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Can we predict T cell specificity 
with digital biology and 
machine learning?
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Abstract

Recent advances in machine learning and experimental biology have 
offered breakthrough solutions to problems such as protein structure 
prediction that were long thought to be intractable. However, despite 
the pivotal role of the T cell receptor (TCR) in orchestrating cellular 
immunity in health and disease, computational reconstruction of a 
reliable map from a TCR to its cognate antigens remains a holy grail 
of systems immunology. Current data sets are limited to a negligible 
fraction of the universe of possible TCR–ligand pairs, and performance 
of state-of-the-art predictive models wanes when applied beyond these 
known binders. In this Perspective article, we make the case for renewed 
and coordinated interdisciplinary effort to tackle the problem of 
predicting TCR–antigen specificity. We set out the general requirements 
of predictive models of antigen binding, highlight critical challenges 
and discuss how recent advances in digital biology such as single-cell 
technology and machine learning may provide possible solutions. 
Finally, we describe how predicting TCR specificity might contribute 
to our understanding of the broader puzzle of antigen immunogenicity.

Sections

Introduction

State of the art

Key challenges

Conclusions and call to action

1MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK. 
2The Rosalind Franklin Institute, Didcot, UK. 3Chinese Academy of Medical Sciences Oxford Institute, University 
of Oxford, Oxford, UK. 4Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, 
University of Oxford, Oxford, UK.  e-mail: hashem.koohy@rdm.ox.ac.uk

https://doi.org/10.1038/s41577-023-00835-3
http://crossmark.crossref.org/dialog/?doi=10.1038/s41577-023-00835-3&domain=pdf
http://orcid.org/0000-0002-8438-1415
http://orcid.org/0000-0002-3640-7043
mailto:hashem.koohy@rdm.ox.ac.uk


Nature Reviews Immunology

Perspective

A critical requirement of models attempting to answer these ques-
tions is that they should be able to make accurate predictions for any 
combination of TCR and antigen–MHC complex. These should cover 
both ‘seen’ pairs included in the data on which the model was trained 
and novel or ‘unseen’ TCR–epitope pairs to which the model has not 
been exposed9. Impressive advances have been made for specificity 
inference of seen epitopes in particular disease contexts. For exam-
ple, clusters of TCRs having common antigen specificity have been 
identified for Mycobacterium tuberculosis10 and SARS-CoV-2 (ref. 11), 
providing possible avenues for new vaccine and pharmaceutical devel-
opment. However, as discussed later, performance for seen epitopes 
wanes beyond a small number of immunodominant viral epitopes 
and is generally poor for unseen epitopes9,12. This matters because 
many epitopes encountered in nature will not have an experimentally 
validated cognate TCR, particularly those of human or non-viral origin 
(Fig. 2). In the text to follow, we refer to the case for generalizable TCR–
antigen specificity inference, meaning prediction of binding for both 
seen and unseen antigens in any MHC context.

We must also make an important distinction between the related 
tasks of predicting TCR specificity and antigen immunogenicity. 
The former, and the focus of this article, is the prediction of binding 
between sets of TCRs and antigen–MHC complexes. The latter can be 
described as predicting whether a given antigen will induce a functional 
T cell immune response: a complex chain of events spanning antigen 
expression, processing and presentation, TCR binding, T cell activa-
tion, expansion and effector differentiation. Although great strides 
have been made in improving prediction of antigen processing and 

Introduction
T cells typically recognize antigens presented on members of the MHC 
protein family via highly diverse heterodimeric T cell receptors (TCRs) 
expressed at their surface (Fig. 1). These antigens are commonly short 
peptide fragments of eight or more residues, the presentation of which 
is dictated in large part by the structural preferences of the MHC allele1. 
Lipid, metabolite and oligosaccharide T cell antigens have also been 
reported2–4. TCRs typically engage antigen–MHC complexes via one or 
more of their six complementarity-determining loops (CDRs), three 
contributed by each chain of the TCR dimer.

The pivotal role of the TCR in surveillance and response to disease, 
and in the development of new vaccines and therapies, has driven con-
certed efforts to decode the rules by which T cells recognize cognate 
antigen–MHC complexes. However, cost and experimental limitations 
have restricted the available databases to just a minute fraction of 
the possible sample space of TCR–antigen binding pairs (Box 1). As 
we discuss later, these data sets5–8 are also poorly representative of 
the universe of self and pathogenic epitopes and of the varied MHC 
contexts in which they may be presented (Fig. 2).

