test images for malignancy

or benignity.

Results: EfficientNet B4 trained dermatologic ultrasound algorithm sensitivity; speci-

ficity; predictive positive values, and predicted negative values for validation algo-

rithmwere 0.8, 0.86, 0.86, and 0.8, respectively formalignancy diagnosis.When tested

with 35 previously unevaluated images sets, the algorithmt’s accuracy for correct

benign/malignant diagnosis was 77.1%, not statistically significantly different from the

dermatologist’s evaluation (74.1%).

Conclusion: An adequately trained algorithm, even with a limited number of images,

is at least as accurate as a dermatologic-ultrasound experienced dermatologist in the

evaluation of benignity/malignancy of ultrasound skin tumor images devoid of clinical

data.
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1 INTRODUCTION

Artificial intelligence and, more specifically, deep-learning algorithms

(DLAs), are rapidly permeating image-based diagnosticmodalities such

as X-rays, films, CT, and ultrasound, showing high diagnostic accu-

racy and performance.1–4 However, dermatologic ultrasound, a recent

application of high-frequency ultrasound to the superficial structures

of skin and appendages,5,6 has not been explored as an image source

forDLAs. The purpose of our investigationwas to train a prebuilt deep-

learning architecture with a limited dermatologic ultrasound database

of skin tumors and evaluate its efficacy and efficiency in comparison

with expert human diagnosis regarding benignity or malignancy diag-

nosis.

2 MATERIALS AND METHODS

2.1 Study design

This was a study of DLA performance, from training to validation

and testing on common dermatologic ultrasound (dermUS) skin tumor

images. The DLAwas used to classify images as benign or malignant.

The Institutional Review Board exempted the study and informed

consent was waived, as no patient data were used in the creation or

testing of the DLA.

2.2 Data

DermUS images were obtained from the institutional dermatologic

ultrasound archive. Single scan color Doppler images acquired accord-

ing to DERMUS guidelines7 of 235 surgically excised or biopsied

skin lesions were selected. Diagnosis of the lesions was restricted to

seven categories as seen in Table 1. These diagnoses represent the

most prevalent benign and malignant skin lesions in everyday clinical

practice.8

Researchers confirmed the absence of patient identifiers prior to

image extraction. Validation, training, and testing scans were scanned

with a 10–22 MHz and 18 MHz lineal probe in a single machine (My

Lab class C, Esaote, Geneva) for image homogeneity.

2.3 Data manipulation

All images were cropped to 224 × 224 pixels to eliminate ultra-

sound exploration metadata. Images were placed in a separate older

file and a csv index file with histological diagnosis; sex, age, benig-

nity, or malignancy and probe resolution was matched with the image

folder’s corresponding image. Images that were blank, such as from

loss of transducer-skin contact, were deleted. No other images were

deleted, including those without optimal image quality, to increase

model robustness and applicability.

2.4 Deep-learning architecture and platform
tested

EfficientNet B4 is built around 2D Depthwise convolution blocks,9

which have been shown to be extremely cost-efficient and are also

the basis of the MobileNetV2 network.10 However, the exact archi-

tecture was not designed by hand but instead is the result of Neural

Architecture Search.11 This is an optimization procedure that searches

for the network architecture with the highest possible accuracy given

fixed computational resources to run this network.12 EfficientNet B4

was trained with dermUS preprocessed images in a commercial plat-

form (Peltarion, Stockholm, Sweden) as prebuilt architecture, with the

possibility of a parameter optimization called snippet. Augmentation

of images was tested and a determination was made not to use it,

TABLE 1 Diagnoses of training dataset and ultrasound criteria for discrimination between benign andmalignant lesions

Histological diagnosis Number US criteria for benign vs. malignant lesions

Benign 151 –Well circumscribed

Cyst 71 –Symmetric, homogenous appearance

Lipoma 40 –Characteristic findings of a specific benign lesion (e.g., sonographic punctum and tract of

epidermal cyst)

