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SUMMARY

The heterogeneity of tissue macrophages, in health and in disease, has become increasingly 

transparent over the last decade. But with the plethora of data comes a natural need for 

organization and the design of a conceptual framework for how we can better understand the 

origins and functions of different macrophages. We propose that the ontogeny of a macrophage—

beyond its fundamental derivation as either embryonically or bone marrow-derived, but rather 

inclusive of the course of its differentiation, amidst steady-state cues, disease-associated signals, 

and time—constitutes a critical piece of information about its contribution to homeostasis or the 

progression of disease.

INTRODUCTION

Since their early description as mononuclear phagocytes in both invertebrate and 

vertebrate species, macrophages have become increasingly important for our understanding 

of human health and disease. Their fundamental attributes enable them to “clean” 

their surroundings by phagocytosing cellular material and regulating tissue repair and 
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maintenance. Macrophages are, therefore, key tissue sentinel cells that are present across 

various organs throughout the body (Wynn et al., 2013). And quite remarkably, these 

tissue-resident macrophages (RTMs) are involved in various complex processes, including 

neuro-, angio-, and osteo-genesis, and even erythropoiesis, indicative of their unique ability 

to adapt and contribute to their place of residence. This is largely reflective of macrophages’ 

plasticity that allows them to react to tissue-specific signals, while retaining the ability to 

execute core functions as tissue phagocytes (Lavin and Merad, 2013; Lavin et al., 2014; 

Gosselin et al., 2014; Amit et al., 2016; Cohen et al., 2018).

However, during disease, monocytes are recruited to inflamed tissues and differentiate 

into monocyte-derived macrophages (mo-macs) that, as we review below, are functionally 

and phenotypically distinct from RTMs. With developments in single-cell transcriptomics, 

we are able to appreciate—now, more than ever before—the diverse molecular programs 

used by mo-macs that underscore the cellular heterogeneity and pleiotropic functions of 

these phagocytes during development, health, and disease. The differences across these 

macrophage subsets and states highlights the significance of ontogeny (i.e., develop mental 

origin), and given that a number of parameters likely influence when and where ontogeny 

matters—such as the availability of certain cytokines, the balance of homeostatic cues and 

disease-associated signals, as well as biological time—much can be understood about the 

acquisition and application of the transcriptional programs that distinguish mo-macs from 

RTMs. Indeed, more work remains to be done to uncover the order in which these programs 

are acquired and how their induction further diversifies the split in differentiation trajectory 

of monocytes into RTMs at the steady state or mo-macs during disease. Still, the present 

review aims to highlight the compilation of studies thus far that have been done on this 

front. Toward that end, we begin with a summary of the unique, core functionalities of 

RTMs in different tissues, though we acknowledge that numerous reviews have already 

outlined—at far greater length and quite recently, too—the various species of RTMs and 

their tissue-specific activities (Lavin et al., 2015; DeNardo and Ruffell, 2019; Guilliams 

et al., 2020; Bleriot et al., 2021; Nobs and Kopf, 2021; Cox et al., 2021; Guilliams and 

Svedberg, 2021; Delfini et al., 2022; Guilliams and Scott, 2022; Zaman and Epelman, 2022; 

Aegerter et al., 2022). Then, in the latter sections of this review, we illustrate how they differ 

from the functional contributions of mo-macs to disease progression.

Tissue-resident macrophages are gatekeepers of homeostasis

Nearly all tissues are populated by self-maintaining pools of RTMs. Across different 

organs, long-lived RTMs execute a list of core responsibilities that serve to help facilitate 

homeostatic organ functions. Specifically, we highlight as examples the ability for RTMs to 

clear damaged cells or foreign bodies, to protect neuronal synapses and to prune undesired 

neuronal connections, to preserve the vasculature, and to form the first line of defense 

against invading pathogens (Figure 1).

Clearance of cell-associated materials and foreign bodies—Equipped with long 

dendrites or pseudopods and extensive endolysosomal machinery, RTMs function as sessile 

and observant tissue surveyors, both sensing and eliminating damaged or dying stromal or 

epithelial cells, with the help of an armory of phagocytic receptors. To handle the metabolic 
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strain of ingesting so much, RTMs leverage sub-cellular mechanisms that are tailored 

to manage high-lipid content cargo without overreacting to potentially pro-inflammatory 

signals (e.g., downregulating Toll-like receptors) (Roberts et al., 2017). RTMs are also 

able to do this by modulating the extra-cellular environment, too. In situ-imaging of the 

peritoneal serosa showed that peritoneal RTMs, as part of their canonical roles in clearing 

damage-associated tissue lesions, expand their pseudopodia to physically enclose or “cloak” 

the pro-inflammatory debris and sequester them away from circulating neutrophils that 

might otherwise react to them and elicit unnecessary harmful inflammation (Uderhardt et al., 

2019).

In the lungs, alveolar macrophages recycle excess surfactant and clear eosinophilic material 

from the alveolar air space (Wright, 1990; Wright and Youmans, 1995; Poelma et al., 2004; 

Whitsett et al., 2010). Mutations that result in the failed clearance of these substances 

were categorically associated with defects in surfactant homeostasis, several of which 

involved genes important for alveolar macrophage development (Whitsett et al., 2010). 

For instance, mice deficient in lipoprotein lipase or with loss-of-function mutations in 

granulocyte-macrophage colony-stimulating factor (GM-CSF, encoded by Csf2) or its 

receptor (GM-CSFR) harbor dysfunctional alveolar macrophages and, as a result, develop 

severe pulmonary alveolar proteinosis (PAP) (Greenhill and Kotton., 2009; Todd et al., 

2016). Analogously, patients with GM-CSF deficits, either due to a mutation (Suzuki et 

al., 2008) or autoantibodies against GM-CSF (Dranoff et al., 1994; Stanley et al., 1994; 

Kitamura et al., 1999; Uchida et al., 2003), are also deprived of alveolar macrophages and 

exhibit PAP. Supplementing these patients with inhaled GM-CSF helped recover alveolar 

macrophages by restoring overall GM-CSF levels, prototypically provided by type II 

alveolar pneumocytes that form the alveolar macrophage niche (Reed et al., 1999; Wylam, 

2006; Tazawa et al., 2006, 2009; Papiris et al., 2020; Gschwend et al., 2021).

Osteoclasts residing within the endosteal niche of bone also perform a similar function, 

as they are critical for bone resorption (i.e., dissolving excess bone) (Martin et al., 2005). 

These endosteal macrophages attach to sites of critical bone mass via vitronectin and other 

integrins and release acid phosphatases and lysosomal proteases, within a self-made acidic 

seal that helps break down the hydrated proteins and calcium of the bone. Osteoclasts 

proceed to phagocytose that debris to clear the degraded bone matrix (Lévesque et al., 

2010). Mutations in the gene encoding the vacuolar ATPase that helps generate the 

acidic proton gradient result in osteoclast dysfunction, resulting in abnormally high bone 

density, a condition known as osteopetrosis (Scimeca et al., 2000; Blin-Wakkach et al., 

2006). This phenotype was also observed in Csf1 and Csf1r knockout mice (Marks and 

Lane, 1976; Wiktor-Jedrzejczak et al., 1990), as macrophage colony stimulating factor 

(M-CSF/CSF-1, encoded by Csf1) is critical for macrophage differentiation and survival. 

A similar phenotype was observed for patients with autosomal recessive mutations in the 

gene RANKL, indicating a central role for endosteal niche factors in the development and 

phagocytic functionality of resident osteoclasts (Cleiren et al., 2001; Sobacchi et al., 2007).

