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Abstract

There have been many surveys of genetic variation in BRCA1 and BRCA2 to identify variant

prevalence and catalogue population specific variants, yet none have evaluated the magni-

tude of unobserved variation. We applied species richness estimation methods from ecol-

ogy to estimate “variant richness” and determine how many germline pathogenic BRCA1/2

variants have yet to be identified and the frequency of these missing variants in different

populations. We also estimated the prevalence of germline pathogenic BRCA1/2 variants

and identified those expected to be most common. Data was obtained from a literature

search including studies conducted globally that tested the entirety of BRCA1/2 for patho-

genic variation. Across countries, 45% to 88% of variants were estimated to be missing, i.e.,

present in the population but not observed in study data. Estimated variant frequencies in

each country showed a higher proportion of rare variants compared to recurrent variants.

The median prevalence estimate of BRCA1/2 pathogenic variant carriers was 0.64%.

BRCA1 c.68_69del is likely the most recurrent BRCA1/2 variant globally due to its estimated

prevalence in India. Modeling variant richness using ecology methods may assist in evaluat-

ing clinical targeted assays by providing a picture of what is observed with estimates of what

is still unknown.

Introduction

BRCA1 and BRCA2 are among the most studied human genes, with many thousands of vari-

ants in each gene defined and dozens of populations surveyed. Although studies report on

pathogenic variants observed, none have evaluated what is potentially missing in these surveys.

Understanding pathogenic variation in these genes is important because these variants

increase risk for several cancers including breast, ovarian, prostate, and pancreatic [1]. Knowl-

edge about carrier status has useful clinical implications, as individuals who learn about their

pathogenic variation early through genetic testing can engage in more frequent screening to

increase the odds of early cancer detection and undergo prophylactic surgery to decrease

future cancer risk.
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Many recent studies have estimated the overall prevalence of pathogenic BRCA1/2 variant

carriers in specific populations. Population genetic screening studies in the United States have

reported prevalence estimates ranging from 0.5% to 0.7% [2–4]. Higher prevalence has been

seen among Ashkenazi Jewish populations, reaching 2% [2]. These estimates provide insight

into the burden of BRCA1/2-related hereditary cancer and indicate that the number of individ-

uals who might benefit from genetic testing and subsequent preventive measures is substantial.

However, less is known about the prevalence of BRCA1/2 pathogenic variant carriers in other

populations around the world.

Understanding the types of pathogenic BRCA1/2 variation in a given population can also

be useful for informing genetic screening strategies. For instance, if certain pathogenic variants

are found more commonly in a particular population, this can lead to the development of pop-

ulation-specific screening strategies [5, 6]. Alternatively, if there appears to be a wide range of

variation, more comprehensive sequencing may better detect pathogenic variant carriers.

There have been extensive efforts of large consortia to understand the global spectrum of path-

ogenic BRCA1/2 variants, including the most recurrent variants in different regions around

the globe [7, 8]. However, many statistical analyses of these results are limited by inconsisten-

cies in ascertainment strategies, variant testing methods, and an inability to account for varia-

tion that has not yet been observed.

The purpose of this study was to model the prevalence of germline pathogenic BRCA1/2
variants in different populations around the world and predict their allele frequency spectrum.

Specifically, we sought to determine how many germline pathogenic BRCA1/2 variants have

yet to be identified in well-studied countries and how common unreported variants are in

their respective populations. We also compiled a list of the most recurrent observed variants in

several countries. Given the clinical significance of BRCA1/2, it is important to understand the

number of people who may benefit from genetic testing and what spectrum of pathogenic vari-

ants should be expected in different places around the world.

