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Magnon scattering modulated by omnidirectional
hopfion motion in antiferromagnets for meta-learning
Zhizhong Zhang1†, Kelian Lin1†, Yue Zhang1,2*, Arnaud Bournel3, Ke Xia4, Mathias Kläui5,
Weisheng Zhao1,2

Neuromorphic computing is expected to achieve human-brain performance by reproducing the structure of
biological neural systems. However, previous neuromorphic designs based on synapse devices are all unsatis-
fying for their hardwired network structure and limited connection density, far from their biological counter-
part, which has high connection density and the ability of meta-learning. Here, we propose a neural network
based on magnon scattering modulated by an omnidirectional mobile hopfion in antiferromagnets. The states
of neurons are encoded in the frequency distribution of magnons, and the connections between them are
related to the frequency dependence ofmagnon scattering. Last, by controlling the hopfion’s state, we canmod-
ulate hyperparameters in our network and realize the first meta-learning device that is verified to be well func-
tioning. It not only breaks the connection density bottleneck but also provides a guideline for future designs of
neuromorphic devices.
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INTRODUCTION
Topological solitons have been extensively studied in field theory (1,
2). It was not until recently that their magnetic versions showed
great potential for future electronic devices (3–8). Magnetic solitons
are robust due to their topological nature and are easy tomanipulate
using various techniques based on fields, currents, photons, etc. (9–
12). One of the successful examples is skyrmions. Observed in a vast
diversity of magnetic materials, they have been developed into
devices and circuits for a range of applications operating even at
room temperature (13, 14).

Among the applications of magnetic solitons, nonconventional
computing attracts us the most for being unexplored in traditional
electronics, especially neuromorphic computing (15–18). Various
synaptic devices based on magnetic solitons are proposed as the
building blocks for neural networks, and most of them are designed
in the light of the leaky-integrate-fire model. In some of those pro-
posals, the position of the domain wall or the size of the skyrmion
plays the role of the electric potential in a neuron (16, 17). The
domain or the skyrmion is expanded in the presence of an input
current or shrinks to its original size as a result of a certain
energy descent when the current is withdrawn. In another design,
skyrmions function as neurotransmitters, which would trigger a
spiking signal once their concentration in the detecting area has
reached a certain level (18).

However, these practices are confronted with an emergent re-
quirement called meta-learning. In addition to modulating
weights and biases in a neural network, meta-learning requires
taking the network structure or other metadata under training as

well. It reduces manual labor in model training, helps us escape
the overfit trap, improves training efficiency, and, lastly, makes
machine learning more available in various real-life scenarios
(19–23). Despite all these advantages, this requirement would be
difficult to realize at a hardware level without adding extra circuit
complexity. During circuit design, a neural network is usually de-
composed into the basic units that can be directly replaced by elec-
tronic devices. Under current practice, the basic unit is a synapse,
and the network structure is implemented by physical connections
between them. As a result, the network structure is hardwired, and it
entails an additional controller to program these connections at a
software level, forcing the circuit designer to choose between inflex-
ibility and unnecessary complexity. Besides, since all the synaptic
devices are inevitably distributed and manufactured in a plane,
their connection density becomes so limited that it is almost impos-
sible for the circuit to achieve performance as high as that of a
human brain, in which neurons are densely connected.

To tackle the above problem, we introduce the concept of
magnon scattering. It is based on a reflection on two customary
ways of thinking prevailing in current practice. First, instead of con-
centrating on the implementation of synapses, we should pay more
attention to seeking a physical process equivalent to neural network
structure. Second, following this idea, instead of regarding magnetic
solitons merely as signal carriers, we should develop their potential
value for representing network structure. Here, we propose
magnons as the signal carriers and their scattering by a magnetic
soliton as the physical process for substituting the network struc-
ture. Since magnons are not exclusive particles like magnetic soli-
tons, it is therefore possible to break the connection density
bottleneck by building multiple channels of different frequencies
in parallel. These advantages make them a more ideal carrier than
magnetic solitons. The frequency spectrum of magnons will be used
to encode multidimensional signals, and in this view, the magnon
scattering can be seen as a nonlinear map between these signals,
which implicitly has the structure of a neural network. To obtain
an adjustable neural network, the scattering pattern should be
easily modulated by controlling the state of the soliton.
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The flexibility required by meta-learning is lastly settled by se-
lecting hopfions as the kind of magnetic solitons responsible for
causing the magnon scattering. Skyrmions are excluded because
they cause relatively constant scattering results due to their simple
spin configuration. Hopfions, instead, are fully qualified to satisfy
our needs. Discovered in 1975 as a group of three-dimensional
(3D) soliton solutions of the Skyrme-Faddeev model (24, 25),
they have been demonstrated either theoretically or experimentally
in several magnetic systems such as chiral magnets (26–29), frustrat-
ed magnets (30, 31), magnetic multilayers (32), and ferromagnets
with high-order exchange interactions (33). As knot-shaped soli-
tons, hopfions host such a rich variety of 3D configurations that
even their topological classification becomes a complicated ques-
tion. This complexity provides a scattering characteristic patholog-
ical enough to serve as a neural network. The most important point
is that, as an anisotropic object in 3D space, a hopfion has all the
degrees of freedom of a 3D rigid body, a set of state parameters
that are simple but complete enough for modulating the neural
network through the pathological scattering characteristic.
However, up until now, the intricate dynamics of hopfions has
not been fully explored (34–37). Recent research on hopfions
driven by spin transfer torque has revealed the “exotic dynamics”
of hopfions, including translation, rotation, and dilation (35).
However, none of them has reached the level of omnidirectional
motion in 3D or programmable velocity control for all degrees of
freedom in 3D. The constrained motion of a hopfion places a re-
striction on the number of its state parameters, represses the
“gene expression” of hopfions’ scattering properties and, therefore,
should be settled before the meta-learning framework is construct-
ed. Spin-wave polarization, an additional degree of freedom emerg-
ing from antiferromagnetism, is used to achieve omnidirectionality
and to simplify the velocity control mechanism.

