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Abstract

Background: Non-random selection of analytic subsamples could introduce selection

bias in observational studies. We explored the potential presence and impact of selection

in studies of SARS-CoV-2 infection and COVID-19 prognosis.

Methods: We tested the association of a broad range of characteristics with selection

into COVID-19 analytic subsamples in the Avon Longitudinal Study of Parents and Children

(ALSPAC) and UK Biobank (UKB). We then conducted empirical analyses and simulations to

explore the potential presence, direction and magnitude of bias due to this selection (relative

to our defined UK-based adult target populations) when estimating the association of body

mass index (BMI) with SARS-CoV-2 infection and death-with-COVID-19.

Results: In both cohorts, a broad range of characteristics was related to selection, some-

times in opposite directions (e.g. more-educated people were more likely to have data on

SARS-CoV-2 infection in ALSPAC, but less likely in UKB). Higher BMI was associated with

higher odds of SARS-CoV-2 infection and death-with-COVID-19. We found non-negligible

bias in many simulated scenarios.

Conclusions: Analyses using COVID-19 self-reported or national registry data may be bi-

ased due to selection. The magnitude and direction of this bias depend on the outcome

definition, the true effect of the risk factor and the assumed selection mechanism; these

are likely to differ between studies with different target populations. Bias due to sample

selection is a key concern in COVID-19 research based on national registry data, espe-

cially as countries end free mass testing. The framework we have used can be applied by
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other researchers assessing the extent to which their results may be biased for their

research question of interest.
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Introduction

Analyses using large-scale observational studies are often

conducted on non-random subsamples of the target popu-

lation—the group that inferences are to be made about1—

e.g. due to non-random study recruitment or loss to fol-

low-up.2,3 Selection bias can occur when the study sample

does not represent the target population and therefore

affects the external validity of the causal effect (i.e. the true

causal effect in the study sample is different from the true

causal effect in the target population).1 Additionally, when

both the exposure and outcome (or a cause of these) influ-

ence the probability of being selected (from the study sam-

ple) into the analytical sample, selection-induced collider

bias can occur.2,3 This can induce an association between

the exposure and outcome when none exists in the whole

sample, or attenuate, inflate or reverse the estimated effect

of the exposure on the outcome in the selected subsam-

ple.4,5 Confounding can also be present in an observational

study and can also attenuate, inflate or reverse the esti-

mated effect of the exposure on the outcome in the analyti-

cal sample. Both confounding and selection can be present

(as is likely in our examples), affecting the internal validity

of the causal effect (i.e. the causal effect estimated in the

analytical sample is different from the true causal effect in

the study sample).1

Selection bias may be a particular cause for concern in

research investigating determinants of SARS-CoV-2 infec-

tion or COVID-19 prognosis. These studies frequently rely

on samples of individuals who volunteered to participate

in COVID-19 substudies, were tested for SARS-CoV-2 in-

fection or were admitted to a hospital. Furthermore, mis-

classification of cases and non-cases of SARS-CoV-2

infection due to selection (which we refer to as selection-

induced misclassification bias) is another key potential

source of bias. This may occur in studies using ‘popula-

tion-based comparison groups’ in which all individuals

that are not known cases (including those with missing

data on infection status) are included in the comparison

group.6–9 As an example, the COVID-19 Host Genetics

Initiative, a large-scale collaboration focused on under-

standing genetic determinants of SARS-CoV-2 infection or

COVID-19 prognosis, uses ‘population-based comparison

groups’.6 However, little attention has been given to poten-

tial implications of these definitions.

We aimed to explore selection-induced collider and mis-

classification bias when estimating the association of risk

factors for SARS-CoV-2 infection and the prognostic fac-

tors of COVID-19, using data from two UK cohort studies,

and both empirical analyses and simulations.

Methods

Prospective cohort studies

Avon Longitudinal Study of Parents and Children

The multigenerational Avon Longitudinal Study of Parents

and Children (ALSPAC) birth cohort initially recruited

14 541 pregnancies (�75% response of eligible women),

who gave birth to 14 062 children in the former county of

Avon in the Southwest of England in 1991–1992.10,11

Mothers and children have been followed up with regular

assessments. When the oldest children were 7 years old, a

further 913 eligible children (also born in the Southwest of

England in 1991–1992) were enrolled;12 14 849 of the index

children (aged 29–31 years at the most recent follow-up)

Key Messages

• Observational studies assessing the association of risk factors with health outcomes are often restricted to a much

smaller subsample of the original cohort, which could result in a non-random sample of the target population and

therefore spurious associations.

• Our results demonstrate that, in studies of SARS-CoV-2 infection and COVID-19 prognosis, selection into analytical

subsamples can induce non-negligible bias.

• Researchers should conduct sensitivity analyses and simulations to explore the robustness of their results to different

selection mechanisms.

• We provide a framework that is applicable beyond COVID-19 research.
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who were alive at 1 year old and had not withdrawn from

ALSPAC were eligible for analyses. Ethical approval was

obtained from the ALSPAC Ethics and Law Committee and

the local research ethics committees under project B3543.

From April 2020, participants were sent four question-

naires to collect self-reported information relevant to the

COVID-19 pandemic and its consequences, including

COVID-19 status, behavioural, lifestyle and health-related fac-

tors.13–17 Our analyses focus on the first COVID-19 question-

naire (Q1), sent between 9 April and 14 May 2020.13 SARS-

CoV-2 infection was ascertained by asking participants ‘Do

you think that you have, or have had, COVID-19?’, where

participants could respond (a) yes, confirmed by a positive

test; (b) yes, doctor’s suspicion; (c) yes, own suspicion; or (d)

do not think they had COVID-19. Of the 14 849 eligible par-

ticipants, 2966 responded to that question (Supplementary

Figure 1a, available as Supplementary data at IJE online).