The research community has therefore turned to machine learning 
models as a means of predicting the antigen specificity of the so-called 
orphan TCRs having no known experimentally validated cognate anti-
gen. Accurate prediction of TCR–antigen specificity can be described as 
deriving computational solutions to two related problems: first, given 
a TCR of unknown antigen specificity, which antigen–MHC complexes 
is it most likely to bind; and second, given an antigen–MHC complex, 
which are the most likely cognate TCRs?
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Fig. 1 | Structure and function of the TCR. a, Cartoon illustrating cancer 
cell antigen presentation to a naive T cell; T cell activation and expansion 
and effector  T cell engagement of the cancer cell. b, Antigen recognition by 
conventional T cells through the interaction of the αβ T cell receptor (TCR) 

heterodimer with peptide antigen presented by an MHC class I molecule.  
c, Crystal structure of the affinity-enhanced A3A TCR engaging with melanoma-
associated antigen 3 (MAGE-A3)-derived peptide presented by HLA-A*01 (ref. 101) 
(generated with data from ref. 101 and visualized with PyMOL (see Related links)).

https://www.schrodinger.com/products/pymol
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presentation for common HLA alleles, the nature and extent to which 
presented peptides trigger a T cell response are yet to be elucidated13. 
A significant gap also remains for the prediction of T cell activation 
for a given peptide14,15, and the parameters that influence pathological 
peptide or neoantigen immunogenicity remain under intense inves-
tigation16. We believe that only by integrating knowledge of antigen 
presentation, TCR recognition, context-dependent activation and 
effector function at the cell and tissue level will we fully realize the 
benefits to fundamental and translational science (Box 2).

State of the art
From deepening our mechanistic understanding of disease to providing 
routes for accelerated development of safer, personalized vaccines and 
therapies, the case for constructing a complete map of TCR–antigen 
interactions is compelling. We now explore some of the experimental 
and computational progress made to date, highlighting possible expla-
nations for why generalizable prediction of TCR binding specificity 
remains a daunting task.

Experimental methods
The development of recombinant antigen–MHC multimer assays17 
has proved transformative in the analysis of TCR–antigen specificity, 
enabling researchers to track and study T cell populations under various 
conditions and disease settings18–20. Nonetheless, critical limitations 
remain that hamper high-throughput determination of TCR–antigen 
specificity. We direct the interested reader to a recent review21 for a 
thorough comparison of these technologies and summarize some of 
the principal issues subsequently.

Antigen–MHC multimers may be used to determine TCR specific-
ity using bulk (pooled) T cell populations, or newer single-cell methods. 
Bulk methods are widely used and relatively inexpensive, but do not 
provide information on αβ TCR chain pairing or function. As a result, 
single chain TCR sequences predominate in public data sets (Fig. 2). 
However, both α-chains and β-chains contribute to antigen recognition 
and specificity22,23. We shall discuss the implications of this for model-
ling approaches later. Multimodal single-cell technologies provide 
insight into chain pairing and transcriptomic and phenotypic profiles 
at cellular resolution, but remain prohibitively expensive, return fewer 
TCR sequences per run than bulk experiments and show significant bias 
towards TCRs with high specificity24–26. The appropriate experimental 
protocol for the reduction of nonspecific multimer binding, validation 
of correct folding and computational improvement of signal-to-noise 
ratios remain active fields of debate25,26. Indeed, concerns over nonspe-
cific binding have led recent computational studies to exclude data 
derived from a 10× study of four healthy donors27.

Although bulk and single-cell methods are limited to a modest 
number of antigen–MHC complexes per run, the advent of technolo-
gies such as lentiviral transfection assays28,29 provides scalability to 
up to 96 antigen–MHC complexes through library-on-library screens. 
However, previous knowledge of the antigen–MHC complexes of 
interest is still required. This precludes epitope discovery in unknown, 
rare, sequestered, non-canonical and/or non-protein antigens30.

The advent of synthetic peptide display libraries (Fig. 3a) permits 
the extension of binding analysis to hundreds of thousands of peptides 
per TCR30–33. Using transgenic yeast expressing synthetic peptide–MHC  
constructs from a library of 2 × 108 peptides, Birnbaum et al.31 dis-
sected the binding preferences of autoreactive mouse and human 
TCRs, providing clues as to the mechanisms underlying autoimmune 
targeting in multiple sclerosis. High-throughput library screens such 

as these provide opportunities for improved screening of the antigen– 
MHC space, but limit analysis to individual TCRs and rely on TCR–MHC 
binding instead of function. There remains a need for high-throughput 
linkage of antigen specificity and T cell function, for example, through 
mammalian or bead display34–37.