Here, we implement a meta-learning framework using magnon
scattering modulated by the omnidirectional motion of a hopfion.
The omnidirectional motion is realized on the basis of a first study
into the hopfion-driving effect of spin-wave polarization in antifer-
romagnets. An empirical relationship is displayed geometrically
between the velocity of the hopfion and the spin-wave polarization,
and it results in a simple scheme where the velocity of a hopfion is
encoded in two spin-wave sources. Four 3D trajectories of the
hopfion are shown in ascending order of complexity to demonstrate
the power of the encoding scheme. The frequency dependence of
hopfions’ motion is also studied for the later use of the frequency
spectrum of magnons. On the basis of all these preparatory investi-
gations, the meta-learning framework is realized. Signals are carried
by the frequency spectrum of magnons, and the neural network is
built into the scattering process, which can be modulated by the po-
sition and altitude of the hopfion. The framework is applied to pre-
dicting periodic and chaotic signals, and the prediction turns out to
be of high accuracy, indicating the well functionality of our
approach.

RESULTS
The existence and stability of hopfions in frustrated antiferromag-
nets can be derived from a general field theory model in the contin-
uum limit (30, 38, 43, 44). The Hamiltonian is given in Methods,
and the stable spin configurations of hopfions with the Hopf
indices 1 (H-1) and 2 (H-2) are shown in Fig. 1. The spin

configuration and the calculation of the Hopf index are given in
the Supplementary Materials. From Fig. 1, we can see the difference
in orientation between H-1 and H-2 hopfions, a phenomenon re-
ported in (33). This is caused by the configuration of high-order
exchange interaction, which is anisotropic and nonquadratic in
our system.

Polarization dependence of hopfion dynamics
We start to search for treasure buried in hopfion dynamics that may
help accomplish the goal of omnidirectional motion, and, lastly,
spin-wave polarization, an additional degree of freedom emerging
only in antiferromagnets, comes to our attention. Our major
concern is to figure out the soliton-driving effect of spin-wave po-
larization. A spin wave needs two other parameters to specify: the
incident direction and the frequency. These parameters should be
carefully chosen so that the polarization dependence of a hopfion’s
motion is both visible and enlightening. To find suitable values, mi-
cromagnetic simulations of hopfions’ motion are performed for
spin waves incoming from two specific directions: one is parallel
to the rotation axis of the hopfion and the other is perpendicular.
Four kinds of polarization are selected as samples for the prelimi-
nary study: counterclockwise circular polarization (CCW-C), clock-
wise circular polarization (CW-C), linear polarization in the x
direction (LX), and the y direction (LY). Linear combinations of
these modes comprise all the first-order spin-wave modes.
Higher-order spin waves, which cannot be decomposed into these
four kinds of polarization, are not considered here. The hopfion
under simulation is of configuration P = 1 and Q = 1 (and thus
H = 1), and its rotation axis is in the ½111� direction due to the an-
isotropic exchange interaction (see Fig. 1A). The frequency of spin
waves is set to 440 GHz.

The simulation results are shown in Fig. 2. When the spin waves
are incoming along the rotation axis, that is, along the ½111� direc-
tion, the hopfion is pushed along the incident direction of the waves
regardless of polarization (see Fig. 2A). The velocities for most
kinds of polarization are the same except for CCW-C, in which
case the velocity is about

ffiffiffi
2
p

times as much as any of the other
three. As we turn the incident direction from the rotation axis to
that which is parallel to the torus plane, like [110] as we select,
the polarization dependence of hopfions’ motion becomes
obvious (see Fig. 2B). The trajectories under linearly polarized
waves (L-waves) are still parallel to the incoming direction, while
the two trajectories under circularly polarized waves (C-waves)
begin to deviate from it and lastly become “a pair of wings” on its
two sides. If we keep turning the incident direction around until it
reaches the ½111� direction, the case will be similar to the initial one,
except that the hopfion will move in the opposite direction and the
CW-C wave will now be the most powerful one. In summary, when
the incident direction of spin waves is along ½111�, the polarization
dependence becomes sufficiently apparent, and the trajectory vari-
ation involves as many degrees of freedom as possible.