We define our target population as young adults (aged

20–40 years in March 2020) resident in the UK during the

COVID-19 pandemic. SARS-CoV-2 infection [‘SARS-

CoV-2(þ)’] was defined as participants who responded ei-

ther ‘a’, ‘b’ or ‘c’ to the above question.13 Two control

groups were defined: (i) participants who responded ‘d’

[‘SARS-CoV-2(�)’] and (ii) those who responded ‘d’ or did

not respond to that question or did not receive or return

the questionnaire (‘everyone else’). COVID-19 prognosis

could not be studied in ALSPAC as this was not assessed in

Q1 and death registry data were not available.13

UK Biobank

UK Biobank (UKB) recruited 503 317 UK adults (aged

37–73 years) from 22 centres across England, Wales and

Scotland from 2006 to 2010 (5.5% response rate).18

Participants attended baseline assessment centres and follow-

up data were obtained from (limited) clinics and question-

naires, and linkage to national registries.18,19 We used data

from baseline with linked hospital episode statistics, mortal-

ity statistics and Public Health England test results for active

SARS-CoV-2 infection. UKB provided ethical approval for

UKB project 16729; 421 037 participants who were residents

in England at baseline and alive on 1 January 2020 were eli-

gible for analyses (Supplementary Figure 1b, available as

Supplementary data at IJE online).

We define our target population as middle-aged and el-

derly adults (aged 40–70 years in March 2020) resident in

the UK during the COVID-19 pandemic. SARS-CoV-2 in-

fection [‘SARS-CoV-2(þ)’] was defined as either a positive

polymerase chain reaction (PCR) test or COVID-19

recorded on a death certificate between 1 January and 18

May 2020. This cut-off date was chosen as it was the day

mass testing became available.20 COVID-19 deaths were

defined using International Classification of Diseases 10th

revision (ICD-10) codes U07.1 (laboratory-confirmed

COVID-19) and ICD-10 code U07.2 (a clinical or epidemi-

ological diagnosis of COVID-19).21 Two control groups

were defined: (i) participants with a negative PCR test

[‘SARS-CoV-2(�)’] and (ii) participants with a negative

PCR test or no PCR test record (‘everyone else’).

COVID-19 prognosis was defined using COVID-19

deaths. COVID-19 could be either the primary or contrib-

utory cause of death (i.e. they could have died ‘from’

COVID-19 or ‘with’ COVID-19). We therefore refer to

‘death-with-COVID-19’ throughout. Control groups for

death-with-COVID-19 were defined as: (i) SARS-CoV-

2(þ) participants who did not die with COVID-19 and (ii)

SARS-CoV-2(þ) participants who did not die with

COVID-19, or SARS-CoV-2(�) or untested participants.

Statistical analyses

Association of candidate predictors of selection and

SARS-CoV-2 infection

In both cohorts we used univariable logistic regression to

test whether a wide range of characteristics predicted being

selected into the analytical subsample (i.e. having data on

SARS-CoV-2 infection compared with having no data, re-

ferred to as ‘assessed’ vs ‘non-assessed’). These characteris-

tics included socio-demographic (deprivation indices and

education), behavioural (alcohol intake and smoking) and

health-related [pre-existing conditions, body mass index

(BMI) and blood pressure] factors (Supplementary Table 1,

available as Supplementary data at IJE online). Individuals

were included if they had complete data on the variable un-

der analysis, so the sample in each analysis differs.

Association of BMI with SARS-CoV-2 infection and

death-with-COVID-19

We used multivariable logistic regression comparing

SARS-CoV-2(þ) with the two control groups, adjusting for

age, sex, smoking status, educational attainment and dep-

rivation indices (Index of Multiple Deprivation in ALSPAC

and Townsend deprivation index in UKB). Individuals

with complete data on BMI, COVID-19 outcomes and

covariates were included.

Simulation study exploring bias in empirical estimate

We performed two simulation studies and below use the

aims, data-generating mechanisms, estimands, methods

and performance measures (ADEMP) approach to report

these simulations.22

Simulation A: Examining the bias in estimating the associ-

ation of BMI with assessed as positive for SARS-CoV-2
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infection. Aim: Assess the bias that may occur when esti-

mating the association of BMI with SARS-CoV-2 infection

(conditional on confounders) when only a subsample of

participants has a SARS-CoV-2 infection assessment.

Data-generating mechanism: The data-generating mecha-

nism was based on the directed acyclic graph (DAG) shown in

Figure 1a. We simulated data-set sample sizes of 14 849

(ALSPAC), and 421 037 (UKB) to reflect the empirical data.

