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Abstract

Background: Cluster-randomized trials (CRTs) involve randomizing groups of individuals

(e.g. hospitals, schools or villages) to different interventions. Various approaches exist

for analysing CRTs but there has been little discussion around the treatment effects (esti-

mands) targeted by each.

Methods: We describe the different estimands that can be addressed through CRTs and

demonstrate how choices between different analytic approaches can impact the interpre-

tation of results by fundamentally changing the question being asked, or, equivalently,

the target estimand.

Results: CRTs can address either the participant-average treatment effect (the average

treatment effect across participants) or the cluster-average treatment effect (the average

treatment effect across clusters). These two estimands can differ when participant out-

comes or the treatment effect depends on the cluster size (referred to as ‘informative

cluster size’), which can occur for reasons such as differences in staffing levels or types

of participants between small and large clusters. Furthermore, common estimators, such

as mixed-effects models or generalized estimating equations with an exchangeable

working correlation structure, can produce biased estimates for both the participant-

average and cluster-average treatment effects when cluster size is informative. We

describe alternative estimators (independence estimating equations and cluster-level

analyses) that are unbiased for CRTs even when informative cluster size is present.

Conclusion: We conclude that careful specification of the estimand at the outset can en-

sure that the study question being addressed is clear and relevant, and, in turn, that the

selected estimator provides an unbiased estimate of the desired quantity.
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Background

Cluster-randomized trials (CRTs) involve randomizing

clusters of participants (such as hospitals, schools or vil-

lages) to different interventions.1,2 CRTs are typically used

when the intervention is targeted at the cluster level or

when there is a risk of contamination between treatment

groups.

The analysis of CRTs must account for correlation be-

tween participants from the same cluster in order to obtain

valid standard errors;1–3 however, different methods of do-

ing so can alter the interpretation of the treatment effect

being estimated and thus answer a different question to the

one intended.4–13 Herein, we describe how CRTs can esti-

mate different treatment effects, or ‘estimands’ (a precise

description of the treatment effect to be estimated,14 see

Box 1), and how to choose an estimator that aligns with

the study question.

Participant-average and cluster-average
treatment effects

To see how different estimators can address different ques-

tions, consider the hypothetical data in Table 1. In this fic-

tional CRT, there are three small clusters (10 participants

each) and three large clusters (100 participants each) and

the true treatment effect (based on a difference in potential

outcomes under intervention vs control) is 5 in the small

clusters and 1 in the large clusters.

If we calculate the treatment effect as an average across

all individuals in the trial, we obtain:

10ð Þ 5ð Þ þ 10ð Þ 5ð Þ þ 10ð Þ 5ð Þ þ 100ð Þ 1ð Þ þ 100ð Þ 1ð Þ þ 100ð Þ 1ð Þ
10þ 10þ 10þ 100þ 100þ 100

¼ 1:4

which is an average of the treatment effects, weighted by

the number of participants they correspond to.

Key Messages

• Decisions about how to analyse cluster-randomized trials can unintentionally result in answering different questions

about interventions (i.e. target estimands). The ‘participant-average treatment effect’ answers the question ‘How

effective is the intervention for the average participant?’ whereas the ‘cluster-average treatment effect’ answers the

question ‘How effective is the intervention for the average cluster?’.

• The answers to these two questions can differ when outcomes or the effect of the intervention depends on the

cluster size (referred to as ‘informative cluster size’), which can occur for several reasons, including inherent

differences between larger and small clusters (e.g. experience, number of staff or quality of care) or systematic

differences between participants in smaller or larger clusters (e.g. socio-economic status). This issue applies to both

collapsible (e.g. difference in means) and non-collapsible (e.g. odds ratio) effect measures.

• The key difference between the two estimands is in how they are weighted. The participant-average treatment effect

gives equal weight to each participant and the cluster-average treatment effect gives equal weight to each cluster.