Before a further study is carried out, we need to quantify the
concept of polarization. We focus on those spin waves that can be
decomposed into LX and LY waves with the same amplitude and
frequency. The polarization of the waves is then represented by
the phase offset between these two components. For instance,
CW-C and CCW-C are represented respectively by phase offsets
of 90° and 270°.
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A series of simulations are performed to explore the relationship
between the phase offset of the incident waves and the velocity of the
hopfion. To measure the position of the hopfion easily, the simula-
tions are performed for H-2 hopfions instead of the H-1 hopfions
used previously. The rotation axis of an H-2 hopfion is aligned to
the z axis, and its torus plane is parallel to the xy plane (see Fig. 1B).
As a result, the incident waves can be emitted from one side of the
magnet and propagate along the x axis, one of the major propagat-
ing directions of spin waves, if the incident direction is required to
be parallel to the torus plane of the hopfion.

As the phase offset evolves in cycles, the trajectory of the hopfion
along with its end point swings up and down like a pendulum on a
certain plane (the orange plane in Fig. 2C). To facilitate an easily
accessible discussion, we call this plane the Hall plane and define
the effective Hall angle as the angle between the moving direction
of the hopfion and the incoming direction of the spin wave (see the
top of Fig. 2D). It can be seen from Fig. 2C that all the displacements
share the same x component, indicating that the longitudinal veloc-
ity of the hopfion is constant while the transverse velocity varies
with the polarization.

The geometric picture given in the top of Fig. 2D may be useful
to deepen our understanding. Imagine a cone with its apex at the
initial position of the hopfion and its axis along the incident direc-
tion of the spin wave (the cyan cone in the top of Fig. 2D). The two

C-wave–driven trajectories of the hopfions are designated as gener-
ating lines of the cone, and therefore, their angle is the aperture of
the cone. In this picture, the Hall plane is the conic section crossing
these two generating lines, and the Hall angle of a trajectory is the
angle between this trajectory and the cone’s axis. In this way, the
Hall angle must be smaller than half of the aperture, and it
reaches its maximumwhen the incident wave is circularly polarized.

To elucidate the geometric meaning of the phase offset, a polar
coordinate system is defined on the cone’s base. The polar axis is the
diameter perpendicular to the Hall plane so that the final positions
of the hopfions driven by CW-C and CCW-C waves have polar
angles of 90° and 270°, respectively. The trajectory of the hopfion
can be treated as the projection of a generating line onto the Hall
plane, and the corresponding displacement (the red vector in the
top of Fig. 2D) as the projection of the vector covered by the gener-
ating line (we name it the “imaginary” displacement and represent it
by the yellow vector in the top of Fig. 2D).We find that the azimuth-
al angle of the imaginary displacement (where the north pole is the
positive direction of the x axis) is exactly the phase offset leading to
the actual displacement. More formally, if a spin-wave source has
the complex form

ψ ¼ Acosωt þ iAcosðωt þ φÞ ð1Þ

then the Hall angle αHall is dependent on the phase offset φ in the

Fig. 1. Spin configurations of hopfions in the lowest-energy state. (A and B) Isosurfaces nz = 0 of (A) an H-1 hopfion and (B) an H-2 hopfion. The direction of the Neel
field is represented by colors in the hue, saturation, and lightness (HSL) color space. The pale green planes are the xy and yz planes. The top left insets are the yz slices of
the hopfions, and the bottom right insets are the xy slices of the hopfions. It can be seen from the axis orientation that the H-1 hopfion is oriented toward the ½111�
direction, while the H-2 hopfion is oriented toward the [001] direction. (C and D) Preimages of the Neel vectors with xy angles of 0°, 90°, 180°, and 270° for (C) the H-1
hopfion and (D) the H-2 hopfion. The white torus represents the isosurface nz = 0.
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following way, which is confirmed by the diagram shown in Fig. 2D

tan αHall

tan α0Hall
¼ sin φ ð2Þ

where α0Hall is the Hall angle for C-waves. A more general case is
considered where the spin waves have the complex form

ψ ¼ Aeθcosωt þ iAe� θcosðωt þ φÞ ð3Þ

In this case, the Hall angle will be scaled down as

tan αHall

tan α0Hall
¼

sin φ
cosh 2θ

ð4Þ

while the transverse velocity is kept independent of θ. It turns out
that Eqs. 1 and 2 are a special case of Eqs. 3 and 4, where θ = 0. As we
will see in a later discussion on magnon scattering, the oscillation of
the hopfion’s trajectory in the Hall plane results from the competi-
tion between magnons with opposite polarizations being scattered
toward different directions. In a detailed derivation presented in the
Supplementary Materials, antiferromagnetic spin waves are decom-
posed into two kinds of circularly polarized magnons that drive the
hopfion toward opposite sides of a plane. The phase offset is found
to describe the relative amplitude between these two components
and therefore becomes a bridge between the spin-wave polarization
and the hopfion’s moving direction. This treatment can explain the
oscillation perfectly and is used to provide a solution for omnidirec-
tional motion. The relationship expressed in Eq. 2 will radically sim-
plify the programming procedure of a trajectory arbitrarily given for
the hopfion to move along.