A third classic example of this core macrophage function is the role that different RTMs 

play while clearing cellular nuclei and debris during the development and subsequent 

clearance of other immune cells. This is seen in the hippocampus, in the kidney, and 
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most frequently in the bone marrow, liver, and spleen, where bone marrow and splenic 

macrophages and Kupffer cells (KC) oversee the start and finish of the erythropoietic cycle, 

respectively (Bessis and Breton-Gorius, 1959; Sierra et al., 2010; Munro et al., 2019). 

Resident macrophages of the bone marrow were found to associate with the progeny of 

proerythro-blasts during the early stages of erythropoiesis; termed erythroblastic islands, 

the ejected nuclei of maturing erythrocytes were phagocytosed by these bone marrow 

macrophages, allowing mature reticulocytes to then enter the circulatory system (Yoffey and 

Yaffe, 1980; Qui et al., 1995). Later in the life cycle of erythrocytes, KC in the liver have 

been shown to phagocytose both dying erythrocytes and hemoglobin-containing vesicles 

released by aging erythrocytes (Schroit et al., 1985; Loegering et al., 1987; Willekens et 

al., 2005; Theurl et al., 2016). In tandem, red pulp splenic macrophages, which reside in 

a niche comprised of M-CSF and Wilms’ tumor-1 (WT1)-expressing reticular fibroblasts 

(Bellomo et al., 2020), also phagocytose senescent or damaged erythrocytes and recycle the 

accompanying iron (Kohyama et al., 2009; Haldar et al., 2014).

Safeguarding the neuronal net—Early studies have shown that macrophages interact 

with neurons in the central and peripheral nervous systems (CNS and PNS). But it is 

only within the past decade that we have recognized the dynamic crosstalk between these 

cell types that is essential for the health of the nervous system at-large (Prinz and Priller, 

2014; Colonna and Butovsky, 2017). In the CNS, microglia constitute the major type of 

RTMs; work from our groups and others helped show that microglia arise from primitive 

macrophages in the yolk sac that invade the brain parenchyma and persist from early 

development through adulthood (Ginhoux et al., 2010; Ajami et al., 2011; Kierdorf et al., 

2013; Hoeffel et al., 2015). Studies dating back as early as the 1980s used silver carbonate 

staining to show that microglia are important for phagocytosing dying neurons (Morgese 

et al., 1983; Nimmerjahn et al., 2005). Recent work indicates that microglia play more 

extensive roles in managing neuronal health. For instance, microglia join the neurovascular 

unit (NVU) to modulate blood flow and nutrient supply to neurons and other glial cells 

(Arnold and Betsholtz, 2013; Jolivel et al., 2015; Lou et al., 2016; Stankovic et al., 2016; 

Zarb et al., 2021; Delaney et al., 2021; Császar et al., 2022). Importantly, the presence and 

functionality of these brain RTMs from early stages of brain development have been linked 

to synaptic plasticity, learning, and memory (Thion et al., 2018), while in the periphery, 

recovery of compromised nerves has been shown to be dependent on the presence of nerve-

associated macrophages, specifically those in the epineurium (epineurial macrophages) and 

endoneurium (endoneurial macrophages) (Mueller et al., 2001; Müller et al., 2008, 2010; 

Kolter et al., 2020). Orthogonal lineage-tracing experiments using Cx3cr1CreERT2:Rosa26-

YFP and Cxcr4CreERT2:Rosa26-tdTomato mice showed that nerve-associated macrophages 

are indeed derived from embryonic precursors (De Schepper et al., 2018; Ydens et al., 

2020).

Additional work has shown that this relationship is not strictly unidirectional; in fact, 

both CNS and PNS neurons promote macrophage survival by producing growth factors 

like M-CSF or IL-34, a cytokine that shares the same receptor with M-CSF (Greter et 

al., 2012; Wang et al., 2012; Muller et al., 2014; Kana et al., 2019). In response to 

neurotoxic insults, macrophages protect their neuronal allies, too; muscularis macrophages 
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that associate with enteric neurons limit neuronal death during intestinal infections by 

responding to β2-adrenergic signals and engaging an arginase-1/polyamine axis (Matheis et 

al., 2020; Ahrends et al., 2021), highlighting that this two-way street is indeed a fundamental 

symbiosis for the maintenance of the PNS.

Preservation of vascular integrity—Experiments with mice that lack M-CSF also 

showed that angiogenesis and lymphangiogenesis are impaired, indicating a central role 

for macrophage in a functioning vasculature (Kubota et al., 2009). Seminal lineage-tracing 

studies subsequently showed that these perivascular and cardiac macrophages are RTMs that 

locally self-renew and collaborate to help preserve cardiac function and vascular tone in 

peripheral tissues (Epelman et al., 2014; Lavine et al., 2014; Lapenna et al., 2018; Chakarov 

et al., 2019). During the postnatal phases of development, for example, cardiac RTM not 

only stimulate angiogenesis and proliferation of cardiomyocytes, but they also sustain the 

electrical conductivity and metabolic health of the heart by eliminating cardiac-derived 

exophers of junk mitochondria via the phagocytic receptor MerTK (Hulsmans et al., 2017; 

Nicolás-Ávila et al., 2020). In the periphery, perivascular macrophages (PVMs) chaperone 

anastomoses downstream of induced tip cells (Fantin et al., 2010; Cattin et al., 2015; Graney 

et al., 2020; Vagesjö et al., 2021), regulate permeability (Hickey and Kimura, 1988; Zhang 

et al., 2012; He et al., 2016), phagocytose blood-borne materials, and contribute to the 

proteome of the tissues that the vessels supply (Serrats et al., 2010; Pinto et al., 2012). Upon 

CSF-1R blockade, mice exhibit significant edema (i.e., enhanced fluid retention in tissues), 

associated with an increase in matrix metal-loproteinases, changes to the integrin-mediated 

adhesion strength of vessels, and enhanced deposits of hyaluronan and proteoglycan (Evans 

et al., 2019; Bissinger et al., 2021), emphasizing further the role of PVMs in the preservation 

of vascular function.

Mounting the first line of defense against pathogens—Lastly, but also perhaps 

most importantly, RTMs of various tissues act as the first line of defense against pathogens, 

representing the most effective and frequently leveraged form of cellular innate immunity. 

Along the skin and internal mucosal surfaces, this function is essential, as they are 

the most vulnerable to breach by microbes. The lungs, for instance, are patrolled by 

alveolar macrophages that migrate along the air-liquid-air interface to capture and contain 

bacteria or virally infected cells (Neupane et al., 2020). This ability is dependent on 

the availability of pro-differentiation factors, such as GM-CSF and its activation of the 

transcription factor PU.1. When deprived of this signal, mice with impaired or absent 

alveolar macrophages fail to eliminate Streptococcus pneumoniae during active pneumonia 

(LeVine et al., 1999; Deady et al., 2014), Mycobacterium tuberculosis (Gonzalez-Juarrero 

et al., 2005), Pseudomonas (Ballinger et al., 2006), Pneumocystis (Paine et al., 2000), and 

other viral agents. Salvaging alveolar macrophages with exogenous GM-CSF, however, 

enabled mice to respond appropriately to subsequent secondary challenges. For instance, 

following recovery from a non-fatal influenza infection, mice given supplemental GM-CSF 

were better able to clear secondary S. pneumoniae infections than control mice, indicating 

specific protection conferred by promoting differentiation of lung-infiltrating monocytes 

into alveolar macrophages during the recovery phase (Umstead et al., 2020). Ultimately, 

the timely function of RTMs serves to avert pathogenic, systemic inflammation, without 
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completely compromising the innate immune response to infections. As discussed above, 

one method that RTMs employ is physically concealing the local sites of inflammatory 

response and preventing them from injudiciously recruiting an armada of inflammatory 

monocytes and neutrophils (Uderhardt et al., 2019). In doing so, RTMs deter what might 

result in unnecessary tissue destruction.