Materials and methods

Data sources

PubMed was used to search for studies published between January 1999 and March 2020 that

involved screening individuals for pathogenic variants in BRCA1 and BRCA2. Search terms

included “BRCA1”, “BRCA2”, “breast cancer”, “ovarian cancer”, “population screening”, “gene

sequencing”, and “direct sequencing”. The resulting studies and their references were exam-

ined and only those that tested the entirety of these genes for pathogenic variation were

included in later analyses. Studies that targeted specific variants or that used methods capable

of detecting only a subset of variants were excluded. For our analyses, variants were classified

as pathogenic using classifications from individual studies based on ACMG PVS1 criteria for

dominant hereditary breast and ovarian cancer risk in the BRCA1 and BRCA2 genes or likely

pathogenic or pathogenic classifications in ClinVar [9]. The following accession version num-

bers were used for BRCA1 and BRCA2, respectively: NM_007294.3 and NM_000059.3.

Detailed search and selection procedures are shown in S1 Fig.

Unique variant estimation methods

We sought to apply species richness estimation methods from field ecology to estimate the

number of unique pathogenic variants in a given gene that are present in a population and the

relative frequency of these variants. Briefly, species methods look at the number of unique spe-

cies and their frequencies in a sample of the environment to estimate the total number of

unique species in the same environment. “Species” can be defined broadly (e.g., words in a
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book, bugs in software programs, alleles in genetic code), so these methods have many applica-

tions [10]. Underlying assumptions of species richness estimate methods are [11–13]:

1. Individual representatives of a species are independently and randomly sampled from a

population.

2. Species are distributed uniformly in a specific catchment area.

3. Species distributions can be mathematically defined.

For all practical purposes, similar assumptions apply for estimating the total number of

unique variants from a population sample of variants: 1) Most variant assessment studies are

blind to variant status before sequencing. To further meet this assumption in our analysis, if

multiple individuals from the same family were sequenced, only one individual was selected

for inclusion. Additionally, data was included from studies performing sequencing rather than

targeted testing to meet the criteria of random ascertainment. 2) Population substructure is

always present in human populations and ecology. Since human populations are relatively

large and variant status is unknown before sequencing, variant estimates should perform as

well as species estimates with regards to this assumption. For our purposes, we used country as

a catchment area given its public health relevance and because most study samples focused on

a particular country. 3) We illustrate below that variant distributions follow patterns similar to

species distributions.

There are several specific methods for estimating species richness, each with different

strengths and different parameters for modeling distributions [14]. The Chao 1984 method

[15] is a relatively simple and straightforward method that has been shown to give an accurate

lower bound estimate. It assumes that variants (or species) that occur rarely provide the most

information about the number of missing variants (or species). Importantly, this method only

uses singletons and doubletons for estimation, so it breaks down when no doubletons occur

[16]. We used the Chao method to estimate a lower bound of the total number of unique

variants.

There are also several maximum likelihood methods for predicting species richness. Litera-

ture on maximum likelihood methods has shown that these give more accurate estimates but

can be sensitive to input parameters. The penalized nonparametric maximum likelihood

method (pnpml) assumes the number of unique variants fits a mixed Poisson distribution

[17]. We chose the pnpml method to estimate the total number of unique variants because it

also models the distribution of variant frequencies with estimated mixed Poisson parameters.

Application of variant estimation to BRCA1/2
Data for BRCA1/2 variant estimation were extracted from studies that identified at least 40

unique pathogenic variants because estimation techniques were sensitive to sample size and

provided more stable estimates with a larger sample [12]. For some countries, data from sev-

eral studies with unique participants were combined to obtain a larger sample of pathogenic

variants. When variant nomenclature differed between studies, common variant names were

identified via ClinVar [9] and HGMD [18] so that the frequency of variants could be more

accurately determined. The variant data used for each country are listed in S1 Table. Both the

Chao 1984 and pnpml method were implemented in R version 3.6.1 using functions from the

SPECIES package [19]. Estimation parameters were not adjusted for variant sample size. In

addition, as a supplemental analysis, we applied Chao and pnpml methods to BRCA1/2 gno-

mAD v2.1 data [20] for populations where at least 40 unique likely pathogenic or pathogenic

variants, as identified by ClinVar [9] were observed in these genes.
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Prevalence calculations

Overall frequency of variation is relevant to estimates of the total number of variants present.

