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Arousal state affects neural activity and vascular dynamics in the cortex, with sleep associated with large changes in the local
field potential and increases in cortical blood flow. We investigated the relationship between pupil diameter and blink rate with
neural activity and blood volume in the somatosensory cortex in male and female unanesthetized, head-fixed mice. We monitored
these variables while the mice were awake, during periods of rapid eye movement (REM), and non-rapid eye movement (NREM)
sleep. Pupil diameter was smaller during sleep than in the awake state. Changes in pupil diameter were coherent with both
gamma-band power and blood volume in the somatosensory cortex, but the strength and sign of this relationship varied with
arousal state. We observed a strong negative correlation between pupil diameter and both gamma-band power and blood volume
during periods of awake rest and NREM sleep, although the correlations between pupil diameter and these signals became positive
during periods of alertness, active whisking, and REM. Blinking was associated with increases in arousal and decreases in blood
volume when the mouse was asleep. Bilateral coherence in gamma-band power and in blood volume dropped following awake
blinking, indicating a reset of neural and vascular activity. Using only eye metrics (pupil diameter and eye motion), we could
determine the arousal state of the mouse (‘Awake,’ ‘NREM,’ ‘REM’) with .90% accuracy with a 5 s resolution. There is a
strong relationship between pupil diameter and hemodynamics signals in mice, reflecting the pronounced effects of arousal
on cerebrovascular dynamics.
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Significance Statement

Determining arousal state is a critical component of any neuroscience experiment. Pupil diameter and blinking are influenced
by arousal state, as are hemodynamics signals in the cortex. We investigated the relationship between cortical hemodynamics
and pupil diameter and found that pupil diameter was strongly related to the blood volume in the cortex. Mice were more
likely to be awake after blinking than before, and blinking resets neural activity. Pupil diameter and eye motion can be used
as a reliable, noninvasive indicator of arousal state. As mice transition from wake to sleep and back again over a timescale of
seconds, monitoring pupil diameter and eye motion permits the noninvasive detection of sleep events during behavioral or
resting-state experiments.

Introduction
The dynamics of the eyes convey information about mental state.
In addition to their respective roles in controlling light levels and
protecting the eye, pupil diameter and blinking give information
about the state of neural activity in the brain (Strauch et al.,

2022). However, for measures of pupil diameter and blinking to
be useful, we must understand their relationship to neural and
vascular physiology. Pupil dilations are associated with higher
levels of arousal during the awake state (Hess and Polt, 1964;
Kahneman and Beatty, 1966; Yoss et al., 1970; Morad et al.,
2000; Drew et al., 2001; Onorati et al., 2013) and correlate with
increased sympathetic activity (Bradley et al., 2008). The pupil
will usually dilate when a subject is performing a task or making
a decision (Hakerem and Sutton, 1966; Einhäuser et al., 2010;
Gilzenrat et al., 2010; Nassar et al., 2012; Burlingham et al.,
2022), and recent rodent work has shown that pupil diameter
fluctuations temporally track cortical state (Reimer et al., 2014;
McGinley et al., 2015; Vinck et al., 2015). In both rodents and
primates, pupil dilation reflects noradrenergic tone in the cor-
tex as well as activity in the locus ceruleus (LC; Preuschoff et
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al., 2011; Joshi et al., 2016; Reimer et al., 2016; Larsen and
Waters, 2018). In addition to its effects on neurons, noradren-
ergic input from the LC causes vasoconstriction of cortical
arteries (Bekar et al., 2012). LC activity and noradrenergic tone
provides a potential mechanism for coupling arousal to cortical
hemodynamics (Pisauro et al., 2016), as changes in pupil diam-
eter are also correlated with blood-oxygen-level-dependent
(BOLD) signals seen in neuromodulatory centers during func-
tional magnetic resonance imaging (fMRI; Pais-Roldan et al.,
2020; Sobczak et al., 2021). Both head-fixed and freely behaving
mice frequently sleep with their eyes open (Yüzgeç et al., 2018;
Karimi Abadchi et al., 2020; Turner et al., 2020; Senzai and
Scanziani, 2022). Pupil diameter decreases during sleep and
can be used to detect sleep events on a minute-to-minute
timescale (Yüzgeç et al., 2018; Karimi Abadchi et al., 2020),
making it a particularly useful metric for attention and be-
havioral monitoring.

Blink rate is influenced by mental state and fatigue (Holland
and Tarlow, 1972; Stern et al., 1994; Nakamori et al., 1997; Van
Orden et al., 2001). Humans blink every few seconds (Stern et
al., 1984), although blinking is less frequent in rodents (Kaminer
et al., 2011). Blink rate is modulated by dopaminergic tone
(Karson, 1983) and is higher in individuals with schizophre-
nia (Karson, 1979; Karson et al., 1990). Blinking causes brief
decreases in neural activity in visual areas that are similar to
transient darkening (Gawne and Martin, 2000; Golan et al.,
2016). However, blinking also drives BOLD signals in the
visual cortex (Bristow et al., 2005a,b; Hupé et al., 2012) and
somatosensory regions (Guipponi et al., 2015), and blinks
are correlated with BOLD activity in the default mode network
(Nakano et al., 2013). Blinking is correlated with changes in
neural and vascular dynamics across the brain, although
the correlates of blinking with arousal are not as well
understood.

To better understand how pupil diameter and blinking relate
to neural activity and cortical hemodynamics across arousal
states, we analyzed videos of the eye with concurrent monitoring
of neural activity and blood volume in the somatosensory cortex
of head-fixed mice of both sexes. We investigated the relation-
ship between spontaneous changes in pupil diameter and
these physiological signals during the awake state, as well as
during rapid eye movement (REM) and non-rapid eye move-
ment (NREM) sleep. We also tracked how neural activity and
cortical blood volume changed around blinking events. Using
only changes in pupil diameter and eye position, we found
that we can accurately detect and categorize REM and NREM
sleep events on a timescale of seconds, providing a simple and
robust measure of arousal for studies using eye monitoring in
rodents.

Materials and Methods
Data presented here are from 22 C57BL/6J mice (12 males between the
ages of 3 and 8months; The Jackson Laboratory). Data from 14 of these
mice were previously published (Turner et al., 2020), and we have added
imaging/recordings from an additional eight mice. We obtained a total
of 442.75 h of data (20.1 6 5.3 h per mouse) of naturally occurring
‘Awake’ (61.4 6 17.3%), ‘NREM’ sleep (34.2 6 16.1%), and ‘REM’ sleep
(4.46 2.8%) data.