Parameters of the models used to generate the simulated data

were based on estimated values from ALSPAC and UKB, and

statistics from the published literature (Supplementary Sections

1 and 2, and Supplementary Tables 4 and 5, available as

Supplementary data at IJE online). We repeated the simula-

tions assuming (i) no effect of BMI on SARS-CoV-2 infection

and (ii) a strong effect (OR¼3) of BMI on SARS-CoV-2 infec-

tion. Selection in Simulation A was defined as participants

who were assessed for SARS-CoV-2 infection. We induced se-

lection bias by including an additive interaction effect on the

log probability scale of BMI with SARS-CoV-2 infection on se-

lection (Supplementary Sections 1, 2 and 4, available as

Supplementary data at IJE online). We simulated three scenar-

ios to induce different magnitudes of selection bias, with the

following effect of BMI and SARS-CoV-2 infection on selec-

tion: (i) no interaction (main effects only on the log probability

scale), (ii) ‘plausible’ interaction effect [log risk ratio

(RR)¼0.0527 in ALSPAC- and –0.162 in UKB-based scenar-

ios] and (iii) ‘extreme’ interaction effect (log RR¼0.135 in

ALSPAC- and –0.245 in UKB-based scenarios). For each of

these scenarios, the main effect and intercept were adjusted

such that the total effect of BMI and SARS-CoV-2 infection on

the selection remained constant (Supplementary Section 4,

available as Supplementary data at IJE online).

Figure 1 Directed acyclic graphs depicting assumed causal models for empirical and simulation scenarios. (a) SARS-CoV-2 infection. Dashed lines in-

dicate the causal effect we are estimating. Simulations based on Avon Longitudinal Study of Parents and Children (ALSPAC) and UK Biobank (UKB)

data. Participants were assessed (and hence selected) if they reported whether they have had a SARS-CoV-2 infection in ALSPAC or had a SARS-

CoV-2 polymerase chain reaction (PCR) test result in UKB. (b) Death-with-COVID-19. Dashed lines indicate the causal effect we are estimating.

Simulations based on UKB data only. Participants were selected if they were assessed [as in (a)] and tested positive or if they died with COVID-19. An

arrow from Node A to Node B in a directed acyclic graph (DAG) indicates that A is a direct cause of B (i.e. A affects B not only through another node

in the DAG). DAGs do not describe ‘how’ this effect occurs, i.e. the specific model describing this relationship, including whether nodes interact in

their effects. For example, in DAG (b), infection is a direct cause of death-with-COVID-19 as a person can only die with COVID-19 if they are infected.

Thus, infection interacts with all other direct effects of death-with-COVID-19. For example, smoking directly affects the risk of dying with COVID-19

only among those with a SARS-CoV-2 infection (i.e. the effect of smoking on death-with-COVID-19 depends on SARS-CoV-2 infection status). BMI,

body mass index; SEP, socio-economic position.

International Journal of Epidemiology, 2023, Vol. 52, No. 1 47

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac221#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac221#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac221#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac221#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac221#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac221#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac221#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac221#supplementary-data


Target estimand: The odds ratio (OR) of SARS-CoV-2

infection per SD increase in BMI, conditional on confound-

ers (but not conditional on selection).

Methods: We evaluated two outcome definitions to esti-

mate the association of BMI with SARS-CoV-2 infection

using logistic regression:

i. SARS-CoV-2(þ) vs SARS-CoV-2(�);

ii. SARS-CoV-2(þ) vs ‘everyone else’ [i.e. SARS-CoV-

2(�) and non-assessed].

We used Wald-type confidence intervals on the log odds

scale with the standard error (SE) taken from the inverse

estimated information matrix.

Performance measure: We estimated the bias (and

Monte Carlo SE; MCSE) of the estimated effect of BMI on

SARS-CoV-2 infection compared with the true value (for

each of the above methods). We estimated the confidence

interval coverage (the proportion of repetitions where the

confidence intervals included the true value). These perfor-

mance measures were estimated across 1000 simulation

repetitions (Supplementary Section 5, available as

Supplementary data at IJE online).

Simulation B: Examining the bias in estimating the associa-

tion of BMI with death-with-COVID-19. Aim: Assess bias

due to selection in estimates of the association of BMI with

death-with-COVID-19 (recalling that Simulation A consid-

ered infection).

Data-generating mechanism: The data-generating mecha-

nism was based on the DAG shown in Figure 1b. The con-

founders, BMI, SARS-CoV-2 infection and being assessed

(selection in Simulation A) were generated as described in

Simulation A. Selection in Simulation B was defined as par-

ticipants who were either assessed and were SARS-CoV-

2(þ) or those who died with COVID-19. As in Simulation

A, model parameters used were either estimated in UKB or

extracted from published literature (Supplementary Section

1 and Supplementary Tables 4 and 5, available as

Supplementary data at IJE online). We repeated the simula-

tion assuming: (i) no effect of BMI on death-with-COVID-

19 and (ii) OR¼3 effect of BMI on death-with-COVID-19.

Further details are provided in Supplementary Sections 1–4

and Supplementary Tables 4 and 5 (available as

Supplementary data at IJE online).

Target estimand: OR of death-with-COVID-19 per SD

increase in BMI, conditional on confounders and having a

SARS-CoV-2 infection (but not conditional on being

assessed).

Methods: We evaluated two outcome definitions to esti-

mate the association of BMI with death-with-COVID-19

using logistic regression:

i. Died with COVID-19 vs SARS-CoV-2(þ) who did not

die with COVID-19;

ii. Died with COVID-19 vs ‘everyone else’.

Performance measure: We assessed bias, MCSE and

coverage compared with the true value.

Analyses were performed in R version 3.5.1 or Stata

version 15 and analysis code is available at https://

github.com/MRCIEU/COVIDITY_selbias/. Git tag v0.1

corresponds to the version of the analyses presented here.

Results

Sample characteristics

ALSPAC

In total, 2966 out of 14 849 ALSPAC participants were

assessed for COVID-19; 72% of them (2122) were females

with a mean age of 27.6 years (SD¼ 0.54) (Supplementary

Table 2A, available as Supplementary data at IJE online).