Therefore, an estimator that gives equal weight to each participant (e.g. an analysis of unweighted individual-level

data or an analysis of cluster-level summaries weighted by the cluster size) will target the participant-average

treatment effect and an estimator that gives equal weight to each cluster (e.g. an analysis of unweighted cluster-level

summaries or an analysis on individual-level data weighted by the inverse of the cluster size) will target the cluster-

average treatment effect.

• However, standard estimators, such as mixed-effects models or generalized estimating equations with an

exchangeable correlation structure, are likely to produce biased estimates for both the participant-average and

cluster-average treatment effects when the cluster size is informative. Conversely, independence estimating equations

and approaches based on cluster-level summaries are unbiased when informative cluster sizes are present.

• Specifying the treatment effect of interest (the estimand) is essential to ensure that the study question being

addressed is clear and that the appropriate statistical method is chosen to estimate the desired effect.
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However, if we calculate the treatment effect as an average

across clusters, we obtain:

5þ 5þ 5þ 1þ 1þ 1

6
¼ 3

Hence, these two approaches lead to two different treat-

ment effects and thus interpretations around the usefulness

of the intervention (Table 2): (i) the average treatment ef-

fect across participants (participant-average treatment ef-

fect); and (ii) the average treatment effect across clusters

(cluster-average treatment effect). As we can see from the

results above, these two treatment effects can differ sub-

stantially. In this example, the cluster-average treatment ef-

fect is more than twice the size of the participant-average

treatment effect.

When cluster-average and participant-
average treatment effects will differ

Whether the cluster-average and participant-average treat-

ment effects differ will depend on whether there is ‘infor-

mative cluster size’, which denotes an association between

cluster size (i.e. the number of participants in each cluster)

and the outcomes in that cluster.6,7,9–13

There are two types of informative cluster size: (i) out-

comes differ between small and large clusters but the treat-

ment effect is the same (e.g. the baseline event rate is 10%

in small clusters and 20% in large clusters but the odds ra-

tio in both is 0.75); and (ii) the treatment effect differs be-

tween small and large clusters, i.e. the cluster size interacts

with the treatment arm, or in other words, modifies the

treatment effect (e.g. the odds ratio is 0.75 in small clusters

and 0.50 in large clusters).

Informative cluster size can occur for several reasons,

such as differences in staff experience or levels of care be-

tween larger and smaller hospitals, or differences in socio-

economic status between larger urban schools compared

with smaller rural schools. Informative cluster size then

arises if these factors that differ between small and large

clusters also affect the outcome or interact with the treat-

ment group. Conversely, informative cluster size can also

occur as an artefact of the trial (e.g. if better-performing

clusters not only achieve better participant outcomes or

treatment effects but are also more adept at recruiting par-

ticipants to the study and hence have larger sample sizes

than worse-performing clusters).

For collapsible treatment effect measures15 (such as a

difference in means, risk difference or risk ratio), the par-

ticipant-average and cluster-average treatment effects will

coincide unless the second type of informative cluster size

occurs, in which the treatment effect depends on the num-

ber of enrolled participants in a cluster. When this occurs,

the value of the two estimands will differ (as is the case in

Table 1). Importantly, for collapsible effect measures, these

two estimands will coincide even if the first type of infor-

mative cluster size occurs (where outcomes depend on clus-

ter size).

However, for non-collapsible effect measures (such as

an odds ratio or hazard ratio), the participant-average and

cluster-average treatment effects will only coincide if nei-

ther type of informative cluster size occurs (i.e. there is no

difference in either outcomes or treatment effects between

Table 1 Data from a fictional cluster-randomized trial

Cluster

(i)

Number of participants

(ni)

True treatment effect in cluster

i

1 10 5

2 10 5

3 10 5

4 100 1

5 100 1

6 100 1

i denotes cluster number and ni denotes the number of participants in

cluster i.