Arousal state nomenclature. Capitalized italics (Rest, NREM, REM,
Alert, Asleep, and All) denote arousal states with specific inclusion crite-
ria. Capitalized nonitalics with single quotes refer to individual 5 s labels
of arousal state classified using a machine learning algorithm (‘Awake,’
‘NREM,’ ‘REM’), and we use the term ‘Asleep’ (nonitalicized) to refer to
events classifications as either ‘NREM’ or ‘REM’ (see Figs. 4, 5). When

generally discussing arousal state in all other contexts, we use the terms
awake, sleep, NREM sleep, REM sleep, and so on with no italics or other
indicators.

Animal procedures. This study was performed in accordance with
the recommendations of the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health. All procedures were per-
formed in accordance with protocols approved by the Institutional
Animal Care and Use Committee of Pennsylvania State University
(Protocol no. 201042827). A head bar, as well as cortical, hippocampal,
and nuchal muscle electrodes along with bilateral polished and rein-
forced thinned-skull windows (Drew et al., 2010; Shih et al., 2012; Zhang
et al., 2022b) were surgically implanted under isoflurane anesthesia (5%
induction, 2% maintenance). Detailed surgical procedures have been
previously described (Winder et al., 2017; Turner et al., 2020; Mirg et al.,
2022a,b). Following surgery, animals were housed individually on a 12 h
light/dark cycle (lights on at 7:00 A.M.) with food and water ad libitum.
Each animal was gradually acclimated to head fixation in the weeks fol-
lowing recovery. Following the conclusion of imaging experiments, ani-
mals were deeply anesthetized and transcardially perfused with heparin-
saline followed by 4% paraformaldehyde for histologic verification of elec-
trode placement (Drew and Feldman, 2009; Adams et al., 2018).

Physiologic data acquisition. Data were acquired with a custom
LabVIEW program (National Instruments; https://github.com/DrewLab/
LabVIEW-DAQ). For details on intrinsic optical signal (IOS) imaging,
electromyography (EMG), electrophysiology, whisker stimulation, and be-
havioral measurements (Turner et al., 2020; Zhang et al., 2022b). Previous
work from our lab has shown that the intrinsic signal is not affected by
skull/brain movement or other motion artifacts. In previously published
experiments (Winder et al., 2017), we looked at reflectance changes in a
piece of clay mounted over the cranial window, which would be sensitive
to any motion artifacts as well as any other nonhemodynamic noise sour-
ces. The reflectance changes were on the order of 0.01%, much smaller
than the ;20% changes in reflectance (DR/R) we see during sleep.
Furthermore, two-photon imaging from our lab of mice running
on a treadmill (Gao and Drew, 2014; Echagarruga et al., 2020)
showed ;2 mm of brain/skull motion during locomotion (a more
extreme imaging condition than presented here), which is too
small to have an impact on the IOS. IOS reflectance was converted
to changes in total hemoglobin (D[HbT]) using the Beer–Lambert
law (Ma et al., 2016a, b). Data were acquired in 15 min intervals
with a,1 min gap in between for saving data to disk. The vibrissae
(left, right, or a third air puffer not directed at the body as an audi-
tory control) were randomly stimulated with air puffs [0.1 s, 10
pounds force per square inch (PSI)] occurring every 30–45 s for
the first ;1 h of imaging.

Pupil diameter measurement. The pupil was illuminated with 780 nm
light measured at 0.02–0.05 mW/mm2 on a Standard Photodiode Power
Sensor (catalog #S120VC, Thorlabs) as mice are functionally blind to
these wavelengths (Breuninger et al., 2011; Chang et al., 2013). To prevent
constriction of the pupil by the illumination for IOS, a dichroic mirror
located above the head was used to block as much of the IOS illumination
from the eyes as possible so that the mouse was only exposed to a faint
glow in its periphery (0.002–0.005 mW/mm2) with no visible wavelength
light shining directly into its eyes. We did not try to eliminate all green
light reaching the eye because green light has sleep-promoting effects
(Pilorz et al., 2016). However, we did not quantify the pupil diameter in
complete darkness as higher baseline dilations would result in the pupil
edges being obscured by the eyelid. All pupil diameter measurements
were verified by manual inspection (K.L.T.).

Automated pupil diameter measurement and blink detection. Pupil
diameter was extracted from videos of the eye taken using a Basler GigE
ace acA640-120gm camera with a 75 mm double Gauss, fixed focal
length lens (catalog #54-691, Edmond Optics) at 30 frames/s. Our pupil
detection algorithm was adapted from the thresholding in Radon space
(TiRS) algorithm developed to determine vessel cross sections (Gao and
Drew, 2014). The sclera and pupil were defined as the area within a user-
selected region of interest (ROI) created by outlining the first frame with
the eye fully open. Images were inverted so that the pupil had the maxi-
mal intensity and were 2-D median filtered [(5,5) x, y pixel median]. The
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pixel intensity distribution was fit with a normal distribution using max-
imum likelihood estimation (MLE), and pixels above a user-defined
threshold (average of 1 6 0.25 SDs from the MLE mean) were set to
one, and all other pixel intensities were set to zero. The binarized image
was then converted to Radon space and normalized within each projec-
tion angle (Gao and Drew, 2014). A second threshold was applied before
conversion back to image space, and any holes within the filtered pupil
object were filled. Framewise pupil area was then calculated using a
boundary classification algorithm. Occasional obstructions of the pupil
(by a vibrissae) were identified by detecting rapid fluctuations in pupil
area. For these frames, the threshold used for thresholding in Radon
space was iteratively decreased until the pixel area was within framewise
change boundaries. Any periods where the pupil was obscured or other-
wise unmeasurable were discarded from analysis. The TiRS algorithm
was developed to detect small changes in the area of an ellipse (Gao and
Drew, 2014). Other techniques, including using a deep neural network
such as DeepLabCut (Mathis et al., 2018), can be used to track the pupil
diameter and position as well (Privitera et al., 2020), although this
requires training the network. Although the pupil was slightly elliptical
in appearance because of the angle of the camera and movement of the
eye, the correlation between the major and minor axis of the area of the
object was 0.96 6 0.02 (N = 22 mice), indicating the ellipse at the pupil
boundary does not appreciably change shape, only size. The area (A) was
used to calculate the diameter (d) of the pupil using the formula
d ¼ 2

ffiffiffiffiffiffiffiffiffiffi
A=p

p
. The following MATLAB functions were used: roipoly,

medfilt2, imcomplement, mle, pdf, radon, iradon, bwboundaries, bwconv-
hull, imfill, regionprops, diff, fillmissing.

Blink detection. Blinking was detected independently of pupil diame-
ter from the same ROI as used for pupil diameter measurements. Rapid
changes in eyelid motion were detected by using the sum of pixel inten-
sities within the user-defined ROI. The intensity of all pixels for each
frame (sclera and pupil) were summed, and a frame-to-frame ROI inten-
sity difference was calculated. As the eyelid obscures the pupil during
blinks, rapid changes in overall pixel intensity corresponded to eyelid
movements. A threshold was applied to binarize changes in luminance
across frames, and blinking events were extracted as above thresholded
changes in image intensity. As mice frequently blinked several times in
rapid succession, blinking events that occurred with,1 s between them
were concatenated into a single blinking bout. Periods where a false-pos-
itive blink was detected, such as from the eye only partially closing, were
also discarded. All detected blinking events were verified by manual
inspection (K.L.T.).