With the exceptions of age and sex, all candidate predictors

of selection had some missing data (range 11–74%;

Supplementary Table 3, available as Supplementary data at

IJE online).

UKB

In total, 4869 out of 421 037 participants in UKB were

assessed for COVID-19; 51% of them (2496) were female

with a mean age of 57.1 years (SD¼8.9) (Supplementary

Table 2B, available as Supplementary data at IJE online). One

per cent of participants had a recorded SARS-CoV-2 test or

death, where 30% of the tests were positive (Supplementary

Table 2B, available as Supplementary data at IJE online). Few

candidate predictors of selection had missing data

(Supplementary Table 3, available as Supplementary data at

IJE online).

Association between candidate predictors of

selection and SARS-CoV-2 infection

ALSPAC

Most of the candidate predictors of selection were associated

with being assessed (having self-reported data) for SARS-

CoV-2 infection compared with not being assessed. Females,

older participants, with higher education attainment, living in

non-urban areas, suffering from adverse mental health out-

comes and with higher BMI and diastolic blood pressure

were more likely to be assessed (e.g. OR¼3.29 for sex, 95%

CI: 3.01, 3.59). Non-White participants, current smokers

and those having a history of alcohol abuse, living in more

deprived areas and suffering from some autoimmune co-
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morbidities were less likely to be assessed (e.g. OR¼0.60 for

ethnicity, 95% CI: 0.47, 0.75) (Figure 2).

UKB

Except for diastolic blood pressure, all variables were asso-

ciated with being assessed (tested) for SARS-CoV-2

infection compared with not being assessed. Variables as-

sociated with a higher odds of being assessed included be-

ing older, reporting non-White ethnicity, being a former or

current smoker, having higher BMI and pre-existing condi-

tions (e.g. OR¼3.15 for a previous cardiovascular diagno-

sis, 95% CI: 2.96, 3.35). Females and participants living in

Figure 2 Forest plots of the association between the candidate predictors of selection and outcomes related to SARS-CoV-2 infection. ORs and their

95% CIs are shown for (a) categorical variables and (b) continuous variables. Estimates for continuous candidate predictors are per 1 SD for each pre-

dictor except for the Deprivation Index, which is given per 1 higher quantile. ALSPAC, Avon Longitudinal Study of Parents and Children; UKB, UK

Biobank; OR, odds ratio; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; GCSE, General Certification of

Secondary Education.
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a rural area and having higher educational attainment

were less likely to be assessed (e.g. OR¼0.75 for leaving

education with a degree or more compared with General

Certificate of Secondary Education or less, 95% CI: 0.70,

0.80) (Figure 2).

Association between BMI and SARS-CoV-2 infection

and death-with-COVID-19

ALSPAC

In multivariable models adjusted for age, sex, smoking, ed-

ucation and deprivation, per SD higher BMI, the OR for

SARS-CoV-2(þ) was 1.08 (95% CI: 0.96, 1.21) compared

with SARS-CoV-2(�) and 1.10 (95% CI: 0.98, 1.23) com-

pared with ‘everyone else’ (Figure 3). When stratifying by

sex, results were similar in females but imprecisely esti-

mated in males (Supplementary Figure 2a, available as

Supplementary data at IJE online).

UKB

BMI and risk of SARS-CoV-2 infection. In multivariable

models adjusted for age, sex, smoking status, educational at-

tainment and deprivation index, per SD higher BMI, the OR

for SARS-CoV-2(þ) was 1.09 (95% CI: 1.03, 1.16) com-

pared with SARS-CoV-2(�) and 1.26 (95% CI: 1.21, 1.32)

compared with ‘everyone else’ (Figure 3). When stratifying

by sex, results were similar between females and males

(Supplementary Figure 2b, available as Supplementary data

at IJE online).

BMI and risk of death-with-COVID-19. In multivariable

models (adjusted as above), per SD higher BMI, the OR for

death-with-COVID-19 was 1.16 (95% CI: 1.03, 1.31)

compared with SARS-CoV-2(þ) and 1.40 (95% CI: 1.27,

1.55) compared with ‘everyone else’ (Figure 3). When

stratifying by sex, point estimates were slightly higher in

females compared with males (Supplementary Figure 2b,

available as Supplementary data at IJE online).

Simulation results

All simulations using the confounder adjusted model in the

full sample (i.e. no selection) were unbiased (‘All partici-

pants, confounder adjusted’ in Tables 1 and 2), with cover-

age between 93.3% (MCSE¼0.79) and 95.8%

(MCSE¼6.3).

Simulations estimating the association of BMI with

SARS-CoV-2 infection and death-with-COVID-19

outcomes

ALSPAC

The results of our simulations of SARS-CoV-2 infection

based on ALSPAC are shown in Table 1 (histograms of

estimates shown in Supplementary Figure 3, available as

Supplementary data at IJE online).

Results for SARS-CoV-2(1) vs SARS-CoV-2(2) outcome

(selected subsample). As expected for analyses in the se-

lected subsample, when assuming independent effects of

BMI and SARS-CoV-2 infection on selection (i.e. no addi-

tive interaction on the log probability scale), estimates

were unbiased when assuming no effect of BMI on SARS-

CoV-2 infection (Supplementary Figure 4a, available as

Supplementary data at IJE online, illustrates why this is

the case for analyses using logistic regression).