As a result of these barriers to scalability, only a minuscule frac-
tion of the total possible sample space of TCR–antigen pairs (Box 1) 
has been validated experimentally. At the time of writing, fewer than 
1 million unique TCR–epitope pairs are available from VDJdb, McPas-
TCR, the Immune Epitope Database and the MIRA data set5–8 (Fig. 2). 
Just 4% of these instances contain complete chain pairing information 
(Fig. 2a). About 97% of all antigens reported as binding a TCR are of viral 
origin, and a group of just 100 antigens makes up 70% of TCR–antigen 
pairs (Fig. 2b,c). Where the HLA context of a given antigen is known, 
the training data are dominated by antigens presented by a handful of 
common alleles (Fig. 2d). Many antigens have only one known cognate 
TCR (Fig. 2e). These limitations have simultaneously provided the 
motivation for and the greatest barrier to computational methods for 
the prediction of TCR–antigen specificity.

Computational methods
A comprehensive survey of computational models for TCR specificity 
inference is beyond the scope intended here but can be found in the fol-
lowing helpful reviews15,38–42. Broadly speaking, current models can be 
divided into two categories, which we dub supervised predictive models 
(SPMs) (Fig. 3b) and unsupervised clustering models (UCMs) (Fig. 3c) on 
account of their respective use of supervised learning and unsupervised 
learning. A non-exhaustive summary of recent open-source SPMs and 
UCMs can be found in Table 1.

Supervised predictive models. SPMs are those which attempt to 
learn a function that will correctly predict the cognate epitope for 
a given input TCR of unknown specificity, given some training data 
set of known TCR–peptide pairs. The past 2 years have seen an accel-
eration of publications aiming to address this challenge with deep 
neural networks (DNNs). Although there are many possible approaches 
to comparing SPM performance, among the most consistently used is 
the area under the receiver-operating characteristic curve (ROC-AUC). 
One would expect to observe 50% ROC-AUC from a random guess in a 

Box 1

The extraordinary diversity 
of TCR–antigen pairs
At a conservative estimate of 5 million unique T cell receptors 
(TCRs) per individual at a given time102, a global population of 
8 billion sharing 11% of their TCRs102 would represent a unique TCR 
pool of 3.6 × 1015. This figure excludes recognition of antigens from 
over 1,400 pathogens known to be capable of infecting humans103, 
binding to self and neoantigens and presentation of antigens in 
over 34,000 HLA contexts104. The universe of feasible TCR–antigen–
MHC combinations is, therefore, likely to be orders of magnitude 
higher, especially when accounting for degeneracy in TCR–antigen 
recognition.

https://vdjdb.cdr3.net/
http://friedmanlab.weizmann.ac.il/McPAS-TCR
http://friedmanlab.weizmann.ac.il/McPAS-TCR
https://www.iedb.org/
https://clients.adaptivebiotech.com/pub/covid-2020
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binary (binding or non-binding) task, assuming a balanced proportion 
of negative and positive pairs.

Performance by this measure surpasses 80% ROC-AUC for a handful 
of ‘seen’ immunodominant viral epitopes presented by MHC class I9,43.  
However, representation is not a guarantee of performance: 60%  
ROC-AUC has been reported for HLA-A2*01–CMV-NLVPMVATV44, pos-
sibly owing to the recognition of this immunodominant antigen by 
diverse TCRs. Critically, few models explicitly evaluate the performance 
of trained predictors on unseen epitopes using comparable data sets. 
Weber et al.12 achieved an average of 62 ± 6% ROC-AUC for TITAN, com-
pared with 50% for ImRex on a reference data set of unseen epitopes 
from VDJdb and COVID-19 data sets. Values of 56 ± 5% and 55 ± 3% were 
reported for TITAN and ImRex, respectively, in a subsequent paper from 
the Meysman group45. Other groups have published unseen epitope 
ROC-AUC values ranging from 47% to 97%; however, many of these 
values are reported on different data sets (Table 1), lack confidence 
estimates following validation46–49 and have not been consistently 
reproducible in independent evaluations50.

Together, these results highlight a critical need for a thorough, 
independent benchmarking study conducted across models on data 
sets prepared and analysed in a consistent manner27,50. Until then, newer 
models may be applied with reasonable confidence to the prediction 
of binding to immunodominant viral epitopes by common HLA alleles. 
However, SPMs should be used with caution when generalizing to pre-
diction of any epitope, as performance is likely to drop the further the 
epitope is in sequence from those in the training set9.