Dermatofibroma 25

Seborrheic keratosis 14

Malignant 84 –Internal hyperechoic spots

Basal cell carcinoma 43 –Irregular borders

Squamous cell carcinoma 24 –Asymmetric, lobulated, heterogenous appearance

Actinic keratosis 17 –Involvement of adjacent structures (bone, cartilage, muscle)

Note: Echogenicity and vascularity are not sufficient characteristics to discriminate between benign versus malignant lesions alone. While most cutaneous

malignancies are hypoechoic dermal or subdermal structures, this is frequently the case for benign lesions aswell. Further, basal cell carcinomas (BCCs) show

low tomoderate vascularity and squamous cell carcinomas (SCCs) tend to show higher vascularity, while benign vascular lesions can also show high flow.
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as it did not increase model accuracy. Initial weights were trained on

ImageNet.13

2.5 Algorithm training and testing

EfficientNet B4 was trained with the aforementioned dermUS image

folder and index csv file assigning randomly 80% of the images for

training the model and 20% for algorithm validation. The algorithm

was trained for 20 epochs, which represent a whole forward propaga-

tion and backward propagation of images for algorithmweights adjust-

ment. Optimal weights were obtained in Epoch 14 with a training time

of 93min. Consistentwith best practices suggested by a recent critique

of medical DL image interpretation algorithm flaws,14 35 new testing

images, 5 for each of the 7-training diagnosis, were picked from the

same institutional database, unrelated to the initial 235 images.

2.6 Human expert diagnostic testing and
comparison with algorithm diagnosis

A dermatologist certified in dermatologic ultrasound by both Spanish

Society of Ultrasound and the European Federation of Ultrasound in

Medicine and Biology evaluated the same 35 new images. The derma-

tologist had more than 5 years of experience in dermatologic ultra-

sound and was blind to clinical images of the lesion or any other clini-

cal data. The correct diagnosis accuracy of both the algorithm and the

dermatologist was comparedwith χ2 test, with p< 0.01 for statistically

significant difference.

3 RESULTS

3.1 Internal validation test

The internal test set was generated at random by our system from

the original 235 image set and comprised 37 dermUS images of skin

tumors (22 benign, 15malignant). Of the 15malignant tumors, 12were

classified as malignant by the algorithm (sensitivity, 80%). Of the 22

benign lesions, 19 were predicted as benign by the algorithm (speci-

ficity, 86.3%). Of the 22 lesions that the algorithm classified as benign,

19 were benign (negative predictive value (NPV), 86.3%). Of the 15

lesions algorithm classified as malignant, 12 were malignant (positive

predictive value (PPV), 80%).

3.2 External test

The external test set was comprised of 35 new lesion images (20

benign, 15 malignant) with the same diagnostic categories as the val-

idation set (5 for each diagnostic category outlined in Table 1). Of

the 15 malignant lesions, 11 were classified as malignant by the algo-

rithm (sensitivity, 73.3%). Of the 20 benign lesions, 16 were predicted

F IGURE 1 False positive; dermatofibroma classified as a
malignant lesion

F IGURE 2 False negative; basal cell carcinoma classified as a
benign lesion

as benign by the algorithm (specificity 80%). Of the 20 lesions that

the algorithm classified as benign, 16 were benign (NPV, 86.9%). Of

the 15 lesions algorithm classified as malignant, 11 were malignant

(PPV, 73.3%). Accuracy of DLA for correctly classified lesions as benign

or malignant was 77.1%. Figures 1 and 2 are, respectively, examples

of benign lesions diagnosed as malignant by DLA (false positive) and

malignant lesion diagnosed as benign by DLA (false negative).

With respect to the expert dermUS human evaluator, sensitivity,

specificity, PPV, NPV was 73.3%, 75%, 78.9%, and 68.8%, respectively.