Unexpectedly, when assuming an effect of BMI on SARS-

CoV-2 infection, we found positive bias. However, this

bias disappeared when increasing the sample size,

Figure 3 Forest plots of the association between BMI and COVID-19-related outcomes. In the ALSPAC cohort of young adults; SARS-CoV-2(þ) vs

SARS-CoV-2(�) N¼1915, SARS-CoV-2(þ) vs ‘everyone else’ N¼2983. In UKB; SARS-CoV-2(þ) vs SARS-CoV-2(�) N¼4662, SARS-CoV-2(þ)

vs ‘everyone else’ N¼409 487. Death-with-COVID-19 vs SARS-CoV-2(þ) not resulting in death-with-COVID-19 N¼1375, death-with-COVID-19

vs ‘everyone else’ N¼409 487. Models were adjusted for age, sex, smoking, education and proxies of socio-economic position. ‘Everyone else’ control

group includes those tested and SARS-CoV-2(�) and those not tested. BMI, body mass index; ALSPAC, Avon Longitudinal Study of Parents and

Children; UKB, UK Biobank; OR, odds ratio.
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suggesting it was due to near separation (when a combina-

tion of covariates almost perfectly predicts the out-

come)23,24 rather than bias due to use of a non-random

subsample (see Supplementary Table 8, available as

Supplementary data at IJE online). In the scenarios with an

interaction effect of BMI and SARS-CoV-2 infection on be-

ing assessed, bias was positive and strengthened as the

magnitude of the interaction increased.

Results for SARS-CoV-2(1) vs ‘everyone else’ outcome

(whole sample). When there was no interaction in the

effects of BMI and SARS-CoV-2 infection on being

assessed (i.e. in the presence of misclassification bias only),

bias was positive when there was no effect of BMI on

SARS-CoV-2 infection [expected ORs of

exp(0.0213)¼1.02 compared with a true odds ratio of 1]

but negative when there was an effect fexpected

ORs¼exp[ln(3)–0.0802]¼2.77 compared with a true

OR¼3g. When there was an interaction in the effects of

BMI and SARS-CoV-2 infection on being assessed, bias be-

came less negative/more positive with increasing magni-

tude of the (positive) interaction (i.e. increasing amounts of

selection bias in addition to misclassification bias). For il-

lustration, assuming BMI does not affect SARS-CoV-2 in-

fection, we estimated a mean bias of 1.06 for the plausible

interaction effect size and 1.13 for extreme interaction ef-

fect size.

Coverage varied greatly depending on the scenario,

ranging between 36.9% and 94.8% for the SARS-CoV-

2(þ) vs SARS-CoV-2(�) outcome, and between 29.7 and

93.3% for the SARS-CoV-2(þ) vs everyone outcome.

UKB

The results of our simulations of SARS-CoV-2 infection

based on UKB data are shown in Table 2a (histograms of

estimates shown in Supplementary Figure 5a, available as

Supplementary data at IJE online) and those of death-

with-COVID-19 are shown in Table 2b (histograms of

Table 1 Results of simulations of SARS-CoV-2 infection based on the Avon Longitudinal Study of Parents and Children

(ALSPAC)

Bias (MCSE) or coverage (MCSE) of estimated effect

of BMI on SARS-CoV-2 infection

SARS-CoV-2(þ) vs SARS-CoV-2(�) SARS-CoV-2(þ) vs ‘everyone else’

Performance measure Effect of BMI on

SARS-CoV-2 infection

Interaction size of

effect of BMI with

SARS-CoV-2

infection on selection

All participants,

confounder adjusted

Selected subsample,

confounder adjusted

All participants

Bias OR¼1 No interaction �0.0017 (0.0010) �0.0002 (0.0019) 0.0213 (0.0016)

Plausible 0.0001 (0.0010) 0.0517 (0.0018)$ 0.0595 (0.0015)

Extreme 0.0001 (0.0010) 0.1343 (0.0019) 0.1194 (0.0015)

OR¼3 No interaction �0.0001 (0.0012) 0.0090 (0.0024) �0.0802 (0.0017)

Plausible 0.0018 (0.0012) 0.0652 (0.0024) �0.0353 (0.0016)

Extreme 0.0018 (0.0012) 0.1479 (0.0025) 0.0283 (0.0016)

Coverage OR¼1 No interaction 0.945 (0.0072) 0.944 (0.0073) 0.922 (0.0085)

Plausible 0.958 (0.0063) 0.851 (0.0113) 0.761 (0.0135)

Extreme 0.958 (0.0063) 0.369 (0.0153) 0.297 (0.0144)

OR¼3 No interaction 0.954 (0.0066) 0.948 (0.0070) 0.667 (0.0149)

Plausible 0.955 (0.0066) 0.886 (0.0101) 0.914 (0.0089)

Extreme 0.955 (0.0066) 0.543 (0.0158) 0.933 (0.0079)

Bias given is the difference in the estimated vs true effect (log odds ratio) of BMI on SARS-CoV-2 infection. Coverage is the proportion of simulation repetitions

with confidence intervals containing the true effect. Sample sizes: all N¼ 14 849; selected subsample n � 1450. Interaction magnitudes: no interaction: log risk ra-

tio (RR)¼0; plausible interaction: log RR¼ 0.135; extreme interaction: log RR¼ 0.135.

Example biases: A bias of 0.0517$ when no effect of BMI on SARS-CoV-2 infection (plausible scenario) is equivalent to an estimated odds ratio of 1.05 per 1-

SD higher BMI (compared with true odds ratio¼ 1). Results shown in bold are those with concerning bias or coverage, defined as absolute bias >0.1, or coverage

<0.8.

For reference, in the column ‘All participants, confounder adjusted’, we present results in which no bias would be expected based on a scenario simulated with

no missing data and with regression models fully adjusted for confounders.