Unsupervised clustering models. Unlike SPMs, UCMs do not depend 
on the availability of labelled data, learning instead to produce group-
ings of the TCR, antigen or HLA input that reflect the underlying 

statistical variations of the data19,51 (Fig. 3c). Applied to TCR reper-
toires, UCMs take as their input single or paired TCR CDR3 amino acid 
sequences, with or without gene usage information, and return a 
mapping of sequences to unique clusters. Clustering is achieved by 
determining the similarity between input sequences, using either 
‘hand-crafted’ features such as sequence distance or enrichment of 
short sub-sequences, or by comparing abstract features learnt by 
DNNs (Table 1).

Clustering provides multiple paths to specificity inference for 
orphan TCRs39–41. Epitope specificity can be predicted by assuming 
that if an unlabelled TCR is similar to a receptor of known specificity, 
it will bind the same epitope52. One may also co-cluster unlabelled and 
labelled TCRs and assign the modal or most enriched epitope to all 
sequences that cluster together51. Finally, DNNs can be used to generate 
‘protein fingerprints’, simple fixed-length numerical representations 
of complex variable input sequences that may serve as a direct input 
for a second supervised model25,53.

As for SPMs, quantitative assessment of the relative merits of 
hand-crafted and neural network-based UCMs for TCR specificity infer-
ence remains limited to the proponents of each new model. Although 
some DNN-UCMs allow for the integration of paired chain sequences 
and even transcriptomic profiles48, they are susceptible to the same 
training biases as SPMs and are notably less easy to implement than 
established clustering models such as GLIPH and TCRdist19,54. How-
ever, these established clustering models scale relatively poorly to 
large data sets compared with newer releases51,55. Recent analyses27,53 
suggest that there is little to differentiate commonly used UCMs from 
simple sequence distance measures. Here again, independent bench-
marking analyses would be valuable, work towards which our group is 
dedicating significant time and effort.
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Fig. 2 | The current landscape of known TCR–antigen pairs. a, Number of  
T cell receptors (TCRs) containing α-chains, β-chains or paired chains, showing 
variation in numbers according to the data set (manually curated catalogue 
of pathology-associated TCR sequences (McPas-TCR), VDJ database (VDJdb), 
Immune Epitope Database (IEDB) and multiplex identification of TCR antigen 
specificity (MIRA)). b, Number of TCRs per antigen species of origin, showing 

that the majority of all antigens reported as binding a TCR are of viral origin.  
c, Cumulative frequency of antigens, showing that a group of 100 antigens makes 
up 70% of TCR–antigen pairs. d, Number of TCRs by HLA-A type, showing that 
known antigens are reported in complex with only a few common HLA alleles.  
e, Frequency histogram showing that most antigens have only one known 
cognate TCR in the combined data set5–8.
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Key challenges
Despite the exponential growth of unlabelled immune repertoire data 
and the recent unprecedented breakthroughs in the fields of data sci-
ence and artificial intelligence, quantitative immunology still lacks 
a framework for the systematic and generalizable inference of T cell 
antigen specificity of orphan TCRs. Among the most plausible explana-
tions for these failures are limitations in the data, methodological gaps 
and incomplete modelling of the underlying immunology.

Data
As we have set out earlier, the single most significant limitation to model 
development is the availability of high-quality TCR and antigen–MHC 
pairs. The need is most acute for under-represented antigens, for those 
presented by less frequent HLA alleles, and for linkage of epitope spec-
ificity and T cell function. Meanwhile, single-cell multimodal tech-
nologies have given rise to hundreds of millions of unlabelled TCR 
sequences8,56, linked to transcriptomics, phenotypic and functional 
information. However, these unlabelled data are not without signifi-
cant limitations. Notably, biological factors such as age, sex, ethnicity 
and disease setting vary between studies and are likely to influence 
immune repertoires. Differences in experimental protocol, sequence 
pre-processing, total variation filtering (denoising) and normalization 
between laboratory groups are also likely to have an impact: batch cor-
rection may well need to be applied57. Therefore, thoughtful approaches 
to data consolidation, noise correction, processing and annotation 
are likely to be crucial in advancing state-of-the-art predictive models.

Modelling
The exponential growth of orphan TCR data from single-cell technolo-
gies, and cutting-edge advances in artificial intelligence and machine 
learning, has firmly placed TCR–antigen specificity inference in the 

spotlight. However, we believe that several critical gaps must be 
addressed before a solution to generalized epitope specificity inference 
can be realized.