The accuracy of the humanexpertwas 74.2%,whichwas not significant

different from the DLA accuracy (p= 0.34).
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4 DISCUSSION

Use of both artificial intelligence and deep learning (machine learning

based on patterns identified by neural networks) is increasing in the

fields of ultrasound and dermatology. Previous applications in which

ultrasound has proven to be helpful in distinguishing benign andmalig-

nant lesions include thyroid nodules and breast nodules.14,15 Regard-

ing dermatology, there have been multiple published “challenges” in

which dermatologists compete with data scientists and their algo-

rithms in thediagnosis of dermoscopy images. Thesehaveyieldedgreat

success for the algorithmswhenmeasured against average dermatolo-

gists, but not against world class experts.16

However, dermatologic ultrasound images have not been addressed

as a possible field of deep learning. The superficiality of dermal-

epidermal lesions makes their dermUS images more difficult to assess

than deep subcutaneous lesions. As these images start being acquired

using higher frequency equipment,17 higher resolution images will

yield more information that might be advantageous for building algo-

rithms. Because of this, althoughmost reports on diagnosis use Bmode

images, we chose to use color Doppler images that contain B mode

information (shape, borders, echogenicity) and vascularization pattern

information. This information is also used in clinical practice for the dif-

ferential diagnosis of benign and malignant lesions.18 It is worth not-

ing that false-positive and false-negative lesions in our study largely

demonstrated high vascularity and had ill-defined margins, reflect-

ing that these findings are not always specific to benign or malignant

lesions.

DLA selection is as important as data curation. In a recent paper,

Blaivas andBlaivas19 compare different neural networks architectures

and demonstrate that performance varies in efficiency (time to train

and accuracy) depending on the DL architecture. As these authors

state, more recently created architecture is not always more efficient

than “older” architectures, and it may be that some architectures are

better depending on the type of explorationwe are dealing with. In our

casewe chose EfficientNet B4, amodern architecture, which optimizes

parameterswithminimumtraining time in comparisonwith othermore

complex architectures. The main advantage of “lighter” architectures

is the possibility of more efficient training time and the possibility of

transferring them tomobile apps in smartphones or tablets,which have

limited computational capability but optimal accessibility.9–11

In our study, we used a commercial DL platform instead of one that

was homemadeor adhoc fromscratchprogramedalgorithms. This pro-

vided us the possibility of access to adapting a prebuilt architecture to

our dataset, fine-tuning parameters to optimize predictive capability of

our DLA. Themain advantage of using this kind of no-code or low-code

platformsmain advantage is accessibility to users without the require-

ment of a deep knowledge in programming languages.19.

DLA algorithms are usually pretrained with nonmedical images.20

Large image databases such as Imagenet12 permit initial weights

preadjustment in order to make borders or other basic features of

images more easily recognizable by algorithms.20 However, in the case

of ultrasound, some authors suggest that initial weight adjustments

should be made with the same kind of images to improve system

accuracy.21 This is a controversy, which could foster the necessity of

creating largely public ultrasound images databases.

Another controversial aspect of training DLAs is the quantity and

quality of images necessary. Most publications suggest the use of a

large number of images in order to fine-tune algorithms.20 In our DLA,

we used a limited number of images of seven categories and perfor-

mance was similar to expert diagnosis. The aphorism of “garbage in-

garbage out” is in no way improved by increasing the number of inputs

without any sequential logic. In that sense, training of specific applica-

tion DLAs should be done with the help of expert trainers in that appli-

cation in order tomakemachine learningmore systematic and to inter-

pret failures of DLAs.20–21

The main limitations of our study are the limited number of images

used, the restricted categories for DLA training (which exclude other

diagnoses), and the possibility that other architectures not trained

would be more efficient than EfficientNet B4. However, taking into

account that these categories are the most frequently diagnosed in

general dermatologic ultrasound, and that even with a limited number

of images, efficiency for malignancy/benignity diagnosis was compara-

ble to expert malignancy/benignity diagnosis. This exploratory investi-

gation is a starting point for further investigations in this field.

5 CONCLUSIONS

DLA can use dermatologic ultrasound images as a source for malig-

nancy/benignity diagnosis, even with a limited number of images,

with accuracy equivalent to that of a dermatologic ultrasound human

expert. Including more diagnostic categories, more cases, and more

image features such as epidemiological or clinical variables in opti-

mized architectures, may be key for a future of automated diagnosis in

dermatologic ultrasound. However, the supervision of human experts

to train, design and control quality of results will also be necessary.
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