That is not to say that RTMs themselves are shielded from the inflammation caused by 

infections. Acute inflammation can result in the death and destruction of RTMs in a variety 

of scenarios; for example, alveolar macrophages may either succumb to direct infection and 

become necrotic or undergo an epithelioid transition as part of the granulomatous response 

to advanced tuberculosis (Cooper et al., 2009; Pagán et al., 2022; Cronan et al., 2016, 

2021). In the liver, KC also undergo regulated necrosis during Listeria infection to elicit 

a microbicidal inflammatory response (Bleriot et al., 2015; Ginhoux et al., 2017). These 

instances of RTM death can prompt the recruitment of monocytes to fill RTM niches; and 

if the quality of RTM niches is still preserved (i.e., homeostatic cues remain available and 

the cellular sources of these cues are still present and not too damaged), the supply of 

new RTMs will help control the infection and appropriately engage tissue repair pathways. 

Below, we elaborate further why we suspect monocyte-derived RTMs are needed to preserve 

tissues at the steady state, in addition to effectively redirecting inflamed tissues toward 

resolution.

Monocyte-derived RTMs reinforce embryonically derived phagocytes in protecting tissue 
homeostasis

Some organs, such as the brain, will generally function with just the native pool of 

embryonically derived RTMs throughout a lifetime, granted that no major perturbations 

force RTM loss. In other tissues such as the heart, pancreas, or gut, though, genetic 

fate-mapping models have shown that some RTMs may also originate from circulating 

monocytes in response to specific cues in certain tissues, and often the proportion of 

monocyte-derived RTMs increases with time (Figure 2) (Bain et al., 2013, 2014). For 

instance, at the steady state, turnover of tissue cells associated with “natural” perturbations 

that do not necessarily elicit pathognomonic inflammation (e.g., aging, shifts in the 

microbiome) necessitates certain RTMs to be maintained by the circulating monocytes that 

extravasate from the vasculature (Cummings et al., 2016)). Such need for peripheral input 

may be driven by the inability for embryonic RTMs to keep up with the tissues’ demand for 

phagocytes (Barker et al., 2010), due to either a limited self-renewal capacity, their inability 

to access and colonize newly forming niches, or an excessive rate of tissue cell turnover. 

The latter is less probable, as the epidermis and lungs experience a higher rate of epithelial 

cell turnover than do the pancreas or heart, yet embryonically derived RTMs dominate 

these tissues. Therefore, other parameters likely dictate this balance between demand and 

supply. For example, monocyte differentiation into RTMs likely require prolonged periods 

of cellular interactions with the tissue microenvironment (Scott et al., 2016; Chakarov et al., 

2019; Bleriot et al., 2020), so monocyte differentiation may heavily depend on biological 

time and the continued maintenance of niche integrity (Liu et al., 2019).
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In the brain, for instance, a number of soluble factors preserve microglial identity. These 

include M-CSF and IL-34 from neurons or glial cells (Greter et al., 2012; Wang et al., 

2012; Kana et al., 2019), and resident microglia continue to rely on these maintenance cues 

to perform (e.g., rapidly accumulate around sources of foreign or damaging materials via 

clonal microgliosis) (Ladeby et al., 2005; Ajami et al., 2007). Another molecule, IL-3 and 

IL-33 from astrocytes, promotes microglial motility and encourages microglial clustering 

in healthy mice and around plaques in diseased mice (Vainchtein et al., 2018; McAlpine 

et al., 2021). Accordingly, deletion of astrocyte-derived IL-3 or microglial IL-3 receptor 

exacerbates plaque disease, whereas exogenous IL-3 infusion alleviates plaque burden and 

improves cognitive function (McAlpine et al., 2021). The decline of these signals and the 

accumulation of insoluble debris results in microglial dysfunction. The autophagy protein 

Beclin-1, for instance, regulates phagocytosis, and its expression in microglia is reduced 

in Alzheimer’s disease (AD), thus impairing phagocytosis of cellular debris by these cells 

(Lucin et al., 2013). Excessive myelin degradation overwhelms dysfunctional microglia and 

leads to the formation of insoluble, lipofuscin-like lysosomal bodies that further hinder 

their homeostatic activity (Safaiyan et al., 2016). With time, the functional exhaustion and 

the subsequent attrition of microglia is compensated for by a repopulation of the niche by 

microglial-like cells. Over the years, different studies have sought to probe the ontogeny 

of these cells but have yielded mixed reports. Chemical depletion of microglia using a 

diphtheria toxin model indicated a replenishment of the microglial niche by infiltrating 

monocytes (Lund et al., 2018). In contrast, fate-mapping in CCR2 and CX3CR1 reporter 

mice crossed to an AD model of plaque formation indicated a near exclusive repopulation 

of the microglial pool by resident phagocytes (Reed-Geaghan et al., 2020). But after 

accounting for the presence of RTMs in the different brain border regions (Masuda et al., 

2022), more advanced fate-mapping models collectively point to the more modern consensus 

that niche-reconstituting cells in the brain are, in fact, likely comprised of both a subset of 

locally proliferating microglia and monocyte-derived RTMs (Bruttger et al., 2015; Askew 

et al., 2017) that remain transcriptionally, epigenetically, and functionally distinct from one 

another (Shemer et al., 2018, Silvin et al., 2022).

In the lungs, nerve-associated (CX3CR1+MHCIIhi) and perivascular (LYVE-1+) 

macrophages were found to be derived from embryonic progenitors but are slowly replaced 

by monocyte-derived cells in adults (Lim et al., 2018; Chakarov et al., 2019); these subsets 

of macrophages in these specific subtissular locations were identified in other tissues 

(Chakarov et al., 2019), suggesting that their global presence may reflect a safety feature 

associated with replenishing the local supply of tissue macrophages with monocyte-derived 

RTMs, as these cells reinforce the structural integrity and maintenance of the nervous 

innervation and vascularization of tissues that are so important for their health.

Macrophage ontogeny is more than just a one-time label of developmental origin

Given these insights into embryonic and monocyte-derived RTMs, we preface the following 

text on mo-macs with a commentary on issues of vernacular that we suspect may disrupt the 

community, especially because one could argue that the ontogeny of RTMs fails to matter 

functionally at the steady state (van de Laar et al., 2016). But, in fact, whether embryonic 

and monocyte-derived RTMs react to disease signals differently is not well known, and 

Park et al. Page 7

Cell. Author manuscript; available in PMC 2023 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



perhaps even more importantly, the ontogeny of tissue macrophages has only recently 

gained traction as an important metadatum and has received correspondingly little attention, 

particularly in disease contexts. Studies thus far, though, suggest that ontogeny does indeed 

matter (as we review below). Accordingly, characterization of the molecular programs used 

by these ontogenically distinct macrophages and how they contribute to disease pathogenesis 

lacks precision. So, these insights caution the potential shortcomings of underestimating 

our interpretation and use of macrophage ontogeny as it currently stands—strictly based on 

whether a macrophage, in general, is embryonically derived or bone marrow-derived—and 

instead emphasize the need to investigate the cues that influence monocyte-to-macrophage 

differentiation.