Histograms of simulation results are shown in Supplementary Figure 3 (available as Supplementary data at IJE online). Full results including unadjusted associ-

ations are given in Supplementary Table 6 (available as Supplementary data at IJE online).

BMI, body mass index; OR, odds ratio; MCSE, Monte Carlo standard error (across 1000 repetitions).
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Table 2 Results of simulations of SARS-CoV-2 infection and death-with-COVID-19 based on UK Biobank data

(a) Results of simulations estimating effect of BMI on SARS-CoV-2 infection

Bias (MCSE) or coverage (MCSE) of estimated effect

of BMI on SARS-CoV-2 infection

SARS-CoV-2(þ) vs SARS-CoV-2(�) SARS-CoV-2(þ)

vs ‘everyone else’

Performance

measure

Effect of BMI on

SARS-CoV-2

infection

Interaction size of

effect of BMI with

SARS-CoV-2

infection on

selection

All participants,

confounder

adjusted

Selected subsample,

confounder

adjusted

All participants

Bias OR¼ 1 No interaction 0.0001 (0.0003) 0.0020 (0.0013) 0.1637 (0.0012)

Plausible 0.0001 (0.0003) �0.1614 (0.0013)$ 0.0259 (0.0012)

Extreme 0.0001 (0.0003) �0.2440 (0.0014) �0.0386 (0.0012)

OR¼ 3 No interaction 0.0002 (0.0003) 0.0046 (0.0015) 0.0604 (0.0011)

Plausible 0.0001 (0.0003) �0.1599 (0.0015) �0.0702 (0.0011)

Extreme 0.0001 (0.0003) �0.2427 (0.0015) �0.1305 (0.0011)

Coverage OR¼ 1 No interaction 0.956 (0.0065) 0.961 (0.0061) 0.012 (0.0034)

Plausible 0.947 (0.0071) 0.030 (0.0054) 0.901 (0.0094)

Extreme 0.947 (0.0071) 0.000 (0.0000) 0.834 (0.0118)

OR¼ 3 No interaction 0.938 (0.0076) 0.950 (0.0069) 0.608 (0.0154)

Plausible 0.946 (0.0071) 0.072 (0.0082) 0.493 (0.0158)

Extreme 0.946 (0.0071) 0.002 (0.0014) 0.046 (0.0066)

(b) Results of simulations estimating effect of BMI on death-with-COVID-19

Bias (MCSE) or coverage (MCSE) of estimated effect

of BMI on death-with-COVID-19

Death-with-COVID-19 vs SARS-CoV-2(þ)

not resulting in death-with-COVID-19

Death-with-COVID-19 vs ‘everyone else’

Performance

measure

Effect of BMI on

death-with-COVID-19

Interaction size of

effect of BMI with

SARS-CoV-2

infection on selection

SARS-CoV-2(þ)

subsample,

confounder adjusted

SARS-CoV-2(þ) and

assessed subsample,

confounder adjusted

All participants

Bias OR¼ 1 No interaction �0.0013 (0.0017) �0.1652 (0.0022) �0.0018 (0.0016)

Plausible �0.0004 (0.0016) �0.0233 (0.0022) �0.0004 (0.0015)

Extreme �0.0004 (0.0016) 0.0423 (0.0022) �0.0004 (0.0015)

OR¼ 3 No interaction 0.0012 (0.0019) �0.1525 (0.0027) �0.1404 (0.0016)

Plausible 0.0016 (0.0018) �0.0100 (0.0028)# �0.1381 (0.0015)

Extreme 0.0016 (0.0018) 0.0564 (0.0028) �0.1381 (0.0015)

Coverage OR¼ 1 No interaction 0.951 (0.0068) 0.326 (0.0148) 0.945 (0.0072)

Plausible 0.952 (0.0068) 0.935 (0.0078) 0.957 (0.0064)

Extreme 0.952 (0.0068) 0.909 (0.0091) 0.957 (0.0064)

OR¼ 3 No interaction 0.933 (0.0079) 0.535 (0.0158) 0.204 (0.0127)

Plausible 0.953 (0.0067) 0.952 (0.0068) 0.190 (0.0124)

Extreme 0.953 (0.0067) 0.916 (0.0088) 0.190 (0.0124)

Simulations based on UK Biobank polymerase chain reaction (PCR) test results from national testing. Bias given is the difference in the estimated vs true effect

(log odds ratio) of BMI on (a) SARS-CoV-2 infection and (b) death-with-COVID-19. Coverage is the proportion of simulation repetitions with confidence inter-

vals containing the true effect.

Sample sizes: (a) All N¼ 421 027; selected subsample n � 18 000 and (b) SARS-CoV-2(þ) subsample N � 13 300K; SARS-CoV-2(þ) and assessed subsample

n � 1600; whole sample N¼ 421 037. Interaction magnitudes: no interaction: log risk ratio (RR)¼0; plausible interaction: log RR¼ 0.162; extreme interaction:

log RR¼ 0.245.

For reference, in the column ‘All participants, confounder adjusted’, we present results in which no bias would be expected based on a scenario simulated with

no missing data and with regression models fully adjusted for confounders. However, in the analyses of death-with-COVID-19 in Table 2(b), we may have bias in

the reference scenario (column ‘SARS-CoV-2(þ) subsample, confounder adjusted’) due to induced statistical interaction between death-with-COVID-19 and each

other determinant of selection.