Electrophysiological analysis. Discrete LFP bands were digitally band-
pass filtered from the broadband data using a third-order Butterworth
filter into the following bands: delta [1–4Hz], theta [4–10Hz], alpha [10–
13Hz], beta [13–30Hz], and gamma [30–100Hz]. The filtered signal was
then squared, low-pass filtered,10Hz, and resampled at 30Hz. Time-fre-
quency spectrograms were calculated using the Chronux toolbox version
2.12 v03 (Bokil et al., 2010), function mtspecgramc with a 5 s window and
1/5 s step size using [5,9] tapers and a passband of 1–100Hz to encompass
the LFP. EMG (300–3 kHz) from the nuchal (neck) muscles was bandpass
filtered, squared, convolved with a Gaussian kernel with 0.5 s SD, log
transformed, and then resampled at 30Hz. MATLAB functions used were
butter, zp2sos, filtfilt, gausswin, log10, conv, resample.

Sleep scoring. Sleep states were scored consistent with previously
published criteria (Cirelli, 2009; Weber and Dan, 2016; Saper and Fuller,
2017). NREM sleep is marked by predominantly elevated cortical delta-
band power and lower EMG power during slow-wave (REM sleep;
Steriade et al., 1993; Amzica and Steriade, 1998). REM sleep is marked by
elevated hippocampal theta-band power and elevated cortical gamma-
band power with even further reduced EMG power (muscle atonia;
Cantero et al., 2004; Montgomery et al., 2008; Le Van Quyen et al., 2010;
Sullivan et al., 2014). Periods of user-verified awake rest .5 s in duration
with no whisker stimulation, no whisker motion, and no detectable body
motion were identified and used baseline characterization of all signals as
well as for z-scoring the pupil. Sleep scoring was performed as in Turner
et al. (2020). Every 5 s interval was classified as either Awake, NREM sleep,
or REM sleep using a bootstrap aggregating random forest model with the
predictors of cortical delta FP, cortical beta LFP, cortical gamma LFP,

hippocampal theta LFP, EMG power, heart rate, and whisking duration.
Sleep model accuracy was validated using the out-of-bag error during
model training. MATLAB functions used were TreeBagger, oobError,
predict.

Pupil diameter during different arousal states. Pupil diameter was
taken from awake resting events (Rest, �10 s in duration), volitional
whisking (Whisk, 2–5 s), whisker stimulation (Stim, 0.1 s, 10 PSI to
vibrissa), NREM (�30 s), and REM (�60 s). Pupil diameter was low-
pass filtered,1Hz with a fourth-order Butterworth filter. Changes in
whisking-evoked and stimulus-evoked (contralateral, auditory) diame-
ters were taken as the change in diameter relative to the mean of the 2 s
preceding the event onset. Classifications of Alert or Asleep were taken
as 15 min periods with no whisker stimulation and at least 80% of a
given classification (Awake for Alert, NREM or REM for Asleep) within
a 15 min recording. The classification of All denotes all data taken dur-
ing periods with no sensory stimulation, independent of arousal state.
MATLAB functions used were butter, zp2sos, filtfilt.

Power spectra and coherence. Spectral power was estimated using the
Chronux toolbox (Bokil et al., 2010) function mtspectrumc. For prewhit-
ening spectra, the first derivative was taken of the mean-subtracted data
before the power calculation. Gamma-band power measurements were
scaled by a factor of 1� 1019 so that the magnitude of the neural changes
[arbitrary units (a.u.)] were more in line with those from the hemody-
namic signal for ease of comparison. Coherence analysis was run for
each data type using the Chronux function coherencyc with MATLAB
functions detrend and diff.

D[HbT]/Gamma-band power versus pupil relationship. Mean changes
in total hemoglobin (D[HbT]) or gamma-band power (DP/P), and pupil
diameter (z-units) during each arousal state classification (‘Awake,’
‘NREM,’ ‘REM’) was plotted as a 2D histogram to highlight clustering in
each class. Each classification was assigned a color, and the three images
were merged as a composite in Fiji (ImageJ) software. MATLAB func-
tion used was histogram2.

Cross-correlation. Data were low-pass filtered,1Hz using a fourth-
order Butterworth filter and mean subtracted. Cross-correlation analysis
was run for each arousal state with either a6 5 s lag (Rest, NREM, REM)
or6 30 s lag (Alert, Asleep, All) depending on duration of the behavioral
state. MATLAB functions used were xcorr, filtfilt, and detrend.

Interblink interval and blink-associated physiology. Because of gaps
in recording to save the data to disk, interblink interval was calculated
between blinks occurring within 15 min records and not blinks on the
edges of trials. Blinks that occurred within 1 s of each other were linked
together as blinking bouts, and all blink-triggered analyses were with
respect to the first blink in a series. Blink-triggered averages were sepa-
rated into two groups depending on the arousal state classification of the
5 s bin before the blink, being either Awake (arousal state classification
of Awake) or Asleep (arousal state classification being either NREM or
REM).

Probability of sleep as a function of pupil diameter. The probability
of being in each arousal state (‘Awake,’ ‘NREM,’ ‘REM’) as a function of
pupil diameter was obtained from the mean diameter during each 5 s
sleep score and binning the value into a histogram, which was then
smoothed with a median filter and Savitzky–Golay filter. MATLAB
functions used were medfilt1 and sgolayfilt.

Tracking of pupil location. Motion of the pupil was tracked by
using the X and Y coordinates of the centroid obtained during pupil
tracking and comparing the change in position to the baseline posi-
tion during Rest. Frame-by-frame changes in centroid location were
low-pass filtered,10Hz using a fourth-order Butterworth filter.
Motion of the eye was evaluated during each arousal state classifica-
tion (Awake, NREM, REM) by taking the cumulative sum of the abso-
lute change in centroid position within each 5 s bin. Transitions
between among states (‘Awake,’ ‘NREM,’ ‘REM’) for pupil diameter,
position, and motion were extracted from arousal classifications with
30 s of consecutive classifications of one state followed by 30 s of
another.

Eye, Physiological, and Combined model comparison. The Eye Model
was trained using only eye metrics, pupil diameter (mean, variance, min-
imum of both z-unit and mm diameter), position (mean, variance, and
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maximum displacement of the x, y centroid), and motion (sum, variance
of the absolute velocity of the centroid) from data with open eyes. The
Physiological Model was trained using non-eye-based measures (cortical
delta power, hippocampal theta power, EMG, and so on (Turner et al.,
2020) from the same data so that the training/testing sets were identical
among models. The Combined Model used a union of all parameters
from both models. Each model used was trained using a bagged random
forest composed of 128 decision trees, with out-of-bag error and confu-
sion matrices from each animal being calculated at the time of model
training using a 70–30 (training/testing) split of randomly shuffled
labels taken from each arousal state. MATLAB functions used were
TreeBagger, oobError, predict, and confusionchart.