Studies from the PubMed search that had at least 100 participants and included both likely

hereditary and sporadic cancer cases were used to assess the prevalence of pathogenic BRCA1/
2 variant carriers in each study location. Cases were considered likely hereditary for a variety

of reasons such as cancer diagnosis before age 35, bilateral breast cancer before age 50, and/or

first-degree relative(s) with breast or ovarian cancer, though classification varied from study to

study based on the information provided and, in some instances, cases were excluded from

further analysis when the appropriate information was not provided.

For each study meeting the above criteria, the following data was extracted separately for

likely hereditary and sporadic cancer cases if available: the number of individuals recruited,

the number of individuals tested for pathogenic BRCA1/2 variation, and the number of patho-

genic BRCA1/2 variant carriers. Extracted datasets with complete information can be found in

S2 Table. These data were used to estimate the prevalence of pathogenic BRCA1/2 variant car-

riers in each country by maximizing the Horvitz-Thompson pseudo likelihood function

described in Whittemore et al., which takes into account the number of individuals identified

with a pathogenic variant among hereditary and sporadic cancer cases separately [21]. For esti-

mation involving breast cancer cases, 0.57 was used as the probability of disease by age 70

given a BRCA1/2 pathogenic variant [22] while 0.07 was the probability of disease for noncarri-

ers [23]. For ovarian cancer cases, 0.4 and 0.006 were used for these respective probabilities

[22, 23]. Confidence intervals for all prevalence estimates were calculated using log trans-

formed data.

Variant scaling

All pathogenic variants, even founder variants in BRCA1/2, were rare in all populations stud-

ied. However, for our analysis, “rare” is a relative term used to refer to variants that represent

fewer than 5% of the BRCA1/2 variants in a given population or a given study. Recurrent path-

ogenic variants were identified using the studies included in the variant estimation analyses

and were defined as variants that made up at least 5% of the observed variants for a respective

country. The number of carriers of each recurrent variant in each country was estimated using

the 2019 population size of the country, as listed by The World Bank [24]. The prevalence esti-

mate used, 0.62%, was determined by averaging the prevalence estimates of BRCA1/2 patho-

genic variant carriers from 3 population screening studies: The Healthy Nevada Project [3] the

Geisinger MyCode Community Health Initiative [4] and the BioMe BioBank [2].

Results

We found that the Chao and pnpml species richness estimation methods could be applied to

estimate "variant richness” and the number of missing variants in BRCA1/2. The pnpml

method was more informative, generating an expected distribution, whereas the Chao method

provided only a discrete lower bound of expected variants. A total of 53 studies were included

in our analyses (Table 1), with 48 studies providing data for variant count estimation and 11

for BRCA1/2 prevalence estimation (6 had data used for both estimates). China, Spain, and the

United States had the most studies identified meeting inclusion criteria. Of the 15 countries

represented in our analyses, 2 were from North America, 1 from South America, 5 from

Europe, 6 from Asia, and 1 from Australia.

The estimated total number of unique pathogenic variants ranged from 137 (95% CI:

90..252) in Argentina to 1,153 in China (95% CI: 844..1,466) and are shown in Table 2. Chao

and pnpml estimates were calculated for 12 countries. The pnpml estimates were consistently
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Table 1. Studies included in analyses.