Omnidirectional motion in 3D space
Next, we are going to achieve the motion of a hopfion with uncon-
strained degrees of freedom step by step. Simply speaking, this is
achieved by a compound motion driven by two independent
spin-wave beams. Spin-wave sources are put on both sides of the
hopfion so that the spin waves emanating from the two sides can
propagate face to face along the x axis (see Fig. 3A). The two
non-coplanar Hall planes corresponding to these two spin-wave
sources are used to span a 3D space (see Fig. 3B). These two
planes form a plane angle of 135° at a frequency of 440 GHz (see
Fig. 3C), enabling us to move the hopfion in any direction in
3D space.

We first achieve a spin-wave driving scheme permitting arbitrary
motion in the xy plane by considering the parametric equations of a
unit circle in 2D skew coordinates

xðtÞ ¼ sinð� t þ φ=2Þe1 þ sinðt þ φ=2Þe2 ð5Þ

where φ is the angle of two coordinate axes, and e1,2 is the basis of
the coordinate system. The spin waves coming from the two sources
are both in the form of Eq. 1. We set the amplitudes of the two
sources to the same value so that their forces on the hopfion
cancel out in the x direction. Note that the transverse forces
exerted by the two sources form an angle of 135° ( = φHall) and con-
stitute a basis of a skew coordinate system (see Fig. 4A). Using Eq. 5,
the total force on the yz plane is decomposed into two components,
which can be tuned separately by varying the polarization of each
source. According to Eq. 2, where the transverse velocity under
certain waves is shown to be proportional to the sine of the phase
offset, the phase offsets of the two sources (φ1,2) can be set directly
to the arguments of the two sine functions in Eq. 5 if we try to move

Fig. 2. Polarization dependence of hopfions’motion. (A) Trajectories of H-1 hopfions driven by spin waves with different kinds of polarization incoming along the ½111�
direction. The spin waves are excited by a time-varyingmagnetic field of amplitude 2.0 T and a frequency of 440 GHz. (B) Trajectories of H-1 hopfions driven by spin waves
with different kinds of polarization incoming along [110]. The spin waves are excited by amagnetic field of amplitude 5.0 T and a frequency of 440 GHz. (C) Displacements
of H-2 hopfions driven by spin waves whose phase offset cycles were from 0° to 360° in a step of 30°. The phase offset for each point is represented by a color with a
distinctive hue. The Hall plane is highlighted in pale yellow. The spin waves are propagating along [100]. The exciting magnetic field is the same as the one in (B). (D)
Geometric picture of polarization dependence. The top shows the mapping from the phase offset to the Hall angle. The red plane denotes the Hall plane. The light cyan
cone with its apex at the origin exhibits the area the imaginary displacement may pass through. The yellow vector with a yellow ending point represents the imaginary
displacement given the azimuthal angle or, in other words, the phase offset. The actual displacement, represented by a red vector with a red ending point, turns out to be
the projection of the imaginary displacement onto the Hall plane. The bottom shows the measured function between the phase offset and tanαHall, which is direct
evidence for the picture shown in the top.
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the hopfion toward a certain azimuthal angle (ϕ)

φ1 ¼ � ϕþ φHall=2;φ2 ¼ ϕþ φHall=2 ð6Þ
This allows us to program any planar trajectory with ease. Con-

sider θ to be a linear function in time. We obtain a trajectory in the
shape of a circle (see Fig. 4B and movie S1).

We expand our approach to a 3D situation. Realizing a helix-
shaped trajectory might be the most intuitive approach to omnidi-
rectional motion, for a velocity along any direction can be seen as a
point on the unit sphere, and a vertical cross section of this sphere
can be seen as the set of all the tangent vectors on a certain helix (see
Fig. 4C). All we need is an extra tunable velocity in the longitudinal
direction, which has been realized in Eqs. 3 and 4. A helix-shaped
trajectory is thus achieved on the basis of the circle’s case (see
Fig. 4D and movie S2): The first source (ψ1) is the same as the
one in the circle’s case (Eq. 1), while the second (ψ2) is replaced

by Eq. 3

ψ1 ¼ cos ωt þ i cosðωt þ φ1Þ ð7AÞ

ψ2 ¼ eθcos ωt þ ie� θcosðωt þ φ2Þ ð7BÞ

Although the transverse forces coming from the two sources are
both subject to the same limit, the total longitudinal force exerted
on the hopfion is out of balance and provides a stable velocity along
the x axis. A comparison between the spin-wave configurations for a
circle and that of a helix is shown in Fig. 4I.