Experimental design and statistical analysis. Researchers were not
blind to the experimental conditions or data analysis. Sample sizes are
consistent with those of previously published studies (Huo et al., 2015;
Winder et al., 2017; Echagarruga et al., 2020; Turner et al., 2020).
Statistical evaluations were made using either generalized linear mixed-
effects (GLME) models with the arousal state as a fixed effect, mouse
identity as a random effect, and hemisphere [left/right (L/R), if applica-
ble] as an interaction with the animal ID, or using a paired t test where
appropriate. Unless otherwise stated, statistical results report p values
from a GLME test. All reported quantifications are mean 6 SD unless
otherwise indicated. Unless otherwise noted, all pupil diameter measure-
ments are in z-units. MATLAB functions used were fitglme, t test.

Data availability. Data and sample files for running the pupil
tracking algorithm are available at doi:10.5061/dryad.05qfttf5w and
analysis code is available at https://github.com/DrewLab/Turner-
JNeurosci2022. Data were analyzed with code written by K.L.T,
K.W.G, and P.J.D. (MATLAB 2019b–2022a, MathWorks,).

Results
Unanesthetized mice were head fixed under an IOS imaging
setup (Sirotin and Das, 2009; Pisauro et al., 2013; Huo et al.,
2014; Vazquez et al., 2014; Winder et al., 2017) with concurrent
electrophysiology to measure changes in neural activity from the
vibrissa region of the somatosensory cortex (Petersen, 2007,
2014) and hippocampal CA1. We also tracked whisker motion
(Winder et al., 2017), electromyography of the nuchal muscles
(Turner et al., 2020), and pupil diameter/blinking (Reimer et al.,
2014; Vinck et al., 2015; Reimer et al., 2016; Larsen and Waters,
2018; Fig. 1a). Using the thresholding in Radon space algorithm
(Gao and Drew, 2014), we detected the outline of pupil from
video frames (Fig. 1b–e, Movie 1) to quantify diameter changes.
Blinks were detected from rapid pupil diameter changes (Fig. 1f).
During the awake state, there are frequent bouts of whisker
motion that are correlated with increases in pupil diameter, and
the EMG has high power. The LFP has reduced low-frequency
power, and hemodynamic fluctuations have low amplitude,
except during periods of extended behavior or sensory stimu-
lation. During NREM sleep, whisker motion and EMG power
are much lower, and the pupil diameter is smaller than in the
awake state. Cortical LFP and hemodynamic signals both begin to
increase in amplitude with low-frequency oscillations in broad-
band LFP power. During REM sleep, whisker motion increases
along with eye movement, but the pupil remains constricted.
Power in the EMG is at its lowest point because of muscle atonia
(with occasional twitches), blood volume increases substantially
above both awake and NREM levels (Bergel et al., 2018), and a
prominent theta band is visible in the hippocampal LFP. A repre-
sentative example of how pupil diameter changes along with
fluctuations in D[HbT], hippocampal LFP, and other behavioral
cues during each arousal state is shown in Figure 1f and Movie 1.
As mice have been shown to sleep with their eyes open during
both head-fixed (Yüzgeç et al., 2018; Karimi Abadchi et al.,
2020; Turner et al., 2020) and freely moving (Senzai and

Scanziani, 2022) conditions, we tested whether neural activity
and hemodynamics might differ between the eyes-open and
eyes-closed instances of the REM state. We compared the
eyes-open REM sleep physiology with that obtained during a
few instances of REM sleep with eyes closed in a subset of
mice (N = 8), which was excluded from subsequent analyses
because of the inability to measure pupil diameter. The change
in total hemoglobin (D[HbT]) during REM with eyes open
(73.9 6 12.9 mM) was not significantly different from the he-
moglobin changes during REM sleep with eyes closed (76.2 6
21.2 mM, p = 0.49, paired t test). The difference in theta band
power in the hippocampus during eyes-open REM and eyes-
closed REM was also not statistically significant (1.06 6 1.11
a.u. vs 1.06 6 1.10 a.u., respectively; p = 0.96, paired t test).
The lack of detectable difference between the eyes-open and
eyes-closed sleep state suggests that whether or not eyes are
open has little impact on sleep physiology.

Quantification of pupil diameter across arousal states
To quantify how fluctuations in pupil diameter change with
arousal state, we compared the diameter of the pupil during sev-
eral distinct arousal states and behaviors. Pupil diameter was
largest during periods of arousal and smallest during sleep. To
standardize measures across animals and to account for slight
differences in baseline illumination intensity, we z-scored the pu-
pil diameter to the mean and SD during all periods of awake qui-
escence lasting at least 5 s in length. Italics denote periods
meeting our arousal state criteria. Fifteen-minute periods with at
least 80% of its model scores as ‘Awake’ were classified as Alert;
and 15 min periods with 80% of the time in ‘NREM’ or ‘REM’
sleep were classified as Asleep.Allwas all data, regardless of arousal
state. Periods with whisker stimulation were excluded from all
states. Two mice did not have any 15 min periods that met the cri-
teria for the Alert or Asleep categories (N = 20 mice included) with
the other four behaviors (Rest, NREM, REM, All) all having N =
22 mice. Rest, defined as all periods of awake quiescence lasting at
least 10 s in length, had a mean pupil diameter of 0.6 6 0.17 mm
(Fig. 2a) or �0.25 6 0.88 z-units (Fig. 2b). We used a GLME
model to compare the diameter of the pupil among states, using
the Bonferroni correction for multiple comparisons (10), which
puts the adjusted significance threshold (a) at 0.005. The mean z-
unit during Rest was nonzero because the minimum duration
used for z-scoring (5 s) was shorter than the minimum duration
for inclusion in Rest (10 s). During volitional whisking bouts last-
ing 2–5 s, pupil diameter increased to 0.896 0.17 mm (p = 2.3 �
10�19 vs Rest) or 3.396 0.88 z-units (p = 2.1 � 10�22). Following
brief stimulation of the vibrissae, pupil diameter increased to
0.75 6 0.18 mm (p = 9.2 � 10�8) or 1.95 6 1.82 z-units (p =
1.9 � 10�11). The pupil diameter decreased during NREM (.30 s
in length) to 0.35 6 0.07 mm (p = 8.1 � 10�16) or �3.43 6 0.64
z-units (p = 6.2 � 10�19) and even further during REM (.60 s in
length) to 0.26 6 0.03 mm (p = 3.2 � 10�23) or �4.56 6 0.75 z-
units (p = 2.3 � 10�27). Additional statistical comparisons for the
difference in pupil size between each arousal state can be found in
Tables 1 and 2. Periods of volitional whisking and whisker stimu-
lation caused increases in pupil diameter of 1.44 6 0.47 z-units
and 1.616 0.62 z-units, respectively. Auditory controls dilated the
pupil by 0.98 6 0.58 z-units (Fig. 2c). Note that although the z-
unit diameter was set relative to awake resting events, these
increases are with respect to changes in z-unit diameter relative to
the 2 s before event onset, which was a mixture of awake resting
and volitional behaving data of various durations.
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To look at changes in the power spectrum of the pupil diame-
ter during different arousal states, we prewhitened the pupil di-
ameter throughout analysis during periods of continuous Rest
(.10 s duration), continuous NREM (.30 s duration), continu-
ous REM (.60 s duration), and three additional longer-length
classifications (Alert, Asleep, and All) by taking the first temporal
derivative of the z-unit diameter before power estimation. Except
for REM, the prewhitened power spectra of the pupil diameter
during the longer length behaviors were similar to each other at
the lower frequencies (Fig. 2d). These findings support previous
reports that the pupil diameter increases with arousal but
decreases during periods of sleep (Yüzgeç et al., 2018; Karimi
Abadchi et al., 2020).