Box 1 Estimands, estimators, and estimates in cluster-randomized trials

Estimand: a precise description of the treatment effect investigators aim to estimate from the trial. An estimand

comprises five aspects: (i) population; (ii) treatment conditions; (iii) endpoint; (iv) summary measure (e.g. difference

in means, risk ratio, etc.); and (v) how intercurrent events are to be handled. In cluster-randomized trials it is

important to define whether the estimand will reflect a ‘participant-average treatment effect’ or a ‘cluster-average

treatment effect’ (see Table 2)

Estimator: The method of analysis used to calculate the estimated treatment effect. Valid estimators for the ‘partici-

pant-average’ and ‘cluster-average treatment effects’ are shown in Table 2

Estimate: the numerical value computed by the estimator [e.g. in a cluster-randomized trial that reported a mean

difference of 3.0 (95% CI 2.5 to 3.5), the value 3.0 represents the ‘estimate’]
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small and large clusters); if either type occurs, then the

value of the two estimands will differ.6,7,11,12,16

In general, the larger the variation in cluster size, the

larger the difference will be between the participant-

average and cluster-average treatment effects when cluster

size is informative.

Specifying the estimand

Given that the participant-average and cluster-average

treatment effects address fundamentally different ques-

tions, it is important to be clear on which question the trial

is designed to answer and to choose the estimand that is

most relevant for a specific trial objective. This will, of

course, depend on the specific aims of the trial. For in-

stance, if hospitals act as the cluster and the outcome

relates to individual participants (e.g. a hospital-level inter-

vention aiming to reduce mortality in presenting patients),

then the participant-average treatment effect will be of

most interest, as this represents the population impact of

switching from the control to intervention. However, in a

trial aiming to reduce unnecessary prescribing of antibiot-

ics, in which doctors act as the cluster and outcomes are

measured on each participant they treat, then a cluster-

average treatment effect may also be of interest, as this

provides the intervention’s effect on the clinician’s pre-

scribing habits.

It is also important to specify other aspects that make

up the estimand,14 including the (i) population of interest;

(ii) treatment conditions; (iii) endpoint; (iv) population-

level summary measure (how outcomes under different

treatment conditions are to be compared, e.g. the

Table 2 Estimands and estimators for cluster-randomized trials

Estimand Description Method of estimation

Participant-average treatment effecta Average treatment effect across participants

(i.e. ‘How effective is the intervention for

the average participant?’). Here, each par-

ticipant is given equal weight

Cluster-level analysis

Calculate cluster-level summaries (e.g. mean

outcome in each cluster)

Analyse cluster-level summaries using a

weighted regression model (with weights

equal to ni, and robust standard errors) to

give each participant equal weight.

Participant-level analysis

Independence estimating equations on par-

ticipant-level data (which give equal

weight to each participant) using robust

standard errors that account for correla-

tion between participants in the same clus-

ter (e.g. GEE with a working independence

correlation structure and robust standard

errors or maximum-likelihood/least

squares estimators with cluster-robust

standard errors)

Cluster-average treatment effecta Average treatment effect across clusters (i.e.

‘How effective is the intervention for the

average cluster?’). Here, each cluster is

given equal weight

Cluster-level analysis

Calculate cluster-level summaries (e.g. mean

outcome in each cluster)

Analyse cluster-level summaries using regres-

sion model (unweighted, so that each clus-

ter is given equal weight)

Participant-level analysis

Weighted independence estimating equations

on participant-level data using robust stan-

dard errors, with inverse cluster-size weights

equal to 1
ni

to give equal weight to each cluster

aFor collapsible effect measures (e.g. the difference in means, risk difference or risk ratio), the participant-average and cluster-average estimands will coincide

unless the treatment effect varies according to cluster size. For non-collapsible effect measures (e.g. odds ratio, hazard ratio), the participant-average and cluster-

average estimands will only coincide if there is no difference in either outcomes or treatment effects between small and large clusters. GEE, generalized estimating

equation.
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difference in means); and (v) handling of intercurrent

events, such as treatment discontinuation or switching.

Further information on the specification of these aspects

is available elsewhere.8,17–23 In addition to whether the

cluster-average vs participant-average treatment effect is

of interest, proper specification of these aspects will help

to ensure that the study question is both clear and rele-

vant, and that statistical methods estimate the quantity of

interest.