However, the formulae generalized from the helix trajectory are
piecewise and have little connection with the commonly used rep-
resentation of 3D vectors. They might be sufficient for a Chinese
knot (see Fig. 4, E to F, and movie S3) but are incompetent for
greater complexity. On these grounds, we construct a spin-wave
configuration in the form of spherical coordinates, which we com-
monly use (see Fig. 4G). To move the hopfion toward the direction
of azimuthal angle ϕ and polar angle θ with a velocity ofA2 units, we
set the spin-wave sources to

ψ1 ¼ A cos
θ
2
cos ωt þ iA sin

θ
2
tan

θHall

2
cosðωt þ φ1Þ ð8AÞ

ψ2 ¼ A sin
θ
2
cos ωt þ iA cos

θ
2
tan

θHall

2
cosðωt þ φ2Þ ð8BÞ

where θHall is an intrinsic scattering parameter subject to
cot θHall ¼ ð1=2Þsin φHall tan α0Hall. At the frequency of 440 GHz,
φHall = 135°, tan α0Hall ¼ 0:7176, θHall = 75.76°, and tan(θHall/2)
= 0.7780.

The correctness of this configuration is based on the same prin-
ciple underlying Eqs. 3 and 4 (see the Supplementary Materials for
proof ). Using the above equations, we achieve a trajectory in the
shape of a trefoil knot (see Fig. 4H and movie S4). The geometric
parameters of the trefoil knot as well as the Chinese knot are given
in Fig. 4 (J to K), and the designated trajectories can be easily gen-
erated by substituting them into Eqs. 8A and 8B. This embodies the
convenience and flexibility of the spin-wave configuration in Eqs.
8A and 8B and symbolizes that our objective of omnidirectional
motion of a hopfion in 3D space has been accomplished
successfully.

Frequency dependence of magnon scattering
Before multidimensional signals are encoded in the frequency spec-
trum of magnons, it is necessary to study the frequency dependence
of magnon scattering. Magnons are treated as wave packets so that
they can be treated as classical particles in phase space with a posi-
tion and a velocity. The mechanism hidden behind magnon scatter-
ing is verified by the hopfion dynamics it causes. We measure the
displacement of a hopfion in magnon-driven micromagnetic simu-
lations for frequencies from 240 to 560 GHz in a step of 20 GHz,
extract the normalized velocity from the data (see the Supplemen-
taryMaterials for more details), and plot them in Fig. 5A as red dots.
In addition, a linear model of magnon scattering is developed in the
Supplementary Materials, enabling us to calculate the magnon-
driven velocity of a hopfion driven by polarized magnons. The ve-
locity calculated from the model is shown in Fig. 5A as the blue
curve. The results from the model and the simulation are consistent

Fig. 3. Mechanism for realizing omnidirectional motion of a hopfion in the 3D
space. (A) Proposed experimental setup for omnidirectional motion. The cyan
glass is themagnet, in the center of which a violet torus is embedded, representing
the hopfion. The red wires are the antennae responsible for inducing excitingmag-
netic fields from currents. The two antennae above the magnet are used to excite
LX waves, while the two below the magnet are used to excite LY waves. The four
antennae are distributed on both sides of themagnet and constitute a pair of spin-
wave sources. The spin waves are released using sub-terahertz spin oscillators (45–
48). (B) Non-coplanar Hall planes of the two spin-wave sources. The cyan cones
denote the cones of imaginary displacements. The red planes are the Hall
planes. (C) Trajectories of hopfions driven by spin waves of different kinds of po-
larization emanating from each of the two spin-wave sources. These results
confirm the prediction in (B).
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with each other, and both have shown the nonlinearity relationship
between the frequency of the magnons and the velocity of the
hopfion. It is also noteworthy that the frequency dependence
implies the control of the Hall plane, another aspect besides the
control of the Hall angle by polarization. The azimuthal angle of
the Hall plane (φ/2) is a monotonically increasing function of the

wave frequency, despite the function being quite nonlinear and
hence less convenient for velocity control than polarization
dependence.

The frequency dependence can be qualitatively explained by the
particle-like properties of spin-wave packets described by our
model. It is found that the topography of the field F or, to be

Fig. 4. Example trajectories of hopfions and their spin-wave configurations. (A, C, E, andG) Direction range of velocity the hopfion covers during themotion, which is
extended from a circle to the entire unit sphere. The red arrows in (A) and (C) denote the basis of the skew coordinate system. (B,D, F, andH) Complex trajectories that the
hopfion moves along, including (B) a circle, (D) a helix, (F) a Chinese knot, and (H) a trefoil knot. These examples are organized in ascending order of complexity. (I)
Waveforms of the incident waves applied in (B) (top) and (D) (bottom).Ψ2 in the two panels is the same, whileΨ1 in the bottom is an elongated version ofΨ1 in the top. (J)
Direction of the instantaneous velocity for realizing the Chinese knot. (K) Instantaneous velocity for realizing the trefoil knot.
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more specific, the shape and configuration of isosurfaces of ∣F∣ as
Fig. 5B shows, plays an important role in determining the frequency
dependence of magnon scattering. To expose the scattering process
hidden behind the dependence, three frequencies (220, 340, and 500
GHz) are chosen from different parts of the band (see Fig. 5, C to E,
andmovies S5 to S7). For frequencies as low as 220 GHz (see Fig. 5C
and movie S5), the incoming magnons are scattered strongly, some
of which are even captured by the emergent magnetic field and ex-
perience a period of irregular motion before escape (the red tube in
Fig. 5C). As the frequency increases to 340 GHz (see Fig. 5D and
movie S6), the momentum of magnons increases, and as a result,
the magnons can approach the core region of the hopfion more
easily instead of being scattered by its outer region. The field F in
the core region is different from that in the outer region in both
magnitude and orientation: The field in the core region is stronger
and is oriented moderately upward while that in the outer region is
weaker and is oriented mostly downward (see Fig. 5B). As a result,
the scattering in the core region causes a substantial momentum ex-
change in the positive direction of the z axis, explaining the uprais-
ing curve between 220 and 500 GHz. When the frequency finally
enters the high band in which it becomes higher than 340 GHz
(see Fig. 5E and movie S7), the magnons become so powerful that
they can straightly pierce through the whole region. The scattering