First, models whose TCR sequence input is limited to the use of 
β-chain CDR3 loops and VDJ gene codes are only ever likely to tell part 
of the story of antigen recognition, and the extent to which single 
chain pairing is sufficient to describe TCR–antigen specificity remains 
an open question. Structural58 and statistical59 analyses suggest that 
α-chains and β-chains contribute equally to specificity, and incorpo-
rating both chains has improved predictive performance44. However, 
chain pairing information is largely absent (Fig. 2a), and many state-of-
the-art SPMs and UCMs rely on single chain information alone (Table 1). 
Although CDR3 loops may be primarily responsible for antigen recogni-
tion, residues from CDR1, CDR2 and even the framework region of both 
α-chains and β-chains may be involved58. Subtle compensatory changes 
in interaction networks between peptide–MHC and TCR, altered bind-
ing modes and conformational flexibility in both TCR and MHC may 
underpin TCR cross-reactivity60,61. Explicit encoding of structural 
information for specificity inference has until recently been limited to 
studies of a limited set of crystal structures19,62. However, the advent of 
automated protein structure prediction with software programs such 
as RoseTTaFold, ESMFold and AlphaFold-Multimer provide potential 
opportunities for large-scale sequence and structure interpretations 
of TCR epitope specificity63–65. This has been illustrated in a recent 
preprint in which a modified version of AlphaFold-Multimer has been 
used to identify the most likely binder to a given TCR, achieving a mean 
ROC-AUC of 82% on a small pool of eight seen epitopes66.

To train models, balanced sets of negative and positive samples are 
required. In the absence of experimental negatives, negative instances 
may be produced by shuffling or drawing randomly from healthy donor 
repertoires9. However, these approaches assume, on the one hand, 

Box 2

Implications of accurate TCR specificity prediction
The ability to accurately predict the cognate ligand of a given T cell 
receptor (TCR) or antigen–MHC complex has important implications 
for the design of new therapies and vaccines and our understanding 
of the biological role of T cells in health and disease38.

In oncology, T cell antigen recognition has become the focus 
of new drug development efforts, including checkpoint inhibitors, 
chimeric antigen receptor (CAR) T cells, endogenous or affinity-
enhanced TCRs, and cancer vaccines105. Cross-reactivity in TCR-
based T cell therapies has presented a major roadblock to the 
development of safe interventions, and gaps in preclinical screening 
have led to tragedies in the clinic106. Accurate and generalizable 
specificity inference could provide an additional safety net to robust 
experimental screens, predicting likely autoreactivity for a given 
patient population in oncology and beyond107,108.

Beyond the implications for new medicines development, 
there is significant potential to use predictive tools to dissect the 
fundamental role of T cells in the surveillance of malignancy. For 
example, there are reports of the accumulation of clones with driver 
mutations in sun-exposed skin109, but the extent to which mutational 

burden is reflected in TCR repertoires is not well understood110. 
Exhausted cytotoxic CD8+ T cells have long been known to be a 
hallmark of an inefficient antitumour immune response111–113. However, 
although early data are emerging114,115, we do not yet fully know 
whether T cells with particular antigen specificity are more likely to 
be exhausted.

For infectious diseases such as SARS-CoV-2, predictors of T cell 
specificity could be of great use in understanding the magnitude 
and dynamics of antigen-specific T cell responses to the disease116 
and vaccination117. However, there remains a significant opportunity 
to improve open-source systems immunology tools for confident 
linkage of T cell antigen specificity to differential vaccine-induced 
response.

Linkage of expanded effector T cell populations to their cognate 
self-antigen will also provide vital diagnostic clues as to disease 
aetiology of autoimmune conditions. This is exemplified by a recent 
longitudinal study that demonstrated an association between 
Epstein–Barr virus infection and the incidence of multiple sclerosis, 
supportive of new vaccine development118.
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that TCRs do not cross-react and, on the other hand, that the healthy 
donor repertoires do not include sequences reactive to the epitopes of 
interest. A recent study from Jiang et al.67 provides interesting strategies 
to address this challenge.

Finally, developers should use the increasing volume of function-
ally annotated orphan TCR data to boost performance through transfer 
learning: a technique in which models are trained on a large volume of 
unlabelled or partially labelled data, and the patterns learnt from those 
data sets are used to inform a second predictive task. This technique has 
been widely adopted in computational biology, including in predictive 
tasks for T and B cell receptors49,66,68. Indeed, the best-performing con-
figuration of TITAN made used a TCR module that had been pretrained 
on a BindingDB database (see Related links) of 471,017 protein–ligand 
pairs12. Incorporating evolutionary and structural information through 
sequence and structure-aware representations of the TCR and of the 
antigen–MHC complex69,70 may yield further benefits.

Immunology
It is now evident that the underlying immunological correlates of T cell 
interaction with their cognate ligands are highly variable and only 
partially understood, with critical consequences for model design. 
Importantly, TCR–antigen specificity inference is just one part of the 
larger puzzle of antigen immunogenicity prediction16,18, which we con-
dense into three phases: antigen processing and presentation by MHC, 
TCR recognition and T cell response.