Methods of analysing cluster-randomized
trials

The key difference between the two estimands is how par-

ticipant outcomes are weighted (the participant-average

treatment effect gives equal weight to each participant and

the cluster-average treatment effect gives equal weight to

each cluster). Hence, which estimand a particular estima-

tor will correspond to depends on how the estimator

weights the data: if it provides equal weight to each partici-

pant, it will target the participant-average treatment effect,

whereas if it gives equal weight to each cluster, it will tar-

get the cluster-average treatment effect.

In CRTs, treatment effects can be estimated either by

implementing an analysis either at the cluster level or the

individual level.1–3,24 A cluster-level analysis involves cal-

culating a summary measure for each cluster (e.g. the mean

outcome across participants in that cluster) and then com-

paring cluster-level summaries. In contrast, an individual-

level analysis typically involves analysing participant-level

outcomes using a regression model that accounts for corre-

lations between participants from the same cluster.

If implemented in the manner described above, a

cluster-level analysis will target a cluster-average treatment

effect, whereas an individual-level analysis will target the

participant-average treatment effect. However, we can

reweight a cluster-level analysis to give each participant

equal weight to target a participant-average treatment ef-

fect. Similarly, we could reweight individual-level analyses

to give equal weight to each cluster to target a cluster-

average treatment effect. For a cluster-level analysis, this is

done by weighting each cluster by the number of partici-

pants within that cluster, and for a participant-level analy-

sis, this is done by weighting each individual by the inverse

number of participants in that cluster (Table 2 provides a

summary of these approaches).

How statistical decisions can lead to
different estimands

Often in CRTs, the choice of the estimator used for analysis

is based on statistical considerations.24,25 Individual-level

analyses are often more flexible (e.g. they are easier to adapt

to allow for additional levels of clustering or to adjust for

baseline covariates). However, individual-level analyses can

also underestimate standard errors when the number of clus-

ters is small.3,24–28 Although there are several small-sample

adjustment methods that improve standard error estimation

in such settings,29–31 cluster-level analyses are sometimes pre-

ferred as they are less prone to small-sample biases, as shown

in simulation studies.24

However, as described above, these technical decisions

can result in the targeting of different treatment effects,

and so by changing the analysis for statistical reasons,

study investigators may inadvertently be answering a fun-

damentally different question to the one they intended.

Hence, when choosing an analysis method, it is important

not only to ensure statistical validity but also to ensure it

targets the desired estimand.

Bias from common estimators for the
participant-average treatment effect

Another issue in CRTs is that certain commonly used esti-

mators can be biased when the cluster size is informa-

tive.6,7,9–13 This is the case for two individual-level

analyses frequently used to estimate the participant-

average treatment effect: mixed-effects models with a ran-

dom intercept for cluster and generalized estimating equa-

tions (GEEs) with an exchangeable working correlation

structure.32

The reason these two estimators can be biased is that

they do not give equal weight to each participant. Instead,

clusters are weighted by their inverse-variance, which is a

function of both the cluster size and the intraclass correla-

tion coefficient (the degree of correlation between partici-

pants in the same cluster).33,34 Hence, each participant’s

weight in the analysis depends on which cluster they be-

long to and some participants will be given more weight

than others. Thus, the weighting from mixed-effects mod-

els or GEEs with an exchangeable working correlation

structure does not correspond to the participant-average

treatment effect (which requires equal weight for each par-

ticipant), resulting in biased effect estimates when there is

informative cluster size.6,7,9–12,26,33 The emergence of bias

due to informative cluster size can be seen in Figure 1,

which illustrates the bias for these estimators in our previ-

ously described fictional example.

Of note, these estimators will be biased for collapsible

effect measures (difference in means, risk difference, risk

ratio) if the second type of informative cluster size occurs

(where the treatment effect differs between smaller and

larger clusters); however, they will be biased for non-

collapsible effect measures (odds ratio, hazard ratio) if

International Journal of Epidemiology, 2023, Vol. 52, No. 1 111



either type of informative cluster size occurs (either the

outcome or treatment effect differs between smaller and

larger clusters). Further, it is important to note that this

bias occurs even with large sample sizes (i.e. it is not a

small-sample bias issue). As an intuitive explanation, al-

though GEEs are typically robust to misspecifications of

the working correlation structure under large sample sizes,

this requires the mean model to be correctly specified,

which is not the case under informative cluster size.