For macrophages, timely tissue cues are everything—Taking on this challenge 

requires a nuanced perspective on how embryonic and monocyte-derived RTMs can both 

feed tissue-residing reservoirs, while monocyte-derived cells recruited during disease fail 

to fully recapitulate the phenotypes of their RTM counterparts. Toward this end, we define 

homeostatic differentiation as the steady-state process of imprinting tissue-specific traits into 

either fetal precursors or adult monocytes that intend on becoming homeostatic RTMs. This 

contrasts with non-homeostatic differentiation during disease, whereby disease-associated 

signals drown out the homeostatic ones and skew the maturation of monocyte-derived 

cells toward dysregulated, often inflammatory, states. This paradigm is seemingly binary, 

in that both homeostatic and non-homeostatic differentiation are not likely to necessarily 

occur simultaneously within a single tissue, albeit our expanding understanding of the 

heterogeneity of distinctive topological areas within a given tissue section (e.g., cancerous 

tissue versus adjacent, non-involved tissue) would suggest that both types of differentiation 

could concurrently be permitted for recruited monocytes (Shaw et al., 2018). But by and 

large, what this may indicate is that timing is integral: the point at which homeostatic 

differentiation becomes improbable and signals that drive non-homeostatic differentiation 

begin to overwhelm macrophage niches may determine the degree to which specific disease-

associated molecular programs are engaged by mo-macs and affect disease course.

Defining these threshold time points for each organ remains a major quest in macrophage 

biology. Kinetic profiling of monocyte and macrophage populations in vivo and 

characterizing them at the molecular level in silico are two potential approaches to the 

problem (Bleriot et al., 2020). For instance, liver-resident KC that survey the hepatic 

sinusoids at the steady state, if depleted, are replaced by monocytes that fill emptied 

KC niches and take on KC features (Scott et al., 2016). These monocyte-derived KC 

downregulate monocytic markers (e.g., Ly6C) and quickly acquire general macrophage 

markers (e.g., F4/80, CD64) within two days of KC depletion in a diphtheria toxin 

receptor model. Interestingly, though, KC markers like CLEC4F or TIMD4 were expressed 

weeks after engraftment, indicating that homeostatic differentiation may take more time 

than previously thought. Understanding how to preserve homeostatic tissue cues over 

this duration of time to ensure homeostatic differentiation, in the face of disease or 

inflammation-associated signals that might otherwise disrupt them, is a critical aim. Thus, 

our characterization of mo-macs in diseased tissues as “pathogenic drivers of disease” 

speaks to a timely need to expand our interpretation and use of cell ontogeny as more 
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than just a notation of developmental origin or age or tissue type. This adjustment in 

our frame of reference will be essential for achieving our broader goal of identifying (1) 

disease-associated signals that fuel non-homeostatic differentiation and (2) the downstream 

cellular networks regulated by mo-macs to develop clinically relevant therapies.

Disease-associated signals recruit monocyte-derived cells into tissues

Canonical pro-inflammatory cytokines, such as IL-6 and IL-8, are secreted by stressed 

stromal cells (e.g., fibroblasts), epithelial cells, and activated immune cells. In tandem, other 

“red-light” signals, including canonical alarmin cytokines like IL-33, damage-associated and 

pathogen-associated molecular patterns (DAMPs and PAMPs) amplify the cascades that 

result in enhanced myelopoiesis and excess recruitment of inflammatory monocytes into 

tissues.

Alarmins, such as IL-33 and thymic stromal lymphopoietin (TSLP), are also released from 

the intracellular storage of damaged endothelial, epithelial, and fibroblastic cells, and in 

most instances, promote a reparative type II immune response (Liew et al., 2016; Cayrol 

and Girard, 2018; Andersson et al., 2018). Monocytes and mo-macs share the IL-33 

receptor and respond to local alarmin signals. In the lungs, IL-33 has been shown to 

regulate the self-renewal of mo-macs that resemble resident alveolar macrophages during the 

resolutive phases of influenza infection (Dagher et al., 2020). In the spleen, in the context of 

erythrocyte damage, Il33−/− and Il1rl1−/− (IL-33 receptor-deficient) mice exhibit a profound 

decrease in both the abundance of red pulp macrophages and their erythrophagocytic 

potential, highlighting once more the importance of alarmin signals in the generation and 

function of mo-macs during disease (Lu et al., 2020).

While other DAMPs like hyaluronan and nucleic acids or PAMPs like LPS during bacterial 

infections contribute to the gradient of chemotactic agents that would also recruit and 

mold the monocyte-derived cells that infiltrate tissues (Zindel and Kubes, 2020), other 

non-conventional gradients may also act as trails for inflammatory blood monocytes to 

follow. Metabolites, for instance, can facilitate the recruitment of these cells. Early studies 

of atherosclerosis identified a role for oxidized cholesterol (oxysterol), not just ligands 

for CCR2, in the recruitment of inflammatory blood monocytes to plaque lesions and the 

subsequent pathogenesis of vascular disease (Staprans et al., 2000; Bensinger et al., 2008; 

Moore and Tabas, 2011; Calkin and Tontonoz, 2012; York and Bensinger, 2013). Similar 

mechanisms involving chemotactic oxysterols had also been described for dyslipidemia, 

neurodegenerative disease (Gamba et al., 2019; Varma et al., 2021; Griffiths et al., 2021) 

and cancer (Villablanca et al., 2010; Raccosta et al., 2013), all of which have also been 

shown to be associated with an accumulation of dysfunctional mo-macs, as we review more 

extensively below. At the steady state, oxysterols are present at low levels and typically 

modulate innate lymphoid cells and dendritic cells (DCs) in secondary and tertiary lymphoid 

structures via the G-protein coupled receptor (GPR183) (also known as Epstein Barr virus-

induced GPCR, or EBI2) (Gatto et al., 2013; Emgård et al., 2018; Wyss et al., 2019). But 

in certain diseases, oxysterol levels have been shown to rise; in cancer, for instance, tumors 

themselves generate oxysterols. Then, oxysterol sensing subsequently recruits GPR183+ 

inflammatory blood monocyte-derived cells into damaged tissues. Typically, soluble DAMPs 
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first induce oxysterol production by mo-macs via the enzyme cholesterol 25-hydroxylase 

(encoded by the gene CH25H) in both humans and in mice (Dang et al., 2017). This 

local release is also accompanied by a transient upregulation of GPR183, and the autocrine 

loop promotes the migratory capacity of these cells by mobilizing intracellular calcium 

(Hannedouche et al., 2011; Preuss et al., 2014; Rutkowska et al., 2016). It is also fed 

by oxysterol gradients generated by distal sites of damage, thus promoting trafficking of 

inflammatory blood monocyte-derived cells into injured tissues.

Decay of RTM niches and the occupation of damaged tissues by mo-macs drives disease 
progression

During severe, and often chronic disease, RTMs fail to meet the challenge presented by 

the successive, uncloaked inflammation that leads to tissue barrier activation and damage 

and likely their own death, as well. Likely, the sustained damage to tissues during disease 

results in a loss of tissue cells that are responsible for providing the steady-state cues that 

preserve RTM niches (Lavin et al., 2014; Okabe and Medzhitov, 2014; Amit et al., 2016). 

In combination with injury-associated signals, including alarmins and pro-inflammatory 

cytokines (Maus et al., 2006; Bosurgi et al., 2017; Minutti et al., 2017), recruited monocytes 

rapidly undergo non-homeostatic differentiation into mo-macs (Liu et al., 2019), with major 

transcriptomic changes upon exposure to the flux of disease-associated signals, oxidative 

species, and inflammatory byproducts (Desalegn and Pabst, 2019). Whether this event 

occurs in multiple waves, whether the lifespan of mo-macs changes during disease versus 

during resolution, and precisely when recruited mo-macs will go on to help repopulate 

RTMs during disease resolution are unclear. However, what is seemingly conserved across 

various tissues in multiple disease conditions is the observation that the broader collection 

of these mo-macs shapes disease (Figure 3), wherein the molecular programs that these cells 

engage mold the immune landscape of the local microenvironment.