Country Reference Method Analysis “Likely hereditary” definitiona

Argentina [25] AR Solano et al. (2017) MLPA, NGS, Sanger sequencing SE

Australia [26] K Alsop et al. (2012) MLPA, Sanger sequencing HT, SE FDR with BC at <60 years; Male FDR with BC at any age;

FDR with OC; 2+ FDR with BC/OC

Austria [27] CF Singer et al. (2019) DHPLC, MLPA, Sanger sequencing HT At least 1 other BC/OC in the family

Canada [28] S Zhang et al. (2011) DGGE, DHPLC, MLPA, PTT, Sanger

sequencing

HT, SE FDR with BC/OC

China [29] WM Cao et al. (2016) Sanger sequencing SE

[30] GT Lang et al. (2017) NGS, Sanger sequencing SE

[31] G Li et al. (2017) NGS, Sanger sequencing SE

[32] JY Li et al. (2019) NGS panel SE

[33] W Li et al. (2019) NGS panel SE

[34] J Ou et al. (2013) DHPLC SE

[35] T Shi et al. (2017) NGS, Sanger sequencing SE

[36] X Wu et al. (2017) NGS, Sanger sequencing HT FDR/SDR with BC/OC

[37] X Yang et al. (2015) NGS panel, Sanger sequencing SE

[38] X Zhong et al. (2016) NGS, Sanger sequencing SE

Denmark [39] M Soegaard et al. (2008) MLPA, Sanger sequencing HT FDR with BC/OC

India [40] A Mehta et al. (2018) MLPA, NGS SE

[41] S Saxena et al. (2006) HDX, Sanger sequencing SE

[42] J Singh et al. (2018) NGS panel, Sanger sequencing SE

[43] K Vaidyanathan et al. (2009) CSGE, Sanger sequencing SE

Italy [44] C Capalbo et al. (2006) MLPA, PTT, Sanger sequencing SE

[45] A Musolino et al. (2007) DHPLC, Sanger sequencing SE

[46] L Ottini et al. (2009) PTT, Sanger sequencing, SSCP SE

[47] IJ Seymour et al. (2008) Sanger sequencing SE

[48] L Stuppia et al. (2003) PTT, Sanger sequencing, SSCP SE

Japan [49] A Hirasawa et al. (2014) MLPA, Sanger sequencing SE

[50] M Sekine et al. (2001) Sanger sequencing SE

[51] K Sugano et al. (2008) MLPA, Sanger sequencing SE

Korea [52] KJ Eoh et al. (2018) NGS panel, Sanger sequencing SE

[53] H Kim et al. (2012) DHPLC, CSCE, CSGE, Sanger sequencing SE

[54] BS Kwon et al. (2019) DHPLC, Sanger sequencing HT, SE Primary breast cancer; FDR/SDR with BC/OC

[55] B Park et al. (2017) MLPA, Sanger sequencing SE

Malaysia [56] E Thirthagiri et al. (2008) MLPA, Sanger sequencing SE

[57] XR Yang et al. (2017) MLPA, Sanger sequencing HT, SE Family history of BC

Saudi

Arabia

[58] R Bu et al. (2016) Sanger sequencing HT FDR/SDR with BC/OC

Spain [59] E Beristain et al. (2007) CSGE, Sanger sequencing SE

[60] P Blay et al. (2013) MLPA, Sanger sequencing SE

[61] I de Juan et al. (2015) CSCE, CSGE, HDX, HPLC, HRM, MLPA,

NGS, Sanger sequencing

SE

[62] S de Sanjose et al. (2003) DHPLC, HDX, Sanger sequencing SE

[63] O Dı́ez et al. (2003) CSGE, DGGE, PTT, Sanger sequencing,

SSCP

SE

[64] G Llort et al. (2002) Sanger sequencing SE

[65] MD Miramar et al. (2008) DHPLC, MLPA, Sanger sequencing SE

[66] A Ruiz de Sabando et al.