cross section begins to shrink and the velocity of the hopfion de-
clines, especially in the x direction.

Another important point is that the scattering process is both
dispersive and nonlinear thanks to the magnetic frustration in our
system. The reflection caused by ∣F∣ isosurfaces changes the wave
number of a magnon. This can be derived from the arrows in
Fig. 5 (C to E), which indicate that magnons travel different distanc-
es in the same period of time. Without the magnetic frustration, the
fictitious magnetic field would cause only deflection of the incident
direction but not result in any kind of wave number change. Now
that the scattering process is dispersive, there must be a multiple
scattering phenomenon of magnons, whether it is strong or weak
(the red trajectory in Fig. 5C shows a magnon scattered multiple
times). This introduces another kind of nonlinearity into the
system, which is necessary for constructing a neural network.

Neural network with meta-learning
The scattering process of magnons by hopfion can be seen as the
nonlinear mapping layer of a physical neural network. The input
and output signals are stored respectively in the incoming and out-
going magnons. As shown in Fig. 6A, the input signal {a1, …, an} is
encoded in the amplitudes of n discrete frequencies {ω1,…, ωn} care-
fully chosen from the whole spectrum. In this notation, an

Fig. 5. Frequency dependence of magnon scattering. (A) Velocities of hopfions driven by CCW-C waves at different frequencies. The red points denote the values of
the velocities obtained frommicromagnetic simulation for frequencies from 220 to 560 GHz in a step of 20 GHz. The blue line is the velocity calculated from themagnon-
hopfion interactionmodel. Both of them are projected onto the yz plane to show their relative position from the side view. (B) Emergentmagnetic field F of a hopfion. The
isosurfaces of ∣F∣with values of 0.2, 0.4, 0.6, and 0.8 are exhibited in an increasing depth of blue. The direction of F on the equatorial plane in each shell is represented by a
chain of yellow cones. (C to E) Paths of certainmagnons in the real space for three specifically selected frequencies. Thewave number k and the frequencyω are labeled at
the top of each figure. The color depth of a isosurface indicates the magnitude of ∣F∣. The magnitude of the field F on these isosurfaces is no more than it is required to
reflect all the magnons. The gray trajectories with arrows on them are the paths of magnons, which are scattered by the field. Some of them are painted red to distinguish
themselves from their neighbors. The positions of these arrows are a snapshot of all the outgoing magnons at the same simulation time.
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oscillating spin experiencing the incident spin waves can be ex-
pressed as ψðtÞ ¼

P
k akexpiðωkt þ φkÞ, where ak and φk are respec-

tively the amplitude and phase of each frequency. Both {ak} and {φk}
vary relatively slowly compared to ωkt. When a magnon tries to
cross the hopfion region, it is scattered by the fictitious magnetic
field and has a probability of entering the detection area. The
magnon detector can detect the scattering spectrum at a certain
region so that the oscillating macrospin in this region can be de-
scribed as ψ0ðtÞ ¼

P
k a
0
kexpiðωkt þ φ0kÞ. The output signal

fa01; . . .; a0ng can be then extracted from it using the Fourier trans-
formation. The nonlinearity of magnon scattering originates from
the magnon interaction arising from the frustrated exchange as well
as the multiple scattering phenomenon, leading to frequency

interference. If the amplitude of each frequency is seen as a
neuron in a neural network, the scattering process will function
as the synaptic connections between these neurons (see Fig. 6B).
To summarize the argument, the scattering process is appropriate
for the role of signal mapping pertaining to a neural network.