Finally, although we have discussed bias in these estima-

tors in relation to the participant-average treatment effect,

we note they will be biased for the cluster-average treat-

ment effect as well because the weighting scheme from

these estimators also differs from the weighting used in de-

fining the cluster-average estimand.

Importantly, the bias produced from mixed-effects

models and GEEs with an exchangeable working correla-

tion structure arises when the cluster size is informative. In

the absence of informative cluster size, these estimators

will be unbiased for the participant-average treatment

effect.

Unbiased estimators for the participant-
average treatment effect

Under informative cluster size, independence estimating

equations (IEEs) are typically required to obtain unbi-

ased estimates of the participant-average treatment

effect.6,7,9–13,35 IEEs employ an independence working

correlation structure in conjunction with robust stan-

dard errors to account for clustering.36 They can be eas-

ily implemented in standard software such as Stata, SAS

or R by using GEEs with a working independence as-

sumption and robust standard errors or by using a stan-

dard regression model estimated by maximum

likelihood/least squares with cluster-robust standard

errors. Alternatively, weighted cluster-level analyses can

also provide unbiased estimates (Table 2).

We provide example Stata and R code in Table 3 denot-

ing how to implement the different estimators. However,

IEEs can be less efficient than mixed-effects models or

GEEs with an exchangeable working correlation structure

so the latter could be used if there is a strong reason a pri-

ori to believe that the cluster size will not be informative.

Unbiased estimators for the cluster-average
treatment effect

As noted above, standard estimators used in CRTs (i.e.

mixed-effects models with a random intercept and GEEs

with an exchangeable working correlation structure) are

also biased for the cluster-average treatment effect when

cluster size is informative. We provide a summary of alter-

native estimators in Table 3.

Example

Consider a trial comparing a quality improvement (QI) in-

tervention to improve outcomes in patients undergoing

emergency laparotomy.37 This intervention involves local

QI leads implementing a hospital-wide improvement pro-

gramme at each cluster. The primary outcome is overall

mortality within 90 days and a secondary outcome is

whether a senior surgeon is present in the operating theatre

(either performing the surgery or supervising a more junior

surgeon in doing so). This outcome is intended to measure

the success of the QI intervention in changing hospital

practice.

For the primary outcome, we need to decide whether a

participant-average or cluster-average treatment effect is

desired (i.e. do we want to know the average mortality re-

duction across patients or across hospitals?) Here, interest

clearly lies in the intervention effect on individual patients

(i.e. how many additional lives can be saved through the

−
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Figure 1 Bias from common estimators in cluster-randomized trials for

the participant-average treatment effect when there is informative clus-

ter size. Data were simulated based on the fictional trial given in

Table 2. In each simulated data set, there were 60 clusters (30 with

n¼ 10, 30 with n¼100). We generated a continuous outcome using true

treatment effects of 5 in small clusters and 1 in large clusters [the resid-

ual standard deviation was set to 5 and the between-cluster standard

deviation was calculated based on the desired intraclass correlation co-

efficient (ICC)]. We analysed data using (i) a mixed-effects model with

random intercepts; (ii) generalized estimating equations (GEEs) with an

exchangeable working correlation structure; and (iii) independence esti-

mating equations (IEEs), implemented using a linear regression model

with cluster-robust standard errors (note that weighted cluster-level

analyses provide identical estimates to IEEs so will have identical bias).

We used 2000 replications for each scenario. Bias was calculated as the

difference between the average of the estimates for a particular estima-

tor and the true value of the treatment effect (1.36). The ICC (on the

x-axis) denotes the intraclass correlation coefficient (a measure of the

correlation between participants in the same cluster). Statistical code is

available in the Supplementary Material, available as Supplementary

data at IJE online.
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QI intervention?). Thus, a participant-average treatment

effect is most relevant here.