Antigen processing and presentation pathways have been exten-
sively studied, and computational models for predicting peptide bind-
ing affinity to some MHC alleles, especially class I HLAs, have achieved 
near perfect ROC-AUC15,71 for common alleles. However, this problem 
is far from solved, particularly for less-frequent MHC class I alleles and 
for MHC class II alleles7.

A key challenge to generalizable TCR specificity inference is that 
TCRs are at once specific for antigens bearing particular motifs and 
capable of considerable promiscuity72,73. This contradiction might be 
explained through specific interaction of conserved ‘hotspot’ residues 
in the TCR CDR loops with corresponding two to three residue clus-
ters in the antigen, balanced by a greater tolerance of variations in 
amino acids at other positions60. TCRs may also bind different antigen–
MHC complexes using alternative docking topologies58. Despite the 
known potential for promiscuity in the TCR, the pre-processing stages 
of many models assume that a given TCR has only one cognate epitope. 
Another under-explored yet highly relevant factor of T cell recogni-
tion is the impact of positive and negative thymic selection and more 
specifically the effect of self-peptide presentation in formation of the 
naive immune repertoire74.

Many groups have attempted to bypass this complexity by pre-
dicting antigen immunogenicity independent of the TCR14, as a direct 
mapping from peptide sequence to T cell activation. However, simi-
lar limitations have been encountered for those models as we have 
described for specificity inference. Many predictors are trained using 
epitopes from the Immune Epitope Database labelled with readouts 
from single time points7. However, Achar et al.75 illustrated that inte-
grating cytokine responses over time improved prediction of qual-
ity. Antigen load and affinity can also play important roles74,76. Thus, 
models capable of predicting functional T cell responses will likely 
need to bridge from antigen presentation to TCR–antigen recogni-
tion, T cell activation and effector differentiation and to integrate 
complex tissue-specific cytokine, cell phenotype and spatiotem-
poral data sets. Our view is that, although T cell-independent pre-
dictors of immunogenicity have clear translational benefits, only 
after we can dissect the relative contribution of the three stages 
described earlier will we understand what determines antigen  
immunogenicity.

C A S S G G T P G F –

C1
2
3
4
5
6
–
–
–
–
–
–
–

A S S G G T P G F –

TCR sequences

TCR sequences Clustering Analysis and 
specificity 
inference

pMHC-1

pMHC Predictive model →
Hidden layers

Labelled pMHC
dextramer

TCR

Large synthetic
pMHC library

MHC
class I
and
class II

Recombinant
TCR

Enriched
cognate pMHC

pMHC-labelled 
T cells

Polyclonal
T cell sample

Synthetic peptide library screens

Predicted 
pMHC 
binding

pMHC-2
pMHC-3
pMHC-N

c  Unsupervised clustering models

b  Supervised predictive models

a  Multiplex analysis of pMHC–TCR binding

+

+

CA GGG G T
C MASS D P

I G GD
S SS NRKALFI

E
TQD

S
Q
P
K

K

T LI
E

W A NQ YF

CASA
A

R G
G

O

G

Y
T

E

N

ND
T
T

T
T

US
S

ASSLGGGNYYEEEIMM
EQ
A
L
Y

Y
HFC

T T

F
F
N

N

C FFEAT

Fig. 3 | Screening and computational methods. a, Multiplex analysis of T 
cell receptor (TCR)–peptide–MHC (pMHC) antigen specificity and synthetic 
peptide library screens for interrogation of peptide specificity of a single 
TCR. b, Representation of a deep neural network for supervised prediction of 
TCR–antigen specificity. c, Unsupervised clustering analysis of TCR–antigen 
specificity showing (centre) an example clustering visualization and (right) 
complementarity-determining loop 3 sequence logos.

https://www.bindingdb.org/rwd/bind/index.jsp


Nature Reviews Immunology

Perspective

New experimental and computational techniques that permit the 
integration of sequence, phenotypic, spatial and functional informa-
tion and the multimodal analyses described earlier provide promising 
opportunities in this direction75,77. Integrating TCR sequence and cell-
specific covariates from single-cell data has been shown to improve 
performance in the inference of T cell antigen specificity48. By taking a 
graph theoretical approach, Schattgen et al.78 reported an association 
between clonotype clustering with the cellular phenotypes derived 
from gene expression and surface marker expression. We believe that 
such integrative approaches will be instrumental in unlocking the 
secrets of T cell antigen recognition.