(2019)

MLPA, Sanger sequencing SE

(Continued)

PLOS ONE Applying species estimation methods to model variation in cancer genes

PLOS ONE | https://doi.org/10.1371/journal.pone.0278010 February 8, 2023 5 / 16

https://doi.org/10.1371/journal.pone.0278010


equal to or greater than the Chao estimates, as expected. The median Chao estimate was 364,

and study samples consisted of 13% to 58% of the total expected variants, predicting 34% of

the total variants on average. The median pnpml estimate was 395, and study samples con-

sisted of 12% to 55% of the total expected variants, predicting 31% of the total variants on aver-

age. Conversely, the average proportion of missing variants was 69%, with studies expected to

be missing 45% to 88% of variants. While China had both the largest number of unique vari-

ants sampled and the highest Chao and pmpml estimates, when all countries were considered,

having a larger sample of unique variants did not always result in larger estimates. The mixed

Poisson distributions of variant frequency estimated via the pnpml method are seen in Fig 1

Table 1. (Continued)

Country Reference Method Analysis “Likely hereditary” definitiona

UK [67] Anglian Breast Cancer Study

Group (2000)

HDX, Sanger sequencing SE

[68] VM Basham et al. (2002) HDX, Sanger sequencing, SSCP SE

[69] J Peto et al. (1999) CSGE, Sanger sequencing SE

USA [70] EB Claus et al. (2005) Sanger sequencing HT, SE FDR with BC

[71] AW Kurian et al. (2009) 2D Gene Scanning, Exon Grouping

Analysis, Sanger sequencing

HT BC at <35 years; bilateral BC at <50 years; prior OC or

childhood cancer; FDR with BC/OC

[72] AM Martin et al. (2001) CSGE, HDX, Sanger sequencing SE

[73] Z Nahleh et al. (2015) BART, Sanger sequencing SE

[74] R Nanda et al. (2005) DHPLC, SSCP, Sanger sequencing SE

[75] T Pal et al. (2005) Sanger sequencing HT, SE FDR/SDR with BC/OC

[76] T Pal et al. (2015) MLPA, Sanger sequencing SE

[77] JN Weitzel et al. (2005) Sanger sequencing SE

aDefinition of “likely hereditary” only provided for those countries where pathogenic BRCA1/2 prevalence estimates were calculated using the Horvitz-Thompson

pseudo-likelihood function

BART: BRCA Analysis Rearrangement Testing, BC: breast cancer, CSCE: conformation sensitive capillary electrophoresis, CSGE: conformation sensitive gel

electrophoresis, DGGE: denaturing gradient gel electrophoresis, DHPLC: denaturing high performance liquid chromatography, FDR: first-degree relative, HDX:

heteroduplex analysis, HPLC: high performance liquid chromatography, HRM: high resolution melting analysis, HT: Horvitz-Thompson prevalence calculation, MBC:

male breast cancer, MLPA: multiplex ligation-dependent probe amplification, NGS: next generation sequencing, OC: ovarian cancer, PTT: protein truncation test, SDR:

second-degree relative, SE: species estimation, SSCP: single strand conformation polymorphism

https://doi.org/10.1371/journal.pone.0278010.t001

Table 2. Estimates for the total number of unique pathogenic BRCA1/2 variants in different countries using Chao and PNPML estimators.

Country # of People

Screened

Observed # of

Variants

Observed # of Unique

Variants

Estimated # of Unique Variants,

Chao

Estimated # of Unique Variants,

PNPML

Argentina 940 152 57 137 (90..252) 137 (88..275)

Australia 1,001 131 101 563 (312..1,114) 647 (315..1,218)

Canada 1,342 164 102 372 (233..658) 461 (218..617)

China 6,037 694 401 969 (806..1,198) 1,153 (844..1,466)

India 1,481 316 171 502 (365..734) 520 (466..675)

Italy 588 80 55 392 (160..1,139) 397 (170..780)

Japan 319 86 53 146 (92..277) 146 (126..201)

Korea 3,013 555 185 317 (263..409) 356 (274..561)

Malaysia 651 56 48 356 (143..1,043) 392 (191..1,686)

Spain 2,410 354 135 244 (195..332) 244 (189..320)

UK 2,146 59 49 149 (90..295) 152 (96..394)

USA 1,427 263 141 441 (306..687) 562 (294..728)

https://doi.org/10.1371/journal.pone.0278010.t002
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and the parameters that make up these mixtures are listed in S3 Table. These estimated distri-

butions indicate a higher proportion of rare variants compared to recurrent variants making

up the pathogenic burden.