However, the key secondary outcome (whether a senior

surgeon is present) is intended to measure treatment suc-

cess at the cluster level (i.e. whether the intervention was

effective in making hospitals change their practice around

emergency laparotomies). Hence, for this outcome, a

cluster-average estimand may be the most relevant.

We note that for the secondary outcome (whether a se-

nior surgeon is present), both a participant-average and

cluster-average treatment effect may be of scientific inter-

est, in which case both could be specified (e.g. with the

cluster-average treatment effect designated as the pri-

mary38). However, including both estimands should only

be done if both are indeed of scientific interest. For the pri-

mary outcome (overall mortality), it is unlikely the cluster-

average treatment effect would be of scientific interest and

so we would recommend only specifying the participant-

average estimand for this outcome.

Once the estimand has been decided (including other

aspects, such as population, handling of intercurrent

events, etc.), we can decide on the estimator. We begin

with the primary outcome (overall mortality), in which a

participant-average treatment effect is of interest.

In this trial, it is plausible that success in implementing

the QI intervention may differ between smaller and larger

clusters due to differing resource levels available, resulting

in an interaction between treatment effect and cluster size.

It is also possible that mortality rates may differ between

smaller and larger clusters due to differences between

patients who present to each.

Thus, informative cluster size cannot be ruled out and

so mixed-effects models or GEEs with an exchangeable

working correlation structure should not be used. Instead,

the primary outcome could be analyzed using IEEs. This

could be implemented using GEE with a working indepen-

dence correlation structure and robust standard errors, us-

ing the appropriate link function to provide the desired

Table 3 Example Stata and R code to implement different estimators

Estimand Estimator Stata code R code

Participant-average treatment

effect

Participant-level (unweighted

independence estimating

equations)

xtset centre

xtgee y treat, family(normal)

link(identity) corr(ind)

vce(robust)

library(geepack)

geeglm(y � treat, id¼centre,

family¼gaussian(‘identity’),

corstr¼‘independence’)

Cluster-level (weighted)a collapse (count) n¼ y (mean) y

treat, by(centre)

reg y treat [pweight ¼ n]

library(sandwich)

ybar <- as.numeric(tapply(y,

centre, mean))

treatcl <- as.numeric(tapply

(treat, centre, mean))

model <- lm(ybar � treatcl,

weights¼n)

vcovHC(model, type¼‘HC0’)

Cluster-average treatment

effect

Participant-level (weighted

independence estimating

equations)

xtset centre

xtgee y treat [pweight¼1/n],

family(normal) link(identity)

corr(ind) vce(robust)

library(geepack)

nrep <- rep(n, n)

geeglm(y � treat, id¼centre,

weights¼1/nrep,

family¼gaussian(‘identity’),

corstr¼‘independence’)

Cluster-level (unweighted)b collapse (count) n¼ y (mean) y

treat, by(centre)

reg y treat

ybar <- as.numeric(tapply(y,

centre, mean))

treatcl <- as.numeric(tapply

(treat, centre, mean))

lm(ybar � treatcl)

In the code columns, ‘y’ denotes a continuous participant-level outcome, ‘centre’ denotes cluster membership for each observation, ‘treat’ denotes intervention

variable (0, 1) for each observation and ‘n’ denotes the number of participants included in each cluster.
aWeighted cluster-level analyses require the use of robust standard errors due to the use of the weights46 [these standard errors are not cluster-robust, as they

are for independence estimating equations (IEEs) but are robust to heteroskedasticity]. The Stata option [pweight¼n] implements this automatically, whereas R

code requires loading package library(sandwich) and using the vcovHC(model, type¼‘HC0’) option.
bThe unweighted cluster-level analysis assumes that the marginal variance of each cluster mean is the same; if this is not the case, robust standard errors can be

used to provide valid inference (though it may require a small-sample correction when the number of clusters is small).
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treatment effect (e.g. risk difference, risk ratio, odds ratio).