We propose that this pattern of RTM depletion and repopulation by mo-macs is 

pathognomonic for disease and discuss this below. Understanding how these mo-macs 

modulate the inflammatory response to the drivers of disease will likely depend on our 

ability to (1) parse the transcriptomic programs that uniquely identify specific subsets of 

mo-macs (Figure 4) and to (2) uncouple the components that drive excessive inflammation 

from those that prematurely solicit an immunosuppressive wound healing or tissue-repair 

response. Although we assuredly fall short of reviewing all available studies, the intent of 

the following is to highlight recent bodies of work that provide robust evidence suggesting 

a unique role for mo-macs in disease onset or progression and contrasting them with their 

RTM counterparts that have failed to fulfill their duties in clearing tissue debris, surveilling 

the microenvironment, and curbing excess inflammation.

Respiratory disease—The recruitment of inflammatory blood monocyte-derived cells 

into diseased tissues and their differentiation into mo-macs that influence disease 

progression can be most easily exemplified from within the COVID-19 literature. Initial 

characterizations of myeloid cells in the peripheral blood and in bronchoalveolar lavage 

samples of COVID-19 patients showed a significant expansion of immature monocytes and 

neutrophilia, indicative of emergency myelopoiesis in the bone marrow (Schulte-Schrepping 
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et al., 2020; Silvin et al., 2020; Wilk et al., 2020; Grant et al., 2021; Chen et al., 2022). 

Detailed analyses of these cell subtypes highlighted an inflammatory phenotype, marked 

by the elevated expression of calprotectin and other S100 family molecules, like S100A12, 

occupying the lungs of SARS-CoV-2-positive patients.

Subsequent studies that more closely dissected the composition of the macrophage subset 

within the immune landscape of SARS-CoV-2-infected lungs demonstrated that resident 

alveolar macrophages are severely depleted in patients with severe disease, even more 

so than those with mild to moderate disease. Instead, the lungs of patients with poorer 

clinical outcomes were heavily infiltrated by mo-macs that failed to recapitulate the antigen 

presentation capacity and homeostatic wound healing properties of their RTM predecessors 

(Chen et al., 2022). And strikingly, convalescent patients showed a rebound of alveolar 

macrophages and a decline of these putatively pathogenic mo-macs in the lungs (Chen et 

al., 2022). Accordingly, clinical efforts to rescue resident alveolar macrophages in patients 

with COVID-19 with inhaled GM-CSF yielded improvement in oxygenation, highlighting 

the therapeutic potential of salvaging lost RTMs to counterbalance the deleterious role of 

dysfunctional mo-macs during disease (Bosteels et al., 2021). Beyond COVID-19, it is likely 

that restoring the altered balance between RTMs and inflammatory mo-macs may help treat 

other critical lung illnesses, representing an important and unmet clinical need. For example, 

in chronic lung diseases such as pulmonary fibrosis, the same imbalance between alveolar 

macrophages and mo-macs is also evident (Watanabe et al., 2021). Additional transcriptomic 

profiling characterized major differences between alveolar macrophages and mo-macs over 

the course of fibrosis, such as the expression of profibrotic genes by mo-macs (Misharin et 

al., 2017).

Intestinal disease—Early genome-wide association studies demonstrated that the 

dysregulation of innate immunity in genetically prone individuals drives the development 

of inflammatory bowel disease (IBD) and related intestinal conditions, including ileal Crohn 

disease (CD) and ulcerative colitis (UC) (Jostins et al., 2012). A number of genomic 

loci have been identified as sites of risk variants, including NOD2 (nucleotide-binding 

oligomerization domain protein 2), SLAMF8 (SLAM family member 8), and ATG16L1 
(autophagy related 16-like protein 1). These and other IBD risk loci are strongly enriched 

for promoters that regulate mo-mac differentiation and have implicated these cells in the 

development of IBD in both pediatric and adult patients (de Lange et al., 2017; Huang et al., 

2019).

The pool of resident intestinal macrophages constitutes the largest subset of myeloid cells 

in the intestinal tract. Recent efforts to profile myeloid cells in IBD patients suggest that 

dysregulation of the intestinal macrophage pool may underscore disease progression; CD 

patients, for example, have been found to harbor anti-GM-CSF autoantibodies that recognize 

post-translational glycosylation on GM-CSF, detectable even years before diagnosis (Mortha 

et al., 2022). Additionally, the mucosa of IBD patients are highly enriched with immature 

inflammatory monocytes that produce IL-23, TNF-α, IL-6, and OSM (West et al., 2017), 

supporting the potential pro-disease roles that recruited blood monocyte-derived cells play 

in IBD (Kamada et al., 2008; Ogino et al., 2013; Bernardo et al., 2018). This particular 

observation has been validated in multiple models of colonic inflammation (Duerr et al., 
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2006; Yen et al., 2006; Martin et al., 2019). But, most recently, single-cell profiling 

of immune cells in the inflamed and non-involved mucosa of CD patients revealed that 

depletion of circulating monocytes, which likely reflects their excessive recruitment at the 

injury site, alongside the enrichment for a cellular module, comprised of inflammatory mo-

macs—transcriptionally distinct from their resident intestinal macrophage counterparts—

associated with resistance to anti-TNF therapy (Martin et al., 2019). Expressing high levels 

of CXCL2, CXCL3, CXCL8, and SOD2, these mo-macs likely respond to pro-inflammatory 

IL-1 family cytokines, chemokines like CCL2 and CCL7, and alarmins (Martin et al., 

2019; Waddell et al., 2021; Friedrich et al., 2021). More in-depth functional studies will 

likely help uncover how these mo-macs, in fact, drive IBD pathogenesis, and how we can 

modulate their phenotype toward a resolutive, anti-inflammatory state, since depleting them 

entirely may compromise the proper replenishment of resident intestinal macrophages, too. 

Designing the appropriate strategies to test these cells functionally will heavily depend on 

our ability to parse the molecular programs that define mo-mac states, as we will want 

to preserve any potentially beneficial properties of these mo-macs, while suppressing their 

harmful effects.

Hepatic disease—In the human body, the liver is most heavily burdened with 

metabolism-related demands, and the tissue-resident pool of KC are crucial for fulfilling 

these demands. And like other RTMs, KC maintenance and functionality are dependent 

on their topological orientation in hepatic sinusoids and on the availability of homeostatic 

signals such as M-CSF. Interactions with neighboring stromal cells, such as endothelial 

cells and fibroblasts, also contribute to KC maintenance (Bonnardel et al., 2019; Guilliams 

et al., 2022), but the accumulation of oxidative stressors and lipotoxic substances induce 

hepatocyte death, steatosis, and fibrosis, resulting in the decay of KC niches and the 

progression of liver damage toward more advanced stages of cirrhosis (Nakagawa et al., 

2014; Grohmann et al., 2018; Sun et al., 2020). Homeostatic cues, such as the crosstalk 

between hepatic stellate cells and KCs via BMP9/BMP10-ALK1, has been shown to be 

important for inducing liver X receptor (LXR) signaling in KC to promote the expression of 

lineage-determining factors in tissue-infiltrating monocytes that fill vacant KC niches (Sakai 

et al., 2019; Bonnardel et al., 2019; Guilliams et al., 2022; Zhao et al., 2022). Notably, 

however, these mo-macs generated after an injury to the liver still failed to fully recapitulate 

the phenotype of bona fide embryonic RTMs, resulting in an impaired response to the 

subsequent lipotoxic burden of non-alcoholic steatohepatitis (Tran et al., 2020).