Chao and pnpml estimates were calculated for 5 populations from the gnomAD data: Afri-

can, American, East Asian, European, and South Asian (S4 Table). The estimated total number

of unique pathogenic variants ranged from 190 (95% CI: 98..447) for the African population to

850 (95% CI: 807..954) for the European population. The median Chao estimate was 494. The

median pnpml estimate was 558 and gnomAD data consisted of 8% to 30% of the total

expected variants, predicting 23% of the total variants on average.

Estimates of the prevalence of BRCA1/2 pathogenic variant carriers ranged from 0.09%

(95% CI: 0.001, 9.42) (Denmark) to 1.05% (95% CI: 0.06, 18.58) (Austria) with a median esti-

mate of 0.38% (IQR: 0.4) (Table 3). The median prevalence estimate was 0.64% (IQR: 0.25)

among samples of breast cancer patients and 0.27% (IQR: 0.195) among samples of ovarian

cancer patients. Although the prevalence point estimates were similar across countries, confi-

dence intervals varied widely.

The most recurrent pathogenic variants in the included countries are listed in Table 4.

In each country, the most recurrent variant made up between 5% to 16.4% of the total

observed variants and the majority of the most recurrent variants were located in BRCA1.

BRCA1 c.68_69del was seen commonly in 4 of the listed countries: Argentina, Canada,

India, and the USA. Assuming that the overall prevalence of BRCA1/2 pathogenic variant

carriers is 0.62%, India likely has the highest number of people carrying this variant, with

an estimated 1,233,236 (95% CI: 920,037..1,604,558) affected, while the USA has the sec-

ond highest number of carriers for this variant, with 255,353 (95% CI: 179,088..349,425)

affected. Another variant, BRCA1 c.5266dup, was also observed commonly in 5 of the

listed countries: Argentina, Australia, Canada, Italy, and the USA. The USA is estimated

to have the most individuals with this variant, with 123,808 (95% CI: 71,635..197,200)

carriers.

Fig 1. Normalized pathogenic variant frequencies in different locations globally. a) North & South America, b)

Australia & Europe, and c) Asia.

https://doi.org/10.1371/journal.pone.0278010.g001

Table 3. Horvitz-Thompson estimates for the prevalence of BRCA1/2 carriers in various countries depending on cancer type.

Hereditary Sporadic

Cancer Type Country Estimate % (95% CI) N Tested N Carrier N Tested N Carrier

Breast Malaysia [57] 0.73 (0.03, 18.78) 99 11 360 15

Saudi Arabia [58] 0.54 (0.01, 22.01) 60 6 199 5

USA [70] 0.38 (0.01, 17.04) 93 6 274 5

USA [71] 0.81 (0.05, 13.95) 933 72 432 13

Ovarian Australia [26] 0.25 (0.01, 8.66) 194 75 749 62

Austria [27] 1.05 (0.06, 18.58) 331 168 112 16

Canada [28] 0.25 (0.01, 7.71) 327 111 993 78

China [36] 0.59 (0.03, 12.94) 96 68 730 167

Denmark [39] 0.09 (0.001, 9.42) 47 12 398 14

Korea [54] 0.30 (0.01, 14.54) 60 21 219 25

USA [75] 0.27 (0.01, 15.29) 99 22 110 10

https://doi.org/10.1371/journal.pone.0278010.t003
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Discussion

Species richness methods from ecology can provide informative estimates of “variant richness”

or the number of missing pathogenic variants in a location and the relative frequency of these

variants. Results from the unique variant estimation indicate that for the included countries,

between 45% and 88% of pathogenic BRCA1/2 variants have yet to be observed in research

studies. While different countries have different variant frequencies, all countries appear to

have many more rare pathogenic variants compared to recurrent variants. This suggests that

most of the variants that have not yet been identified in each studied country will be rare and

have not yet been detected due to incomplete sampling of patient populations.