Depending on the number of clusters in the trial, a small-

sample correction may also be required to obtain valid

standard errors. Alternatively, a cluster-level analysis

weighted by the cluster size, with robust standard errors

(see Table 3), could be used.

For the secondary outcome (presence of a senior sur-

geon), the most straightforward estimator is an analysis of

unweighted cluster-level summaries (e.g. based on the pro-

portion of cases in which a senior surgeon is present). This

estimator is unbiased for the cluster-average treatment ef-

fect even in the presence of informative cluster sizes and

has good statistical properties even when the number of

clusters is small.

If desired, further analyses could explore variation in

treatment effects across differently sized clusters. However,

we note these analyses can be challenging to interpret, as it

is unlikely to be the cluster size itself that modifies the treat-

ment effect but rather some underlying factor associated

with size (e.g. urban vs rural, differences in patient charac-

teristics, staffing capacity or expertise in each cluster, etc.).

Thus, it may be more relevant from a policy-making per-

spective to explore variation in treatment effects by these

types of factors39,40 rather than by cluster size.

Other implications

In principle, the difference in estimands described here

(participant-average vs cluster-average) also applies to

other cluster trial designs, such as cluster-crossover trials

and stepped-wedge trials. However, for more complex lon-

gitudinal cluster-randomized designs, participant observa-

tions may be collected in different time periods, which may

necessitate additional considerations in how to combine or

average information across time. We defer those specific

discussions to future work.

In practice, the choice of estimand should be made when

designing the trial, as it is required for sample size estimation

and to help plan the statistical analysis. It should be listed in

the trial protocol and reported in the trial publication, to al-

low those using trial results to make informed decisions. To

facilitate this, future revisions to the CONSORT and

SPIRIT extension to CRTs41 (or stepped-wedge42 or cluster-

crossover trials) should require this information.

The estimators considered here (Table 3) typically re-

quire a large number of clusters in order to provide valid

standard errors. Therefore, when using these estimators

with a small number of clusters, it is important to use a

small-sample correction to ensure valid results.24,43–45 This

is an active area of study and further research is required

to identify the optimal approach for each estimator across

various small-sample settings.

Conclusion

Our concluding message is that though statistical issues

such as bias in standard errors and inflated type I error rate

are important, they should not be the driving force in the

choice of statistical analysis of CRTs. Different statistical

methods can fundamentally alter the question being

addressed so researchers must define their target estimand

at the outset to clarify the question they wish to address

and carefully evaluate the potential for informative cluster

size. Then, suitable methods of analysis can be chosen to

address the right question while also maintaining statistical

validity.
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Specifying the target of inference in cluster
trials

Cluster randomized trials (CRTs) are complex.1 At the

protocol development stage, we have to select an appropri-

ate unit of randomization (which may depend on the unit

of intervention delivery) and an appropriate unit of analy-

sis (which may depend on the unit of observation).2,3 If the

unit of randomization is different from the unit of analysis,

we must account for clustering among multiple observa-

tions from the same cluster—a requirement that is well ap-

preciated.2 The unit of analysis may be either the

individual or the cluster, with the choice ideally made on

statistical grounds (although in practice it may reflect per-

sonal preference, convenience or experience).3 The paper

by Kahan and colleagues advises us that we also need to

choose an a priori unit of inference and this choice is criti-

cal in selecting both the unit and the method of analysis.4

We believe that the need to consider the target of inference

before specifying the method of analysis has not

received adequate attention in the cluster trials literature to

date.

Defining the unit of inference, i.e. the estimand of inter-

est, is essentially about carefully specifying the research

question.5,6 Specifically, we must consider whether interest

lies in determining:

i. the effect of the intervention on a typical individual, or

ii. the effect of the intervention on a typical cluster.

It is important to realize that the estimated treatment ef-

fect for these two questions can differ in the same trial for

the same outcome. In particular, the treatment effect will

differ when cluster sizes are informative—which essentially

means either the outcomes vary across clusters depending

on cluster size and/or the treatment effect varies across

clusters depending on cluster size (i.e. a cluster size by

treatment interaction).7,8 Informative cluster sizes are not
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