Different markers have been identified to distinguish these disease-associated mo-macs 

from KC, such as osteopontin (Spp1) (Remmerie et al., 2020). These recruited mo-macs 

have commonly been referred to as hepatic lipid-associated macrophages (LAMs), as 

they are typically enriched with lipid droplets within the cytosolic space (Morgan et al., 

2021) and resemble the lipid-laden phagocytes that are enriched in the adipose tissues of 

obese individuals (Jaitin et al., 2019; Worthmann and Heeren, 2020; Chen et al., 2021). 

Analogous populations of mo-macs, also expressing TREM2 and other genes involved in 

lipid metabolism, were enriched in cirrhotic livers (Ramachandran et al., 2019), indicating 

a potentially unique role in progressive liver disease. Interestingly, in contrast to the 

orientation of steady-state KC, these TREM2+ macrophages are located peri-centrally in 
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zones of steatosis, suggesting that inflammatory blood monocytes are not directly recruited 

to vacant KC niches, but are rather pulled to distinct locations in obese livers (Guilliams et 

al., 2022), likely reflecting key functional differences between RTMs and mo-macs that still 

need to be unraveled.

Neurodegenerative disease

Multiple sclerosis.: Infiltration of the CNS by inflammatory monocytes has been linked 

to multiple diseases of neuro-inflammation, such as multiple sclerosis (MS). In the 

experimental autoimmune encephalomyelitis model of MS, infiltrating monocytes triggered 

disease progression (Ajami et al., 2011). The injury to oligodendrocytes and gray matter 

astrocytes resulted in IL-33 release, prompting a recruitment of monocytes to the CNS 

(Gadani et al., 2015). Local GM-CSF promoted an inflammatory response in infiltrating 

monocytes that resulted in tissue damage in EAE mice. Deleting the CSF2 receptor in 

circulating monocytes phenocopied EAE resistance observed in complete Csf2rb-deficient 

mice (Croxford et al., 2015). Using single-cell transcriptomics, a specific subset of 

CXCL10-expressing monocytes was identified as the pathogenic subset of monocyte-derived 

cells in the spinal cord that drives EAE progression (Giladi et al., 2020). Interestingly, 

inflammatory monocytes from the bone marrow, but not this subset of CXCL10+ monocytes, 

were recruited into inflamed tissues, where they relied on licensing by IFN-ɣ and GM-CSF 

to differentiate into phagocytic mo-macs of the inflamed CNS (Amorim et al., 2022).

Alzheimer’s disease.: Similar phenomena of RTM dysfunction and replacement by 

inflammatory mo-macs have been observed for neurodegenerative diseases, such as AD, too. 

Foundational studies on the disease primarily involved whole-genome profiling of patients 

and murine models of AD, and identified at-risk genomic loci that are uniquely active 

in microglia (Lambert et al., 2013; Wightman et al., 2021). Loss-of-function mutations in 

TREM2, for instance, confer significant susceptibility for developing AD. Genome-wide 

survival analysis also showed that a single nucleotide polymorphism (SNP) in the locus 

of SPI1, encoding the myeloid transcription factor PU.1, also associates with AD risk, 

implicating a now widely explored role for dysfunctional microglial innate immunity in 

disease pathogenesis (Guerreiro et al., 2013; Sims et al., 2017; Huang et al., 2017). TREM2 

itself recognizes multiple molecules and signals via the DAP12 adaptor protein (Daws et 

al., 2003; Cannon et al., 2012). Accordingly, screening of the proteomic metabolome in AD-

afflicted brains highlighted a link between microglial dysfunction and lipid dysregulation 

(Loewendorf et al., 2015).

Broader immune profiling of myeloid cells in the CNS of AD patients and mice has shown 

that the composition of the immune landscape is more heterogeneous and complex than 

just the phenotypic decline of resident microglia. The use of single-cell omics enabled 

the identification of a unique microglial signature that defines a subset of microglia, 

termed disease-associated microglia (DAM), that (1) are uniquely enriched in Trem2 
and other molecules involved in lipid metabolism, and (2) are associated with limiting 

neurodegeneration in AD-transgenic mice (Keren-Shaul et al., 2017; Zhou et al., 2020). 

These findings indicate that a portion of surviving microglia engage molecular programs 

that aim to compensate for the loss of ulterior microglial functions that underscore AD 
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pathology. Enrichment of DAM in AD brains is associated with reduced disease burden, and 

therapeutically activating TREM2 attenuated AD in mice (Wang et al., 2020).

However, more recent works have shown that inflammatory mo-macs actually contribute 

significantly to the pool of TREM2-engaging DAM-like phagocytes during AD 

pathogenesis, representing a shift in our understanding of DAMs as an embryonically 

derived population of microglia. These disease-inflammatory mo-macs (DIMs) express 

comparable levels of TREM2 and were a primary source of TNF-α in diseased brains of AD 

patients and mice (Silvin et al., 2022). Interestingly, these phagocytes were preferentially 

organized in the hippocampus, amygdala, and frontal cortex of murine AD brains, whereas 

DIMs were principally located in the leptomeninges of AD patients. Collectively, though, 

these findings underscore the clinical efficacy demonstrated for Enbrel/etanercept, an anti-

TNF antibody from rheumatoid arthritis trials, in managing AD (Butchart et al., 2015; Chou 

et al., 2016). And though reducing excess inflammation is likely therapeutic for reducing 

damage done to native microglial niches and the surrounding glia, parsing the molecular 

programs that uniquely identify the mo-macs will help us be more precise about what targets 

actually modulate the cell-intrinsic phenotype of this compartment, representing a more 

directed strategy that addresses the root of pathogenic inflammation in AD.

Cardiovascular disease—The vasculature is patrolled and protected by circulating 

monocytes and perivascular macrophages. The preservation of the cardiovascular system 

is, therefore, dependent on the proper function of these phagocytes. But, in atherosclerotic 

disease, inflammatory monocytes become more abundant in unobstructed vessels and will 

go on to accumulate within early plaques (Swirski et al., 2006, 2007; Tacke et al., 2007). 

Notably, kinetic studies of monocyte ingress and egress from injured myocardial tissue 

indicated rapid monocyte to mo-mac turnover (Kircher et al., 2008; Leuschner et al., 

2012). Intravital imaging showed that the development of layers of inflammatory mo-macs 

underscores the growth of atherosclerotic plaques, with the luminal layers representing 

newly arrived inflammatory monocytes, and the deepest layers occupied mo-macs that 

destabilize the endothelial floor of advanced plaques (Williams et al., 2018). Single-cell 

RNA-sequencing (scRNA-seq) of these cells in atherosclerotic plaques revealed that the 

mo-macs express TREM2, resembling the lipid-laden macrophages found in AD lesions 

(Cochain et al., 2018; Depuydt et al., 2020). Accordingly, the loss of chemokine receptors 

such as CCR2 and CX3CR1 on monocytes alleviated plaque burden (Saederup et al., 2008; 

Combadiere et al., 2008). In line with these observations, inhibiting monocyte migration and 

suppressing monocyte differentiation into mo-macs also reduced plaques in Apoe-deficient 

mice (Potteaux et al., 2011; Cao et al., 2015). These observations clearly demonstrate a 

central role for inflammatory mo-macs in the progression of vascular disease.