Relationship between pupil diameter and hemodynamic and
neural signals
We next asked how well the pupil diameter correlated with both
hemodynamic and neural signals in the somatosensory cortex of
mice both during awake behaviors and during different sleep

Eye ROI

EMG S1BF Stereotrodes

CA1 Hip
Stereotrode

a

Dichroic
Mirror

Whisker
Camera

Eye
Camera

780 nm
LED

Whisker Puffers

S1 PoRTS
Windows

-100

0

100 P/P (%
)

b

d

c

e

s 878s 287s 716s 044s 262s 041s 04

1 mm

1 mm

f

0 50 150 250
Pixel Intensity

0
0.005

0.01
0.015

0.02
0.025

0.03

Pr
ob

ab
ilit

y

MLE
Threshold

Radon in Image Space Area Overlay

0.2
0.4
0.6
0.8

1
1.2
1.4

D
ia

m
et

er
 (m

m
)

0
20
40

An
gl

e 
(d

eg
)

-4
-2
0
2 EM

G
Pow

er (a.u.)

-20
0

20
40
60
80

100

[H
bT

] (
M

)

Time (min)

1

10

Fr
eq

 (H
z) 100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CA1 Hip LFP

RH [HbT]LH [HbT]

EMGWhisker angle

Blinks
Eye Open
Diameter Awake

NREM
REM

Figure 1. Pupil diameter tracks arousal state. a, Photograph and schematic of the experimental setup. IOS imaging of the whisker portion of somatosensory cortex collected using illumination at
an isosbestic point of hemoglobin (530 or 568 nm) through bilateral polished and reinforced thinned-skull windows (PoRTS). Electrodes were implanted into layer 5 of the somatosensory cortex and
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Movie 1. Video showing pupil diameter variations across several arousal states. Detected
pupil area is in purple. [View online]
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states. For each mouse, the pupil diameter was compared with
both the neural and hemodynamic signals of the hemispheres,
yielding 2 * N measurements for each behavior. The noninde-
pendence (because of within-animal correlations) was accounted
for as an interaction term in the statistical comparison (see above,
Materials and Methods). During the ‘Awake’ state, changes
in pupil diameter and gamma-band power were small. When
the animals were in ‘REM’ and ‘NREM’ sleep, the pupil con-
stricted and gamma-band power increased substantially rela-
tive to the ‘Awake’ state (Fig. 3a). We then looked at the
coherence and the cross-correlation between the envelope of
gamma-band power (DP/P) and pupil diameter. The mini-
mum cross-correlation during Rest was �0.16 6 0.20 at a lag
of �0.07 s (Fig. 3b) and during Alert was �0.02 6 0.14 at 0.1 s
(Fig. 3c), indicating very little time difference between cortical
gamma-band and corresponding pupil diameter fluctuations
during awake behaviors. Extrema in the cross-correlation in
NREM were �0.266 0.06 at �0.1 s; REM, 0.056 0.04 at 1.53 s;
Asleep,�0.326 0.05 at�0.43 s; and All,�0.236 0.11 at�0.2 s.

We next evaluated the coherence between gamma-band
power and pupil diameter during different arousal states (using
GLMEmodels) and at two different frequencies. The specific fre-
quencies (0.02, 0.35Hz) were chosen for statistical comparison
as they were the approximate peaks in pupil–gamma power co-
herence during the Asleep and Alert behavioral states. Using the
Bonferroni correction for multiple comparisons (3 at 0.02Hz, 15
at 0.35Hz) put the adjusted significance thresholds (a) at 0.017

and 0.003, respectively. The pupil–gamma power coherence
during Alert periods at 0.02Hz was 0.34 6 0.18 (Fig. 3d,e,
Table 3), and was significantly elevated during periods of
Asleep at 0.68 6 0.09 (p = 2.4 � 10�18) and during All data at
0.48 6 0.19 (p = 2.9 � 10�5). Pupil–gamma power coherence
at 0.35Hz (Fig. 3d,f, Table 4) during periods of awake Rest
and Alert were similar at 0.26 0.1 and 0.26 0.09, respectively
(p = 0.58), similar to what is seen between the pupil diameter
and cortical neuron membrane potential (McGinley et al.,
2015). The coherence of all other arousal states at 0.35Hz was
significantly lower than those of the nonsleep states (NREM,
0.09 6 0.06, p = 2.9 � 10�13; REM, 0.14 6 0.08, p = 3.7 �
10�5; Asleep, 0.11 6 0.07, p = 9.8 � 10�9; All, 0.11 6 0.08, p =
5.3 � 10�9).

We then looked at how the relationship between pupil diam-
eter and cortical blood volume changed with arousal state.
During the ‘Awake’ state in the absence of stimulation, fluctua-
tions in pupil diameter and hemodynamic signals were small.
When the animals were in ‘REM’ and ‘NREM’ sleep, the pupil
constricted, whereas blood volume increased substantially (Fig.
3g). We then looked at the cross-correlation between D[HbT]
and pupil diameter to determine their temporal relationship.
We saw the extrema of the cross-correlation during awake Rest
was �0.37 6 0.25 at a lag of 1.13 s, such that pupil diameter
changes occurred on average 1.13 s before hemodynamic oscil-
lations, and pupil diameter was negatively correlated with blood
volume (Fig. 3h). NREM was more strongly anticorrelated than
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vide additional statistical comparisons between each arousal state in a, b.