Meta-learning requires the training of hyperparameters in a
neural network, which here corresponds to the modulation of the
scattering pattern (19, 49, 50). Note that the pattern is determined
by the state parameters of the hopfion ω, i.e., the degrees of freedom
related to the omnidirectional motion, in the way pointed out in the
previous analysis of magnon scattering. The magnon scattering at a
certain frequency mainly happens at the corresponding isosurface
of the hopfion (see Fig. 6B), whose position and altitude vary

Fig. 6. Meta-learning neural network based on magnon scattering by a hopfion. (A) Schematic of the meta-learning neuromorphic device. The process of magnon
scattering by the hopfion is used to implement the neural network. Carrying the input signal shown in the left frequency spectrum, magnons are injected into the device
through the injector antenna. The scattered magnons are received at the detector antenna and are decoded to the right spectrum to obtain the output signal in arbitrary
units (a.u.). (B) Correspondence between the neural network nodes and the isosurfaces of the hopfion. The amplitude of magnons of each frequency can be seen as a
node in a neural network. The connections between nodes can be treated as the scattering spectrum of magnons. The connections starting from the same node can be
seen as an isosurface of the hopfion. (C) Flowchart of the meta-learning framework. The blue dashed circle denotes the meta-learning step, and the red dashed circle
denotes the linear regression step. (D) Normalized loss function (loss ratio) convergence curves for the test task. The red line represents the test without meta-learning.
The green line represents the test with meta-learning. (E) Prediction result for the test task without and with the multitask training. Normalized root mean square error
(NRMSE) is used to estimate the prediction accuracy. (F and G) Our device performs so well in complex time series tasks that the NRMSE reaches 0.028 for (F) the periodic
signal and 0.041 for (G) the Lorenz-like chaotic time series.
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simultaneously with those of the hopfion. According to our achieve-
ment of omnidirectional motion, these state parameters can be dy-
namically tuned by the polarizations of two spin-wave sources.
Hence, the network can be trained by controlling the polarization
of spin-wave sources. The training process can be visualized as the
hopfion drawing a trajectory in the magnet until it eventually settles
down at a specific position. In conclusion, a direct scattering
problem is formulated to show how the state parameters of the
hopfion determine the network mapping function. The remaining
task is to solve the corresponding inverse scattering problem, which
is accomplished in the Supplementary Materials using state space
searching combined with numerical simulation.

The flowchart of a practical meta-learning framework is shown
in Fig. 6C. Given an input signal s(t) and target signal o(t) (note that
t here varies slowly with respect to the oscillating frequency of
magnon), the framework will learn to build a temporally variant
neural network to obtain a prediction signal ~ot in the following
way. In the input layer of the physical neural network, st is
encoded into the frequency spectrum of the incident waves {a1,
…, an}. Then, it is mapped by the nonlinear scattering process to
the spectrum of the scattered waves fa01; . . .; a0ng, which is
decoded and transformed into a vector pt. The final prediction
value ~ot is produced by the output layer through a linear transfor-
mation ~ot ¼ wT

outpt , where wout is the weights of the output layer.
After the prediction value is compared with the standard signal,
the back propagation is carried out with two levels of optimization.
The two levels are represented in Fig. 6C by a red dashed circle and a
blue dashed circle, respectively. The first level is to optimize wout
with a fixed ω using linear regression. It aims to find the linear com-
bination of pt closest to the target signal ot (39, 40). This level of
optimization is analogous to regular training in a traditional
neural network (48). The second is to train the hyperparameter ω
as well as φi for meta-learning (19). In this level, the nonlinear
mapping is adjusted by controlling the hopfion’s state through
the phases of magnons. Once ω is selected, woutwill be immediately
optimized to produce the minimum prediction error, which is then
used to estimate the performance of ω. In conclusion, the first level
is used to estimate the performance of the meta-learning by match-
ing the output values with the target signal, while the second level is
used to search for the optimal mapping function, which can be ob-
served as a specific trajectory of hopfion.

Our framework meets the requirements of meta-learning. Its
meta-learning performance can be verified in multitask scenario
(19). The training task family consists of four trigonometric
signals, sin t; cos t; 12 sin 2t þ 1

2 cos t; sin 3t
� �

; the neural network
will learn the four tasks for meta-training. After that, we set a test
task, 23 sin 3t þ 1

3 cos t þ
1
3 cos 5t �

1
3 sin 4t, to test the learning capa-

bility of the meta-trained neural network. The learning results with
and without meta-training by task family are compared and shown
in Fig. 6 (D and E). To visualize the learning speed of the neural
network, we plot the loss function convergence curves for the test
tasks in Fig. 6D. The test noted as Task B (TB) (neural network with
meta-training) takes less time for the loss function to decline than
Task A (TA) (neural network without meta-learning), indicating
that our neural network has been adjusted to a state more suitable
for trigonometric signal prediction after learning similar tasks. To
characterize the prediction accuracy, the normalized root mean
square error (NRMSE) is used as a metric. From Fig. 6E, we can

see that the prediction accuracy of the test task is improved as
well, indicating that the experience of learning task family can
help improve the prediction accuracy in the test task. As a
summary, both the learning speed and the prediction accuracy
become higher after meta-training by multitasks, demonstrating
the meta-learning performance in multitask scenario. The perfor-
mance of our network is also estimated for complex learning tasks.
The results of numerical experiments show that the hopfion-based
meta-learning network has a strong learning capability when using
meta-learning (19, 49, 50). It can be seen from Fig. 6 (F and G) that
the accuracy reaches a high level not only for a periodic scalar signal
but even a chaotic vectorial signal, which is regarded as a touchstone
for neural networks. Our device successfully eliminates the complex
physical links between nodes in traditional neural network imple-
mentation, allowing us to create a high-density neural network with
meta-learning.