Neoplastic disease—Although tumor-associated macrophages (TAMs) have become 

more seriously studied within the recent decade, few have gone on to specify functional 

roles for the different subtypes of TAMs that are present in tumor lesions. Over the past few 

years, a series of seminal studies have demonstrated how ontogenically distinct macrophages 

play distinct roles in tumor progression and in modulating anti-tumor immunity. Single-

cell technologies have given a snapshot of these properties to better appreciate (1) the 
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heterogeneity of RTMs and mo-macs in tumor tissues, (2) their localization in the tumor 

topography, and (3) the molecular programs that are conserved among tumor-enriched 

mo-macs across multiple cancer types. The results from these efforts have shown that the 

roles of RTMs and mo-macs recruited in response to inflammation and tumor-derived cues 

are often stage-specific and spatially restricted.

Recent results have revealed that both RTMs and mo-macs populate tumor lesions 

and engage different molecular programs. In both lung and pancreatic adenocarcinoma 

lesions, RTMs were shown to play a role in tumor inception (Zhu et al., 2017; Casanova-

Acebes et al., 2021; Baer et al., 2022); whereas in non-small cell lung cancer (NSCLC), 

alveolar macrophages facilitate epithelial-mesenchymal transition in tumor cells and activate 

regulatory T cells and fibroblasts, all of which promote tumor progression and invasiveness 

(Casanova-Acebes et al., 2021). Interestingly, though, these RTMs are reorganized to the 

periphery of tumors and are replaced by a massive accumulation of mo-macs (Loyher et 

al., 2018; Casanova-Acebes et al., 2021). The tumor-infiltrating pool of mo-macs has been 

profiled in a variety of cancers (Cheng et al., 2021; Mulder et al., 2021; Nalio Ramos et 

al., 2022), and subsets of them have been shown to universally engage the lipid-associated 

TREM2 molecular program (Lavin et al., 2017; Molgora et al., 2020; Katzenelenbogen et 

al., 2020; Binnewies et al., 2021; Leader et al., 2021). Interestingly, analogous programs 

have been shown to be present in chronically inflamed lesions and AD, as discussed earlier.

Another mo-mac program that is seemingly common in tumor lesions involves the 

expression of SPP1, encoding the glycoprotein osteopontin (Mulder et al., 2021; Leader 

et al., 2021). In a large cohort of 35 NSCLC patients, SPP1+ mo-macs were found to 

closely associate with CXCL13-expressing T cells and IgG plasma cells, the sum of which 

were termed the “lung cancer immune activation module” or LCAM (Leader et al., 2021). 

Strikingly, the enrichment for LCAM positively correlated with a number of prognostic 

clinical metadata, including tumor mutational burden, presence of driver mutations, and 

response to immune checkpoint blockade (Leader et al., 2021). Such findings motivate 

the need for an understanding of the precise functional roles that these tumor-infiltrating 

mo-macs play to determine how to best target them, whether it be through modulating their 

phenotype or depleting them. This task becomes especially integral for the development 

of new myeloid-targeting therapies. In subcutaneous murine models of sarcoma and colon 

carcinoma, TREM2 deficiency or therapeutic antibody-based blockade of TREM2 restricted 

tumor growth and synergized with PD-L1 blockade in a CD8 T cell-dependent manner 

(Molgora et al., 2020; Katzenelenbogen et al., 2020), indicating a pathogenic role for 

TREM2-expressing mo-macs in tumor progression.

However, growing evidence suggests that the pro-tumorigenic contributions of TREM2 

may be tissue specific. For instance, in the liver, while TREM2+ mo-macs accumulated 

with progressive stages of liver injury (i.e., steatosis, cirrhosis, to advanced hepatocellular 

carcinoma [HCC]) (Ramachandran et al., 2019; Sharma et al., 2020), TREM2 deficiency 

enhanced tumor growth in mice with HCC, suggesting that the TREM2 program is a tissue-

dependent molecular network with both pathogenic and protective potential (Perugorria et 

al., 2019; Esparza-Baquer et al., 2021). Also in HCC, with additional reports suggesting 

that other mo-mac programs are, in fact, similar to those used by early macrophages during 
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fetal development, questions concerning the fetal-like programming of tumor-infiltrating 

mo-macs and their functional purpose during tumorigenesis are also highly intriguing 

(Sharma et al., 2020). Overall, although mo-macs associate with progressive disease in 

cancer, the exact functions of the molecular programs that they engage must be probed 

individually to determine their utility as therapeutic targets.

Concluding remarks

The onset of disease often instigates inflammation that results in cell stress and death 

of exposed cell types, including RTMs, in the affected microenvironment. In tandem, 

the recruitment of circulating monocytes likely refills available and vacant RTM niches, 

as previously defined (Guilliams et al., 2020; Guilliams and Svedberg, 2021), with the 

likely goal of fulfilling the unmet needs of the damaged tissue, such as the clearance of 

pathogens and the removal of damaged cells. But unlike the macrophages that seeded the 

tissue in its developmental stages during embryo-genesis, these mo-macs encounter a much 

more distinct milieu, reacting to inflammatory and disease-specific cues that skew their 

differentiation and prompt the expression of distinct repertoires of molecular programs that 

may further drive disease, as we have discussed. Therefore, it seems the recruitment of 

mo-macs comes at a price: their maturation in the context of a dysregulated or damaged 

tissue microenvironment results in the non-homeostatic differentiation of tissue-infiltrating 

monocytes into mo-macs that enter cell states that may impair tissue healing and instead 

promote damage and fibrosis. Accordingly, these observations emphasize the importance 

of refining our use of macrophage ontogeny and developmental pathways, taking into 

account both the kinetics of monocyte recruitment and differentiation and how that affects 

their ability to possibly revert to “unconventional” monocyte-derived RTMs upon disease 

resolution (Figure 5).

With the publication of new data on macrophage heterogeneity and function at the steady 

state and during disease, it remains essential for the field to approach two principal 

questions: (1) how the molecular diversity of cell states is modulated by the balance of 

homeostatic tissue signals and disease-associated alarmins, and (2) how it is influenced 

by the persistence, disappearance, dysregulation, and neo-formation of subtissular niches. 

Harnessing our findings to these questions will be crucial for our study of disease, where we 

actually find the greatest diversity of macrophage cell states, some of which are conserved 

across tissues (Mulder et al., 2021). And it will be equally important to synthesize our 

understanding of how both niche-based education of embryonic or monocyte-derived RTMs, 

and the lack thereof for mo-macs occupying disease-afflicted niches, can be modulated to 

select for disease-resolving programs. The identification of conserved mo-mac programs 

across disease states and across multiple tissues, most popularly the TREM2 program, 

speaks to the broader translational potential in studying these programs, as they might 

reveal candidate targets that may be ideal for therapeutic modulation. This approach to 

studying macrophage biology requires a more informed and evolved take on ontogeny, 

one that accounts for the functional distinction between homeostatic RTMs and mo-macs 

generated in response to disease signals. Doing so would present the opportunity to be 

more precise with how we target pathogenic macrophage programs in a tissue-specific 

manner. In addition to genetic fate-mapping models, such as the Ms4a3Cre model (Liu et 
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al., 2019) or the binary-transgenic system (Kim et al., 2021), other classic methods that 

reveal ontogeny can be helpful, including parabiosis or bone marrow transplants. This task 

does also require information about (1) intrinsic properties of tissues (i.e., handling of 

metabolic burden, stromal cell composition, etc.), (2) the homeostatic duties of RTMs that 

are relegated to them at the steady state, and (3) whether mo-macs recruited in response to 

injury appropriately meet the demands of those responsibilities. The sum of all these factors 

will likely dictate whether certain programs—even if they are engaged by mo-macs across 

multiple tissues—play protective or pathogenic roles in disease.