Conclusions and call to action
Together, the limitations of data availability, methodology and immu-
nological context leave a significant gap in the field of T cell immu-
nology in the era of machine learning and digital biology. We believe 
that by harnessing the massive volume of unlabelled TCR sequences 
emerging from single-cell data, applying data augmentation techniques 
to counteract epitope and HLA imbalances in labelled data, incorpo-
rating sequence and structure-aware features and applying cutting-
edge computational techniques based on rich functional and binding 
data, improvements in generalizable TCR–antigen specificity inference 

are within our collective grasp. To aid in this effort, we encourage the 
following efforts from the community.

First, a consolidated and validated library of labelled and unlabelled 
TCR data should be made available to facilitate model pretraining and 
systematic comparisons. Second, a coordinated effort should be made 
to improve the coverage of TCR–antigen pairs presented by less common 
HLA alleles and non-viral epitopes. We encourage the continued publi-
cation of negative and positive TCR–epitope binding data to produce 
balanced data sets. Third, an independent, unbiased and systematic 
evaluation of model performance across SPMs, UCMs and combina-
tions of the two (Table 1) would be of great use to the community. Such a 
comparison should account for performance on common and infrequent 
HLA subtypes, seen and unseen TCRs and epitopes, using consistent 
evaluation metrics including but not limited to ROC-AUC and area under 
the precision–recall curve. We encourage validation strategies such 
as those used in the assessment of ImRex and TITAN9,12 to substantiate 
model performance comparisons. In the future, TCR specificity inference 
data should be extended to include multimodal contextual information 
as a means of bridging from TCR binding to immunogenicity prediction.

The scale and complexity of this task imply a need for an interdisci-
plinary consortium approach for systematic incorporation of the latest 
immunological understandings of cellular immunity at the tissue level 

Glossary

Area under the receiver-
operating characteristic curve
(ROC-AUC). ROC-AUC and the area 
under the precision–recall curve (PR-
AUC) are measures of model tendency 
to different classes of error. These plots 
are produced for classification tasks 
by changing the threshold at which a 
model prediction falling between zero 
and one is assigned to the positive label 
class, for example, predicted binding 
of a given T cell receptor–antigen pair. 
ROC-AUC is the area under the line 
described by a plot of the true positive 
rate and false positive rate. ROC-AUC is 
typically more appropriate for problems 
where positive and negative labels are 
proportionally represented in the input 
data. PR-AUC is the area under the line 
described by a plot of model precision 
against model recall. PR-AUC is typically 
more appropriate for problems in which 
the positive label is less frequently 
observed than the negative label.

Library-on-library screens
Experimental screens that permit 
analysis of the binding between large 
libraries of (for example) peptide–
MHC complexes and various T cell 
receptors.

Machine learning models
A broad family of computational and 
statistical methods that aim to identify 
statistically conserved patterns within 
a data set without being explicitly 
programmed to do so. Machine learning 
models may broadly be described as 
supervised or unsupervised based 
on the manner in which the model is 
trained. Many recent models make use 
of both approaches.

Neural networks
A family of machine learning models 
inspired by the synaptic connections of 
the brain that are made up of stacked 
layers of simple interconnected models. 
Although each component of the 
network may learn a relatively simple 
predictive function, the combination of 
many predictors allows neural networks 
to perform arbitrarily complex tasks 
from millions or billions of instances. 
Neural networks may be trained using 
supervised or unsupervised learning 
and may deploy a wide variety of 
different model architectures. Deep 
neural networks refer to those with more 
than one intermediate layer.

Shuffling
In the absence of experimental negative 
(non-binding) data, shuffling is the act of 
assigning a given T cell receptor drawn 
from the set of known T cell receptor–
antigen pairs to an epitope other than 
its cognate ligand, and labelling the 
randomly generated pair as a negative 
instance.

Supervised learning
Models that learn a mathematical 
function mapping from an input to 
a predicted label, given some data 
set containing both input data and 
associated labels. Common supervised 
tasks include regression, where the 
label is a continuous variable, and 
classification, where the label is a 
discrete variable.

Synthetic peptide display 
libraries
Experimental systems that make use of 
large libraries of recombinant synthetic 
peptide–MHC complexes displayed by 
yeast30, baculovirus32 or bacteriophage33 
or beads35 for profiling the sequence 
determinants of immune receptor 
binding. Peptide diversity can reach 
109 unique peptides for yeast-based 
libraries.

Training data
The training data set serves as an input 
to the model from which it learns some 
predictive or analytical function.

Unsupervised learning
Models that learn to assign input data 
to clusters having similar features, 
or otherwise to learn the underlying 
statistical patterns of the data. Unlike 
supervised models, unsupervised 
models do not require labels. Common 
unsupervised techniques include 
clustering algorithms such as K-means; 
anomaly detection models and 
dimensionality reduction techniques 
such as principal component analysis80 
and uniform manifold approximation 
and projection.