Species richness methods applied to gnomAD data additionally suggest that many patho-

genic BRCA1/2 variants are still missing in research data. The prediction of fewer African

Table 4. Most common pathogenic BRCA1/2 variants in different countries.

Country Common Variants # of Occurrences (% of

Observed)

Estimated # of Carriers (95% CI) per 100,000

people�
Estimated # of Carriers (95% CI)

Overalla

Argentina BRCA1 c.68_69del 25 (16.4) 102 (68, 145) 45,826 (30,482..64,975)

BRCA2 c.5946del 21 (13.8) 86 (55, 127) 38,494 (24,408..56,672)

BRCA1 c.5266dup 14 (9.2) 58 (32, 93) 25,663 (14,294..41,710)

BRCA1 c.211A>G 11 (7.2) 45 (23, 78) 20,164 (10,226..35,051)

Australia BRCA1 c.5266dup 8 (6.1) 38 (17, 73) 9,604 (4,199..18,368)

Canada BRCA1 c.5266dup 11 (6.7) 42 (22, 73) 15,632 (7,924..27,221)

BRCA1 c.68_69del 10 (6.1) 38 (19, 68) 14,211 (6,899..25,473)

China BRCA1
c.5470_5477del

38 (5.5) 34 (25, 47) 474,499 (337,968..644,738)

India BRCA1 c.68_69del 46 (14.6) 91 (68, 118) 1,233,236 (920,037..1,604,558)

BRCA1 c.5074+1G>A 22 (7.0) 44 (28, 65) 589,809 (373,606..876,831)

Italy BRCA1 c.1380dup 6 (7.5) 47 (18, 97) 28,039 (10,468..58,358)

BRCA1 c.5266dup 6 (7.5) 47 (18, 97) 28,039 (10,468..58,358)

BRCA1
c.3756_3759del

4 (5.0) 32 (9, 77) 18,693 (5,160..46,021)

BRCA2
c.6468_6469del

4 (5.0) 32 (9, 77) 18,693 (5,160..46,021)

Japan BRCA1 c.188T>A 13 (15.1) 94 (52, 152) 118,337 (64,976..191,484)

BRCA1 c.2800C>T 11 (12.8) 80 (41, 135) 100,132 (51,355..170,112)

Korea BRCA2 c.7480C>T 51 (9.2) 57 (43, 74) 29,461 (22,186..38,151)

Malaysia BRCA2
c.8961_8964del

4 (7.1) 45 (13, 108) 14,150 (3,923..34,250)

BRCA2
c.5353_5354del

3 (5.4) 34 (7, 93) 10,612 (2,219..29,456)

Spain BRCA2
c.2808_2811del

32 (9.0) 57 (39, 78) 26,385 (18,301..36,543)

BRCA2
c.9026_9030del

23 (6.5) 41 (26, 60) 18,964 (12,143..27,991)

BRCA2 c.211A>G 18 (5.1) 32 (19, 50) 14,842 (8,874..23,117)

UK BRCA1
c.4065_4068del

3 (5.1) 32 (7, 88) 21,070 (4,393..58,634)

USA BRCA1 c.68_69del 33 (12.5) 78 (55, 107) 255,353 (179,088..349,425)

BRCA1 c.5266dup 16 (6.1) 38 (22, 61) 123,808 (71,635..197,200)

BRCA2 c.5946del 15 (5.7) 36 (21, 58) 116,070 (65,734..187,839)

aUsing prevalence estimate of 0.62

https://doi.org/10.1371/journal.pone.0278010.t004
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BRCA1/2 variants may be due, in part, to smaller sample size, but may also be a reflection of

more prominent recent population growth in other populations as dated pathogenic founder

variants occurred relatively recently [78–81]. While gnomAD is broken out by ancestry rather

than nationality, from a public health standpoint, nationality may be a more straightforward

and useful metric around which to design screening strategies.