Table 1. Statistical comparison of mean pupil diameter across arousal states (mm)

Rest Whisk Stim NREM REM

Rest ***2.3 � 10–19 ***9.2 � 10–8 ***8.1 � 10–16 ***3.2 � 10–23
Whisk ***2.3 � 10–19 ***5.4 � 10–7 ***1.2 � 10–38 ***2.8 � 10–44
Stim ***9.2 � 10–8 ***5.4 � 10–7 ***2.3 � 10–28 ***6.0 � 10–35
NREM ***8.1 � 10–16 ***1.2 � 10–38 ***2.3 � 10–28 *0.0012
REM ***3.2 � 10–23 ***2.8 � 10–44 ***6.0 � 10–35 *0.0012

Bonferroni-corrected significance levels (10), *a , 0.005, **a , 0.001, ***a , 0.0001.

Table 2. Statistical comparison of mean pupil diameter across arousal states (z-units)

Rest Whisk Stim NREM REM

Rest ***2.1 � 10–22 ***1.9 � 10–11 ***6.2 � 10–19 ***2.3 � 10–27
Whisk ***2.1 � 10–22 ***3.1 � 10–6 ***2.3 � 10–43 ***2.2 � 10–49
Stim ***1.9 � 10–11 ***3.1 � 10–6 ***1.2 � 10–34 ***1.3 � 10–41
NREM ***6.2 � 10–19 ***2.3 � 10–43 ***1.2 � 10–34 **0.00019
REM ***2.3 � 10–27 ***2.2 � 10–49 ***1.3 � 10–41 **0.00019

Bonferroni-corrected significance levels (10), *a , 0.005, **a , 0.001, ***a , 0.0001.
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Rest at �0.56 6 0.08 at 0.73 s. REM had a maximum positive
correlation of 0.24 6 0.11 at 1.97 s. The peak of the D[HbT]
and pupil diameter correlation in the Alert condition was 0.1 6
0.21 at �0.43 s; this negative lag is likely because of sustained
bouts of whisking (Fig. 3i). Asleep and All were anticorrelated
at �0.65 6 0.08 at a lag time of 1.0 s, and �0.48 6 0.15 at a lag
of 1.23 s, respectively. Generally, pupil dilations preceded vaso-
constriction by about a second.

For nearly all cases, the coherence between hemodynamic sig-
nals and pupil diameter was substantially higher at lower fre-
quencies. We evaluated the pupil–D[HbT] coherence during
different arousal states at 0.02Hz (Fig. 3j,k, Table 5) and 0.35Hz

(Fig. 3j,l, Table 6). As with the comparisons between pupil diam-
eter and gamma-band power, these specific frequencies were
chosen for statistical comparison (GLME) as they were the ap-
proximate peaks in pupil–D[HbT] coherence during Asleep be-
haviors and Alert behaviors, respectively. A Bonferroni correction
for multiple comparisons (3 comparisons at 0.02 Hz, 15 at
0.35Hz) put the adjusted significance threshold (a) at 0.017 and
0.003, respectively. At 0.02Hz, coherence between total hemoglo-
bin and pupil diameter during the Alert state was 0.32 6 0.18
(N = 20 mice). As we can only evaluate the 0.02Hz component of
the spectrum in the longer 15-min-duration epochs, statistical
comparisons were only done for longer duration behavioral condi-
tions. Pupil–D[HbT] coherence during Asleep periods was 0.79 6
0.06 (p = 2.0 � 10�29) and All periods was 0.586 0.17 (p = 9.3 �
10�14). At 0.35Hz, Rest had a pupil–D[HbT] coherence of 0.516
0.06 (N = 22 mice). The pupil–D[HbT] coherence during rest was
not significantly different from that during the Alert behavior,
being 0.52 6 0.09 (p = 0.33). However, the coherence at 0.35Hz
was significantly lower during all sleep associated periods (NREM,
0.3 6 0.11, p = 7.0 � 10�33; REM, 0.15 6 0.08, p = 9.8 � 10�66;

Table 3. Statistical comparisons of pupil–gamma power coherence at 0.02 Hz

Alert Asleep All

Alert ***2.4 � 10–18 **2.9 � 10–4
Asleep ***2.4 � 10–18 ***5.0 � 10–9
All **2.9 � 10–4 ***5.0 � 10–9

Bonferroni-corrected significance levels (3), *a , 0.017, **a , 0.003, ***a , 0.0003.
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Figure 3. Pupil diameter shows an arousal-state-dependent negative correlation with blood volume and gamma-band power. a–f, Relationship between gamma-band power and pupil di-
ameter. Two-dimensional histogram showing the relationship between pupil diameter and gamma-band power during the three arousal state classes (a). Cross-correlation between gamma-
band power and pupil diameter for short duration arousal states (b). Cross-correlation for longer duration arousal states (c). Coherence between gamma-band power and pupil diameter (d).
Coherence at 0.02 Hz between gamma-band power and pupil diameter (e). Coherence at 0.35 Hz (f). g–l, Relationship between D[HbT] and pupil diameter. Two-dimensional histogram show-
ing the relationship between pupil diameter and blood volume during the three arousal state classes (g). Cross-correlation between pupil diameter and blood volume for short duration arousal
states (h). Cross-correlation for long duration arousal states (i). Coherence between pupil diameter and blood volume (j). Coherence at 0.02 Hz (k). Coherence at 0.35 Hz (l). Shading (b, c, h, i)
indicates SEM. Error bars (d, e, f, j, k, l) indicate SD. Statistics comparisons shown are between Rest/Alert and other arousal states using a GLME mode with Bonferroni correction for multiple
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Asleep, 0.29 6 0.12, p = 2.5 � 10�33; All, 0.42 6 0.1, p = 3.4 �
10�8).

Low-frequency fluctuations in blood volume are highly corre-
lated with the pupil diameter, suggesting that the same processes
that modulate arousal on these timescales also cause constric-
tion in the cerebral vasculature. There was a strong negative
correlation between pupil diameter and blood volume as well
as between pupil diameter and gamma-band power during
periods of Rest and Asleep, with these correlations turning
positive during periods of alertness and active whisking. This
is in general consistent with an anticorrelation between arousal
level and blood volume (Cardoso et al., 2019) in the absence of
stimulation or active whisking behavior.

Blinking is associated with increases in arousal
We next explored the relationship between blinking and arousal
level. The mean interblink interval was 117.4 6 33.6 s (Fig. 4a,b;
N = 22 mice). We then quantified the probability of a blink being
elicited by sensory stimulation of the whiskers. Except for one
animal, our mice did not frequently blink after a whisker stimu-
lation, with the mean probability of blinking within 5 s poststi-
mulus being only 5.4 6 5.1% (Fig. 4c; N = 21 mice, excluded
mouse at 25.6%). For blinks that did occur following stimulation,
blinks typically occurred within a half second (;37%), and the
probability decreased thereafter. Blinks primarily occurred
during the ‘Awake’ state (.70%), but when they did occur
during periods of ‘REM’ or ‘NREM’ sleep the animal either
quickly returned to sleep after a brief awakening or did not
wake up at all (Fig. 4d). Blinking events also occurred dur-
ing periods of maintained REM sleep with no awakening.
The likelihood of volitional whisking occurring simultane-
ously with blinking behavior was high (Fig. 4e), with volitional
whisking occurring during 40% of ‘Awake’ blink events.
Whisking was less frequent during blinks that occurred either
during or immediately following periods classified as ‘Asleep’
(with the majority being in ‘NREM’).