Validation
Analysis done using a validation data 
set to evaluate model performance 
during and after training. A given set 
of training data is typically subdivided 
into training and validation data, for 
example, in an 80%:20% ratio. Models 
may then be trained on the training data, 
and their performance evaluated on the 
validation data set.
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Table 1 | A non-exhaustive list of supervised and unsupervised models for inference of TCR epitope specificity published 
since 2020

Model Date TCR chain input Training data Method Availability

Supervised predictive models

ATM-TCR81 07/2022 Single IEDB7

McPas-TCR6

VDJdb5

DNN-SPM https://github.com/Lee-CBG/ATM-TCR

ImmuneML82 11/2021 Paired Heikkila83

VDJdb5

DNN-SPM https://immuneml.uio.no/

NetTCR2 (ref. 44) 10/09/2021 Single or paired IEDB7

VDJdb5

10×84

DNN-SPM https://services.healthtech.dtu.dk/service.php?NetTCR-2.0

SwarmTCR85 07/09/2021 Single or paired IEDB7

VDJdb5

Private

SPM https://github.com/thecodingdoc/SwarmTCR

ImRex9 07/2021 Single VDJdb5

Dean86

DNN-SPM https://github.com/pmoris/ImRex

Luu et al.43 04/2021 Single IEDB7

McPas-TCR6

PIRD87

VDJdb5

DNN-SPM https://github.com/jssong-lab/TCR-Epitope-Binding

TCRGP88 03/2021 Single or paired Dash et al.54

VDJdb5

SPM https://github.com/emmijokinen/TCRGP

TcellMatch48 08/2020 Paired IEDB7

VDJdb5

10×84

DNN-SPM https://github.com/theislab/tcellmatch

SETE89 06/2020 Single Dash et al.54

VDJdb5

SPM https://github.com/wonanut/SETE

Unsupervised clustering modelsa

ClusTCR55 12/2021 Single or paired VDJdb5

Emerson23

UCM https://github.com/svalkiers/clusTCR

TCRdist3 (ref. 11) 11/2021 Single or paired Dash et al.54

Nolan8

Snyder90

VDJdb5

UCM https://github.com/kmayerb/tcrdist3/

GIANA51 08/2021 Single Dash et al.54

Glanville et al.19

IEDB7

VDJdb5

Zhang et al.91

UCM https://github.com/s175573/GIANA

GLIPH2 (ref. 10) 04/2020 Single or paired Private
VDJdb5

UCM http://50.255.35.37:8080/

iSMART92 03/2020 Single Emerson23

VDJdb5

TCGA

UCM https://github.com/s175573/iSMART

Other

TCRDock66 08/2022 Paired BFD70

PDB93

Pre-trained DNN and 
DNN-SPM

https://github.com/phbradley/TCRdock

TCR-BERT49 11/2021 Single PIRD87

VDJdb5

TCRdb94

Pre-trained DNN and 
DNN-SPM

https://huggingface.co/wukevin/tcr-bert

TITAN12 07/2021 Single BindingDB95

VDJdb5

ImmuneCODE96

Pre-trained DNN and 
DNN-SPM

https://github.com/PaccMann/TITAN

https://github.com/Lee-CBG/ATM-TCR
https://immuneml.uio.no/
https://services.healthtech.dtu.dk/service.php?NetTCR-2.0
https://github.com/thecodingdoc/SwarmTCR
https://github.com/pmoris/ImRex
https://github.com/jssong-lab/TCR-Epitope-Binding
https://github.com/emmijokinen/TCRGP
https://github.com/theislab/tcellmatch
https://github.com/wonanut/SETE
https://github.com/svalkiers/clusTCR
https://github.com/kmayerb/tcrdist3/
https://github.com/s175573/GIANA
http://50.255.35.37:8080/
https://github.com/s175573/iSMART
https://github.com/phbradley/TCRdock
https://huggingface.co/wukevin/tcr-bert
https://github.com/PaccMann/TITAN
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and cutting-edge developments in the field of artificial intelligence and 
data science. This should include experimental and computational 
immunologists, machine-learning experts and translational and indus-
trial partners. Considering the success of the critical assessment of 
protein structure prediction series79, we encourage a similar approach 
to address the grand challenge of TCR specificity inference in the 
short term and ultimately to the prediction of integrated T and B cell 
immunogenicity. Competing models should be made freely available 
for research use, following the commendable example set in protein 
structure prediction65,70.

Published online: xx xx xxxx
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