Example biases: a bias of �0.1614$ when no effect of BMI on SARS-CoV-2 infection (plausible scenario) is equivalent to an estimated odds ratio of 0.85 per 1-

SD higher BMI (compared with true odds ratio¼ 1). A bias of 0.0564# when BMI effect on death-with-COVID-19 is OR¼ 3 is equivalent to an estimated odds ra-

tio of 3.17 (compared with true odds ratio¼3). Results shown in bold are those with concerning bias or coverage, defined as absolute bias>0.1, or coverage<0.8.

Histograms of simulation results are shown in Supplementary Figure 5 (available as Supplementary data at IJE online). Full results including unadjusted associ-

ations are given in Supplementary Table 7 (available as Supplementary data at IJE online).

BMI, body mass index; OR, odds ratio; MCSE, Monte Carlo standard error (across 1000 repetitions).
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estimates shown in Supplementary Figure 5b, available as

Supplementary data at IJE online).

Results for SARS-CoV-2(1) vs SARS-CoV-2(2) outcome

definition (selected subsample). Results for the ‘no interac-

tion’ scenario were similar to those in ALSPAC

(Supplementary Table 9, available as Supplementary data

at IJE online, for results with larger sample). In the scenar-

ios with an interaction effect of BMI and SARS-CoV-2 in-

fection on being assessed, we found negative bias (opposite

to ALSPAC because the interaction was in the opposite di-

rection) that strengthened as the interaction magnitude

increased.

Results for SARS-CoV-2(1) vs ‘everyone else’ outcome

definition (whole sample). Bias was positive when there

was no interaction in the effect of BMI and SARS-CoV-2

infection on being tested, i.e. with misclassification bias

only [e.g. expected ORs of exp(0.16)¼1.17 compared with

a true odds ratio of 1]. As the magnitude of the (negative)

interaction effect increased (i.e. increasing amounts of se-

lection bias in addition to misclassification bias), bias be-

came less positive/more negative [e.g. expected ORs of

exp(0.0259)¼1.03 and exp(–0.0386)¼0.96 for the plausi-

ble and extreme interaction effect sizes, compared with a

true odds ratio of 1].

As with the ALSPAC simulations, coverage varied

greatly depending on the scenario.

Results for death-with-COVID-19 vs SARS-CoV-2(1).

When assuming no interaction effect of BMI and SARS-

CoV-2 infection on being tested (but with an interaction of

death-with-COVID-19 with each other determinant of se-

lection), estimates had negative bias and poor coverage

[e.g. expected ORs of exp(–0.1652)¼0.85 compared with

a true odds ratio of 1 and 32.6% (MCSE¼1.48) coverage

when assuming no effect of BMI on death-with-COVID-

19]. When including an interaction, bias became more

positive and coverage improved [e.g. expected ORs of

exp(–0.0233)¼0.98 compared with a true odds ratio of 1

with 93.5% (MCSE¼0.78) coverage for the plausible sce-

nario with no effect of BMI on death-with-COVID-19].

Results for death-with-COVID-19 vs ‘everyone else’. We

found little evidence of bias and good coverage when there

was no effect of BMI on death-with-COVID-19 [e.g.

bias¼–0.0004 (MCSE¼0.0015), coverage¼95.7%

(MCSE¼0.64) for the ‘plausible’ interaction magnitude]

and negative bias with poor coverage when BMI affected

death-with-COVID-19 (OR¼3) across the different

interaction magnitudes [e.g. bias¼–0.1381

(MCSE¼0.0015), coverage¼19.0% (MCSE¼1.24) for the

‘plausible’ interaction magnitude].

In general, the comparison group with the least bias

(and hence better coverage) depended on the particular

assumptions used for the data-generating mechanism. For

example, when assuming no effect of BMI on SARS-CoV-2

infection and plausible interaction magnitude (for the ef-

fect of BMI and infection on selection), estimates of bias

were comparable in the scenario based on ALSPAC data

[bias¼0.0517 (MCSE¼0.0018) comparing SARS-CoV-

2(þ) to SARS-CoV-2(�) vs 0.0595 (MCSE¼ 0.0015) com-

paring SARS-CoV-2(þ) to ‘everyone else’]. In contrast, in

the scenario based on UKB, the SARS-CoV-2(þ) vs SARS-

CoV-2(�) (selected subsample only) outcome definition

had greater bias compared with the SARS-CoV-2(þ) vs

‘everyone else’ definition [bias¼–0.1614 (MCSE¼ 0.0013)

vs 0.0259 (MCSE¼0.0012)].

Bias-eliminated coverage were all near to 0.95 [bias-

eliminated coverage for all confounder adjusted estimates be-

tween 93.6% (MCSE¼ 0.77) and 96.3% (MCSE¼ 0.6)],

confirming that the poor coverage in some scenarios was

driven solely by bias (Supplementary Tables 6 and 7,

available as Supplementary data at IJE online).

Discussion

In this study, we investigated the potential impact of selec-

tion on the association between BMI and COVID-19 out-

comes using empirical analyses and simulations. In both

ALSPAC and UKB, a broad range of characteristics were

related to selection, sometimes in opposite directions (e.g.

more-educated participants were more likely to be assessed

for SARS-CoV-2 infection in ALSPAC but less likely in

UKB). In empirical analyses, estimates were imprecise in

ALSPAC but UKB analyses suggested that higher BMI was

associated with higher odds of SARS-CoV-2 infection and

death-with-COVID-19, and the magnitude tended to be

sensitive to the choice of comparison group. In simula-

tions, the magnitude and direction of bias estimated varied

widely depending on the specific data-generating mecha-

nism (e.g. the magnitude of the interacting effect on selec-

tion) and the comparison group used.