Therefore, several pressing questions remain. The first is concerned with where embryonic 

and monocyte-derived RTMs localize in tissues, i.e., whether monocyte-derived RTMs fully 

migrate to and occupy the exact same niches as their embryonic counterparts, and what their 

respective contributions are to homeostasis. And in the contexts of disease-related injury, 

it remains important for us to determine whether being monocyte-derived imprints certain 

epigenetic memories into monocyte-derived RTMs that prompt them to react differently 

to injurious cues or damage to their niche long after acquiring RTM phenotypes. One 

possibility is that soluble disease-associated signals influence the education and phenotype 

of myeloid progenitor cells in the bone marrow during disease inception, resulting in 

the epigenetic imprinting of monocyte-derived cells that distinguish them from epigenetic 

hallmarks of RTMs (Netea et al., 2016). Alternatively, mo-macs may be imprinted locally 

at tissue sites of disease, though the likelihood of this option is likely to be more dependent 

on the lifespan of mo-macs in different disease contexts and tissues, which still requires 

more work to be done, as previously mentioned. Both scenarios would also require us to 

better understand how disease-associated cues may impact monocyte phenotypes before they 

even enter the circulation, whereby education within the marrow influences the activity of 

monocytes once they begin to migrate (Askenase et al., 2015).

Ultimately, it will be crucial for us to identify reliable markers that distinguish the 

subsets of RTMs and the disease-driven pool of mo-macs. And with that information, 

we can better characterize the lifespan of mo-macs that are recruited during disease and 

determine how that may inform our insight into their functional contribution and relevance 

to different stages of disease progression. For instance, we could imagine that initial waves 

of monocyte-derived cells involve an elevated phagocytic activity and lipidic remodeling of 

the microenvironment, with latter waves bringing in monocytes that attempt to synthesize 

resolutive cues and promote tissue repair (Kratofil et al., 2022), which may or may not 

actually be beneficial to the tissue at that particular point in time, depending on the 

context. Alternatively, the converse may be true; earlier waves of monocyte-derived cells 

that manage to properly differentiate and resolve disease could inculcate an environment that 

is advantageous for responding to secondary insults (Machiels et al., 2017; Aegerter et al., 

2020). Therefore, a growing body of literature has begun revealing a host-protective function 

of mo-macs, but as previously stated, when and why these properties manifest remain crucial 

pieces of information that must be elucidated.

An expanded understanding of this kind of dynamic would then be additive to characterizing 

the kinetic heterogeneity of monocyte-derived cells that are recruited early versus later in 

the course of the disease. It would help guide therapeutic intervention at different stages of 
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diseases, especially if mo-macs from the more recent waves of recruitment might be more 

susceptible to homeostatic cues and be more “easily convinced” to reform RTM niches to 

their pre-disease state; in sum, they would probably benefit more from that extra therapeutic 

push needed to be beneficial for disease resolution than older mo-macs that might be more 

difficult to reprogram. Accordingly, both descriptive profiling and functional studies are 

needed to appreciate the value and utility of this type of macrophage heterogeneity to the 

fullest extent. In doing so, we will be armed with a clearer and practical understanding 

of how myeloid programs can be targeted therapeutically in a tissue-specific and disease-

specific manner.
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Figure 1. Fundamental responsibilities of tissue-resident macrophages across tissues
RTMs represent the primary entourage of tissue sentinel phagocytes that help maintain 

the tissues they inhabit. For example, osteoclasts of the bone eliminate excess bone mass, 

whereas other macrophages residing within the marrow and splenic macrophages facilitate 

the generation and elimination of new and dying red blood cells. Whether it be in the 

CNS, where microglia cooperatively function within neurovascular units, or in the periphery, 

where perivascular and cardiac macrophages support vascular integrity, RTMs help preserve 

the vasculature in different tissues. Microglia are also integral for the pruning of neuronal 

synapses, which also requires them to phagocytose any debris originating from degraded 

myelin. Alveolar macrophages, like other RTMs in mucosal surfaces, form the immediate 

innate defense to pathogens.
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Figure 2. Composition of different tissue-resident macrophage populations at the steady state
Depending on the tissue, the ontological composition of the tissue-resident macrophage 

(RTM) compartment varies, and here, we depict the generation and development of these 

RTM populations during fetal development and post-birth, based on the accepted paradigm 

that all RTM are embryonically derived phagocytes.

Microglia continue to self-maintain in the brain through interactions with glial cells, like 

astrocytes, and persist through age with minimal input from peripheral monocytes that 

infrequently pass the blood-brain barrier to infiltrate the brain parenchyma at the steady 

state.

Alveolar macrophages in the lungs are also capable of preserving their pool of 

embryonically derived cells during homeostasis, but unlike the brain-resident microglia, 

tissue-infiltrating monocytes make up an increasing proportion of alveolar macrophages over 

the course of aging. Therefore, a notable fraction of alveolar macrophages can be derived 

from monocytes.

Intestinal lamina propria macrophages are one such exception of RTMs that are largely 

comprised of monocyte-derived RTMs. The remarkable turnover of macrophages in the gut 

require input from blood monocytes.
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Figure 3. The dynamic of ontogenically distinct RTMs at homeostasis and disease-associated 
mo-macs during disease
At the steady state, tissue-resident macrophages (RTMs) can be comprised of either 

embryonically derived RTMs or monocyte-derived RTMs, depending on the tissue. 

Yet, regardless of their development, the two groups are generally phenotypically 

indistinguishable from one another. However, during disease, injury-associated signals 

and disease-specific cues prompt the recruitment of blood monocytes and instigate their 

inflammatory differentiation into disease-associated monocyte-derived macrophages (mo-

macs). Although a growing body of work illustrates their more significant contributions to 

disease and the functionality of tissues during that time, whether these macrophages, at the 

resolutive phases of disease, simply die off or revert to the bona fide RTM phenotype upon 

recovery of homeostatic tissue signals is not entirely clear.
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Figure 4. Transcriptional differences that distinguish disease-associated mo-macs from RTMs
The recruitment of monocyte-derived macrophages (mo-macs) during disease reflects a wide 

variety of inputs, including the lack of steady-state tissue cues that encourage homeostatic 

differentiation of monocytes into monocyte-derived tissue-resident macrophages (RTMs) 

and the presence of disease-specific alarmins. As such, their transcriptomic signature 

distinguishes them from their tissue-resident counterparts, and what remains to be studied 

more extensively are the functional contributions of these molecular programs to disease 

progression.
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Figure 5. Overview of the dynamic among RTMs and disease-associated mo-macs in tissues and 
leveraging it for translational science
(A) Delineating the occupational dynamic of tissues by tissue-resident macrophages (RTMs) 

(blue) and monocyte-derived macrophages (mo-macs) generated during disease (red) will 

not only elucidate how their functional differences drive disease in humans but also at what 

points during disease would response to certain therapies be most appreciated. (B) In order 

to do so, insight must be driven by precise, scientific questions with translational potential. 

The advent and continued use of single-cell technologies enable the scientific community 

to do that, though other methods of highly rigorous profiling efforts could do the same. 

Broadly, considering the uncertainty of whether mo-macs at disease resolution help revive 

the local pool of RTMs and the fact that cell states among mo-macs are wide-ranging 

and diverse, modulating their phenotype—as opposed to trying to deplete them entirely or 

outcompete them by attempting to forcibly expand surviving RTMs during disease—will be 

the more practical outlook on new therapeutic designs.
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