DISCUSSION
Here, we first study the polarization-dependent motion of a hopfion
and the frequency-dependent scattering of magnons by a hopfion.
We unveil the hopfion-driving effect of spin-wave polarization by
associating it with the Hall angle of the hopfion. The relationship
is so simple that it enables efficient programming of a hopfion’s tra-
jectory. In light of this, we devised a way to achieve omnidirectional
motion in 3D space. A series of trajectories are constructed step by
step in ascending order of complexity: first, a circle with its tangent
velocity limited in a coordinate plane; second, a helix with an extra
velocity perpendicular to that plane; third, a Chinese knot as a
natural extension to the helix; and lastly, a trefoil knot involving om-
nidirectional motion. We further propose a linear model for pre-
dicting magnon-driven velocities for different solitons, and it has
been confirmed by the frequency dependence of the hopfion’s
motion. Under the eikonal approximation, spin waves are dealt
with as particles moving in the emergent magnetic field, and the
motion of a soliton is understood as a phenomenon of momentum
exchange between these particles and the soliton. Our model high-
lights the wave-particle duality of spin waves and can explain the
results of frequency dependence well.

On the basis of these mechanisms, we propose amethod for neu-
romorphic computing using the omnidirectional motion of a
hopfion and nonlinear magnon-hopfion scattering. The states of
neuron nodes in the neural network, including the input signals,
are encoded into the frequency distribution of magnons, and the
connections between these neurons are built into the scattering of
magnons. The frequency distribution has intrinsically infinite
degrees of freedom, permitting a high connection density. The non-
linearity of the scattering process meets the requirements of neuro-
morphic computing. The meta-learning is realized by using the 3D
omnidirectional motion of the hopfion. During the network train-
ing, the position of the hopfion is tuned to generate the proper scat-
tering pattern, which results in the optimal network
hyperparameters. In this way, our design circumvents the problems
in the way of conventional neuromorphic devices, such as the con-
nection density bottleneck and hardwired neural network structure.
The whole neural network is now implemented with a single device
instead of an array of elementary units. As the device is scaled down
greatly, the power consumption is reduced to a large extent as well.
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Last, the structures of hopfions are reminiscent of proteins or
DNA in structural biology. Hopfions have knot-like structures,
and it can be very complicated for them to consist of more than
one loop. Their knot-like structure reminds us of peptides in a
protein or DNA for their topological equivalence to intertwining
strings. The exchange interaction can be used to glue spins from
different parts of a hopfion together, playing the same role as hydro-
gen bonds play in forming the secondary structure of a biomacro-
molecule. In some situations, the magnetic interaction becomes as
strong as the bonds of amino acid side chains in a protein, on which
a complex 3D shape or, in terms of structural biology, “tertiary
structure” is built. It has been confirmed decades ago that the func-
tional diversity of proteins is closely connected with their structural
complexity, implying a great potential of hopfions in achieving
complex logic operations. Our work on precise manipulation of
hopfions is the first step to fulfilling this potential, and it opens
the door to the possibility of biological-like information processing
in the future.

METHODS
Micromagnetic simulation
We use MuMax3 (41) for micromagnetic simulation. MuMax3 is
built on the finite-difference method for solving the Landau-Lif-
shitz-Gilbert equation. To simulate a frustrated antiferromagnets,
the energy functional is

E ¼
jMm j2

2χ
þ

1
2
A@μn � @μn �

1
4
Bμν@2μn � @

2
νn �

1
2
Kzn2z ð9Þ

where M is the magnetization of either sublattice, m is the unit
vector of the net magnetization, χ is the magnetic susceptibility,
and n is the Neel field or the staggered magnetization. In general,
m ¼ ðχJ=M2Þn� ṅ, where J is the spin density of either sublattice.
The material parameters A, B, and Kz are the second-order ex-
change stiffness, the fourth-order exchange stiffness, and the anisot-
ropy energy, respectively. These parameters are configured as
follows: A = 1 × 10−14 J · m−1, Kz = 1 × 104 J · m3, and Bμν is a
scalar with the value of 3.1 × 10−32 J · m. The high-order exchange
interaction is discretized and added as a custom-effective field. For a
scalar Bμν, the custom field in the grid point i looks like

Hi
B ¼ B

X

j[N1
i
mi �mj � 4B

X

j[N4
i
mi �mj ð10Þ

where mi( j) stands for the unit vector of spin at cell i( j), and Nk
i

denotes the set of the kth nearest neighbors of i. The source code,
which is originally published in (42), is shown in the Supplementary
Materials with detailed comments.

Measurement of the displacement of a hopfion
The displacement of hopfions is measured by applying the phase
correlation algorithm to the z component of magnetization. The ro-
tation angle of hopfions, thanks to the rotational symmetry of torus-
like hopfions, can be simply extracted from the change in the azi-
muthal angle of spin, where the north pole is defined as the positive
direction of the z axis.

Supplementary Materials
This PDF file includes:
Sections S1 to S5
Figs. S1 to S10
References
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manuscript includes the following:
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