The simulation results can be used to assess the empiri-

cal results in the context of potential biases. For instance,

in UKB we estimated a larger positive association of BMI

on SARS-CoV-2 infection using the SARS-CoV-2(þ) vs

‘everyone else’ definition compared with SARS-CoV-2(þ)

vs SARS-CoV-2(�). We can compare this with the simula-

tion results when assuming an interacting effect of BMI
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and infection on selection (which we believe to be more

plausible than assuming no effect). Of these, results assum-

ing no effect of BMI on SARS-CoV-2 infection are incon-

sistent with the empirical results as they showed negative

bias, which would result in OR<1. In our simulation sce-

narios assuming a positive effect of BMI on SARS-CoV-2

infection (again assuming an interacting effect of BMI and

infection on selection) we found negative bias that was

smaller for the ‘everyone else’ compared with the SARS-

CoV-2(�) comparison group. This provides further sup-

port for a positive association between BMI and SARS-

CoV-2 infection, as a negative bias would mean the true ef-

fect is greater than the empirical estimates (i.e. further

from the null).

In general, the bias for the SARS-CoV-2 infection simula-

tions for both comparison groups [i.e. SARS-CoV-2(�) or

‘everyone else’] depended on the direction and magnitude of

the interaction effect of BMI and infection on selection. For

the ‘everyone else’ comparison group, differential selection-

induced misclassification, where the SARS-CoV-2(þ) non-

assessed participants were included in the comparison group,

means that the direction of the bias overall also depends on

the BMI and infection distributions and the effects of selec-

tion across these. Furthermore, for the death-with-COVID-

19 analyses, including all participants who died with

COVID-19 statistically induces an interaction between

death-with-COVID-19 and all other determinants of selec-

tion (e.g. BMI affects selection only in those who did not die

with COVID-19 such the BMI’s effect on selection is modi-

fied by death-with-COVID-19), which also induces bias in

the estimated effect of BMI on death-with-COVID-19. We

provide further details and intuition for these biases in

Supplementary Section 6 and Supplementary Figure 4 (avail-

able as Supplementary data at IJE online).

One of the strengths of this study lies in the use of two

cohorts with contrasting sources of COVID-19 data (from

questionnaires in ALSPAC and national registries in UKB). In

addition, we used simulation parameters based on either co-

hort data or other secondary sources to try to reflect realistic

scenarios. Key limitations include the fact that we were not

able to estimate all simulation parameters with certainty and

we focused solely on bias due to selective assessment of

SARS-CoV-2 and COVID-19 status. Although the latter was

motivated to illustrate the implications of selection bias due

to such selective assessment, multiple selection mechanisms

are likely to be simultaneously in place in studies exploring

causes and consequences of SARS-CoV-2 and COVID-19

disease, which might bias results. As an example, ALSPAC

has substantial loss to follow-up (41% were sent a question-

naire, of whom 57% returned it)25 and UKB has a low re-

cruitment rate (5.5%).

We have defined our target populations as young

(ALSPAC) and middle-aged and elderly (UKB) adults living

in England in March 2020. For this to be a valid target popu-

lation, we assume that young adults living in Avon and

middle-aged and elderly adults recruited into UKB are gener-

alizable to the UK in March 2020. The presence and/or mag-

nitude of selection bias inherently relies on the definition of

the target population. Different research questions using the

same study data may define a different target population or

may be subject to different selection pressures, which will be

subject to different biases due to sample selection.

Supplementary Section 7 (available as Supplementary data at

IJE online) explains further details and limitations.

Given the logistic and ethical issues involving clinical

trials, most evidence on risk and prognostic factors for the

disease comes from observational studies26 but teasing

apart causal from non-causal relationships in such studies

is notoriously difficult due to confounding, selection and

measurement error. Previous studies have identified several

factors predicting selection for COVID-19 analytical sub-

samples.25,27,28 In agreement with our findings, studies

have reported that higher BMI is associated with higher

odds of SARS-CoV-2 infection and COVID-19 progno-

sis.29–32 However, our study indicates that the estimates

reported in these studies may be impacted by selection

bias. Our findings suggest that sample selection pressures

can substantially differ between and within studies and

may depend on a number of factors, such as the data-

collection mechanism, sample ascertainment and charac-

teristics of the target population. In addition, our results il-

lustrate that bias due to sample selection and selection-

induced misclassification can distort relationships between

risk/prognostic factors and disease in an unpredictable

way. This indicates that there is no ‘one-size-fits-all’ solu-

tion and individual studies should investigate whether and

how selection pressures may bias their results, and consider

sensitivity analyses that mitigate these biases (e.g. inverse

probability weighting, multiple imputation).

While in this study we have focused on assessing biases

due to selection in studies of COVID-19, we have pre-

sented a general framework that is applicable to other re-

search conducted on a much smaller subsample of the

original cohort. This framework, illustrated in Figure 4,

involves three components that each help to build a picture

of the possible direction and magnitude of bias for a spe-

cific research population, cohort and subsample, and deter-

mine a level of confidence in results. We have provided

substantial Supplementary information describing how

researchers can design simulations to induce selection bias

(Supplementary Sections 1–3, available as Supplementary

data at IJE online). We provide code that can be adapted

54 International Journal of Epidemiology, 2023, Vol. 52, No. 1

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac221#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac221#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac221#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac221#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac221#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac221#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac221#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac221#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac221#supplementary-data


by other researchers wanting to apply our framework to

their own research question.
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