As blinks commonly occurred in clusters, for all blink-related
analysis we only looked at the first blink occurring in a string of
blink events that occurred within ,1 s of each other. All blinks
that occurred within 65 s of whisker stimulation were also
excluded to prevent the stimulus from interfering with the blink-
triggered comparison. To help separate the effect of the blink
from the effects of volitional whisking behavior coinciding with
it, we split the dataset into low-whisk blinks (LWBs) and high-

whisk blinks (HWBs), further split by whether they occurred
when the mouse was ‘Awake’ or ‘Asleep’ (‘REM’ and ‘NREM’
combined). LWBs were defined as events where the mouse was
whisking for,1/3 of a second in the 2 s surrounding each blink,
whereas HWBs were defined as whisking for.1 s within62 s of
the blink. We evaluated blink-triggered averages for changes
in diameter (z-units), D[HbT], EMG power, cortical LFP, and
hippocampal LFP across all blinks from all mice that met the
criteria. During the ‘Awake’ state, LWBs caused an increase of
;0.7 z-units in pupil diameter compared with resting base-
line, whereas HWBs caused an increase in excess of 3 z-units
(Fig. 4f). D[HbT] during LWBs increased ;4 mM from the pe-
riod before the blink, whereas HWB increased ;10 mM, prob-
ably because of the increased whisking in the time preceding
the blink (Fig. 4g). EMG power increases ;0.6 orders of mag-
nitude during LWBs compared with 1.2 orders of magnitude
during HWBs, with power increases starting ;0.5 s before the
blink occurs. There were negligible increases in gamma-band
power in both the somatosensory cortex (Fig. 4i) and the hip-
pocampus (Fig. 4k) during LWBs, with the ;20% increases in
power seen during high whisking likely being because of the
whisking (Winder et al., 2017) and not the blink (Fig. 4j,l).

Blink-associated neural and vascular changes were similar
during blinks that occurred during periods of ‘Asleep,’ with the
caveat that the baseline pupil diameter was lower. Pupil diameter
during both high- and low-whisk asleep blinks was small before
the blink (less than �3 z-units), with the diameter slowly increas-
ing preceding the blink as the animal began to wake up. For peri-
ods of low whisking, the pupil remained constricted as the animals
presumably fell back asleep or remained asleep (Fig. 4m). Changes
in hemodynamics followed a similar trend, with there being a
reduction in total hemoglobin in the time preceding the blink as
the animals are waking up (Fig. 4n). EMG power changes were
similar to the ‘Awake’ blink but with a lower baseline power
(Fig. 4o). We noted no appreciable differences among the
blink-associated power spectra during blinks that occurred
around sleeping periods (Fig. 4p–s), however the drop in cort-
ical delta power around the blink is evident as the animals
wake up from sleep (which was predominantly NREM).
Altogether, blinking was associated with increases in arousal,
but to varying degrees marked by differing amounts of accom-
panying whisking. When blinks occurred during the ‘Awake’
state, there was only a small increase in blood volume if there was
minimal whisking. However, when blinks occurred during the
‘Asleep’ state, large decreases in blood volume followed regardless
of whisking amount.

Awake blinking causes a resetting of neural and vascular
dynamics
We next asked how blinking is correlated with the neural
and vascular synchrony between bilateral regions of somato-
sensory cortex. Processing of new or startling information is

Table 4. Statistical comparisons of pupil–gamma power coherence at 0.35 Hz

Rest NREM REM Alert Asleep All

Rest ***2.9 � 10–13 ***3.7 � 10–5 0.58 ***9.8 � 10–9 ***5.3 � 10–9
NREM ***2.9 � 10–13 **0.0005 ***3.2 � 10–14 0.12 0.10
REM ***3.7 � 10–5 **0.0005 ***5.6 � 10–6 0.07 0.07
Alert 0.58 ***3.2 � 10–14 ***5.6 � 10–6 ***1.2 � 10–9 ***6.2 � 10–10
Asleep ***9.8 � 10–9 0.12 0.07 ***1.2 � 10–9 0.96
All ***5.3 � 10–9 0.10 0.07 ***6.2 � 10–10 0.96

Bonferroni-corrected significance levels (15), *a , 0.003, **a , 0.00,067, ***a , 0.000067.

Table 5. Statistical comparisons of pupil-D[HbT] coherence at 0.02 Hz

Alert Asleep All

Alert ***2.0 � 10–29 ***9.3 � 10–14
Asleep ***2.0 � 10–29 ***1.3 � 10–10
All ***9.3 � 10–14 ***1.3 � 10–10

Bonferroni-corrected significance levels (3), *a , 0.017, **a , 0.003, ***a , 0.0003.
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Table 6. Statistical comparisons of pupil–D[HbT] coherence at 0.35 Hz

Rest NREM REM Alert Asleep All

Rest ***7.0 � 10–33 ***9.8 � 10–66 0.33 ***2.5 � 10–33 ***3.4 � 10–8
NREM ***7.0 � 10–33 ***2.6 � 10–19 ***6.9 � 10–35 0.59 ***1.4 � 10–14
REM ***9.8 � 10–66 ***2.6 � 10–19 ***1.0 � 10–66 ***7.7 � 10–17 ***7.1 � 10–47
Alert 0.33 ***6.9 � 10–35 ***1.0 � 10–66 ***2.6 � 10–35 ***3.9 � 10–10
Asleep ***2.5 � 10–33 0.59 ***7.7 � 10–17 ***2.6 � 10–35 ***1.9 � 10–15
All ***3.4 � 10–8 ***1.4 � 10–14 ***7.1 � 10–47 ***3.9 � 10–10 ***1.9 � 10–15

Bonferroni-corrected significance levels (15), *a , 0.003, **a , 0.00,067, ***a , 0.000067.
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accompanied by blinking, suggesting it is associated with
some sort of mental resetting (Siegle et al., 2008). As before,
we separated blinks by arousal state (‘Awake,’ ‘Asleep’) and
looked at the changes in power and coherence during peri-
ods preceding (�15 to �5 s) and following (5 to 15 s) each
blink. We excluded the time 65 s adjacent to each blink to
capture the pre-effects and posteffects of the blink on syn-
chrony and not the blink itself, as the blink elicits brief
changes in neural activity and blood volume, and this
response will drive coherence across all frequencies tempo-
rally close to the blink that reflect the evoked activity, not
necessarily a state change in the brain. For both bilateral
cortical gamma-band power signals and bilateral changes in
D[HbT], we evaluated the power/coherence changes from 0
to 0.2 Hz as this corresponded to the frequency domain of
the largest difference between the preblink and postblink
intervals. One animal was excluded from the analysis in
Figure 4 because of being an outlier in its blink rate (N =
21). Coherence between bilateral gamma-band power sig-
nals during the ‘Awake’ state dropped following a blink
from 0.38 6 0.13 preblink to 0.28 6 0.10 postblink (p =