The BRCA1/2 prevalence point estimates reported here are similar to those previously

reported by population genetic screening studies [2–4]. We observed a median prevalence esti-

mate of 0.64% and 0.27% using samples of breast and ovarian cancer patients, respectively. In

comparison, the Healthy Nevada Project reported a 0.66% prevalence for pathogenic BRCA1/2
variant carriers [3] the Geisinger MyCode Community Health Initiative reported 0.5% [4] and

the BioMe Biobank reported 0.7% [2]. Our results have greater uncertainty and wider confi-

dence intervals due to smaller samples in the international set of studies we included compared

to other studies that present prevalence estimates. For a small number of included studies,

cases with unknown heredity were excluded, while cases with complete heredity information

were used for estimation. This may have resulted in sampling bias [82–84] perhaps making

estimates for these countries appear larger because cases with strong family history are less

likely to have unknown hereditary information compared to sporadic cases. In addition, differ-

ent definitions for hereditary and sporadic cancers across studies may have impacted results.

However, similar overall results between our study and others suggest that the prevalence of

BRCA1/2 pathogenic variants is relatively consistent despite there being unique recurrent and

rare variants represented in different populations. This observation is consistent with an

assumption of similar mutation rates in different populations and with documented global

population growth [85].

The largest number of estimated pathogenic BRCA1/2 carriers are seen in countries with

large populations, such as China and India. BRCA1 c.68_69del is a commonly observed variant

in several countries and may be the most recurrent BRCA1/2 variant globally. Although it is

popularly known because of its high frequency in individuals of Ashkenazi Jewish descent [86]

the reason for its high estimated occurrence globally is primarily because of its apparent fre-

quency in India. Individuals with this variant may mistakenly believe they have Jewish ances-

try, even though this variant has been shown to occur on a different haplotype [87]. Despite

being recognized as a highly observed variant in India [41, 43, 88, 89] the risk implications of

BRCA1 c.68_69del for individuals of Asian Indian ancestry are not currently acted upon clini-

cally. The list of BRCA1/2 variants expected to be most recurrent in different parts of the world

(Table 4) highlights situations like this and suggests that there may still be recurrent variants in

less well studied countries with significant and unrecognized clinical implications.

Our study does not represent all literature on BRCA1/2 and includes a limited number of

countries because species richness methods cannot be accurately applied for countries where

only a small number of pathogenic BRCA1/2 variants have been observed [12]. Therefore, we

limited estimations about missingness and the frequency of missing variants to only those

locations where a modest amount of research has already been conducted. Even for countries

included, the samples used may not be representative of the country in its entirety [7, 90–92]

and different sequencing strategies, enrollment criteria, and sampling strategies across studies

may have biased the results for some countries. Furthermore, differences in the number of

expected variants between populations may be attributable to estimation error or size of popu-

lation, rather than biological differences in underlying population genetics. These limitations

of the current literature are consistent with and strengthen our conclusion that there is a large

amount of missing information about BRCA1/2 pathogenic variation globally.

Despite being two of the most studied genes in the world, much information is still missing

about pathogenic variation in BRCA1/2. Multiple studies examining BRCA1/2 variation that
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we observed but did not include in our study only sequenced a small set of variants due to cost

constraints [93, 94]. While such population-based strategies targeting specific variants com-

monly observed among cases have been proposed as potentially being more cost-efficient

[5, 6], these strategies assume that the variants observed in a small subset of individuals will

represent a large portion of variants observed throughout the population. The species richness

methods presented here provide a more rigorous statistical means to evaluate if targeted assays

will achieve the desired sensitivity in a given population and can inform decision-making

about the utility of targeted versus expanded screening and guide future test development. We

suggest that future surveys of genetic variation also model variant richness as we have

described. This will provide a picture of what is observed with estimates of what is still

unknown.
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