0.001, paired t test; Fig. 5a,b). Power in these signals (Fig.
5c) did not change in the period following a blink (13.2 6
81.0 a.u. preblink vs 11.9 6 73.7 a.u. postblink; p = 0.25,
paired t test; Fig. 5d). There was no clear relationship
between changes in gamma-band power preblink versus
postblink versus changes in bilateral gamma-band coherence
preblink versus postblink (Fig. 5e). ‘Awake’ bilateral D[HbT]
coherence was 0.88 6 0.03 preblink, dropping to 0.84 6 0.05
postblink (p = 6.4 � 10�6; Fig. 5f,g). Unlike the gamma-band
power, there was a significant drop in cortical hemodynamic
power following a blink (149.1 6 49.1 a.u. preblink vs 100.4 6
33.3 a.u. postblink; p = 8.2 � 10�13, paired t test; Fig. 5h,i), and
these appear to be related (Fig. 5j).

For blinks that occurred during the ‘Asleep’ state, neither the
gamma-band power nor total hemoglobin showed any signifi-
cant changes between preblink and postblink power or coher-
ence. The mean coherence from 0 to 0.2Hz between bilateral
gamma-band signals during ‘Asleep’ blinks was 0.446 0.18 pre-
blink versus 0.466 0.17 postblink (p = 0.38, paired t test; Fig. 5k,
l) with power changes of 7.0 6 34.4 preblink versus 7.1 6 39.9
postblink (p = 0.98, paired t test; Fig. 5m,n), with no relationship
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between power and coherence changes (Fig. 5o). Bilateral hemo-
dynamic coherence during ‘Asleep’ blinks was 0.89 6 0.04 pre-
blink versus 0.896 0.04 postblink (p = 0.45, paired t test; Fig. 5p,
q) at a power of 187.1 6 67.1 preblink versus 174.1 6 47.3 post-
blink (p = 0.17, paired t test; Fig. 5r,s), with no relationship
between power and coherence changes (Fig. 5t). These results
indicate that blinking during the ‘Awake’ state was correlated
with a resetting of neural and vascular signals, but this did not
happen with blinks during ‘Asleep.’

Pupil size, position, and motion change with arousal state
When looking at the probability of being in a given arousal state
as a function of pupil diameter (Fig. 6a), it is apparent that the
probability of wakefulness decreases dramatically as the pupil
decreases in size with the 50% probability (that is, equal probabil-
ity of being awake or asleep) being around �2 z-units from the
resting baseline. However, the pupil size in our dataset was simi-
lar across REM and NREM sleep states. We next asked how other
eye metrics could help differentiate further between REM and
NREM sleep, as previous work has found systematic changes
in eye position of rodents during REM (Sánchez-López and
Escudero, 2011). When the animals fall asleep, the pupil begins
to drift as the muscles around the eye relax. There are also rapid-
eye-movements characteristically seen during REM sleep. We
tracked the centroid of the pupil (Fig. 6b) and changes in its posi-
tion measured relative to the resting location. When looking at
the eye velocity in each arousal state (Fig. 6c), we see that the pu-
pil moves significantly more during ‘REM’ sleep (0.66 6 0.41
mm/s) than in either the ‘Awake’ (0.19 6 0.05 mm/s, p = 1.8 �
10�5) or ‘NREM’ states (0.22 6 0.15 mm/s, p = 1.5 � 10�5).
Despite a large change in diameter, there was minimal change
in pupil centroid location during transitions between the
‘Awake’ and ‘NREM’ states (Fig. 6d,e). However, the centroid
of the pupil moves between 0.1 and 0.2 mm in the nasal and

ventral directions when the animal transitions into the ‘REM’
state (Fig. 6f) and quickly returns to the baseline location on
awakening (Fig. 6g).

Eye metrics are an accurate predictor of arousal state
Finally, we explored using eye metrics (pupil diameter and posi-
tion) alone as a predictor of arousal state, comparing their pre-
dictive power to that of more conventional sleep scoring using
physiological parameters (cortical delta power, hippocampal
theta power, EMG). As pupil diameter is commonly measured in
behaving mouse paradigms (McGinley et al., 2015; Vinck et al.,
2015; Pisauro et al., 2016; Musall et al., 2019; Stringer et al., 2019;
Aguillon-Rodriguez et al., 2021), arousal scoring using pupil di-
ameter and eye movement could be very useful for detecting
bouts of sleep when other more invasive assays are not available.
Previous work has shown that the sleep/wake state of head-fixed
mice can be determined accurately on the timescale of hundreds
of seconds using pupil diameter (Yüzgeç et al., 2018), but here
we asked whether it can be done on a timescale of seconds.

Pupil diameter alone could be used to differentiate the
‘Awake’ arousal state from the ‘REM’ and ‘NREM’ states (with a
threshold at approximately �2 z-units, Fig. 6a). However, there
was much less difference in pupil diameter between the two sleep
states. Therefore, we used the position and motion of the cent-
roid of the pupil in our model classification to achieve a separa-
tion between ‘REM’ and ‘NREM.’ We compared the manual
scores of an exemplar 15 min imaging session to those produced
by three different bootstrapped random forest classification
models (Fig. 7a) following model training using a 70:30 training/
testing split. The first model used only eye metrics, such as the
diameter of the pupil (mm, z), position, and average velocity
(Eye Model; see above, Materials and Methods). We used the
same example data shown in Figure 1f to show how these three
metrics can be used to identify arousal state (Fig. 7b–d). The
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pupil decreases in size during ‘REM’ and ‘NREM’ sleep com-
pared with the awake state, but it is the changes in pupil posi-
tion that separate ‘REM’ from ‘NREM’ sleep. The second
model was identical to that used in Turner et al. (2020) and
used seven physiological parameters (i.e., Physiological
Model; see above, Materials and Methods). The third model
was a combination of the two (Combined Model), using both
eye metrics and the physiological measurements. With
respect to identifying sleep, the Eye Model (N = 22 mice) had
a total cumulative accuracy of 90.4% across all testing data
(Fig. 7e) with comparable Type I and Type II classification
errors. The Physiological Model (cumulative accuracy of
93.0%; Fig. 7f) and combined model (cumulative accuracy of
93.9%; Fig. 7g) performed better than the eye model, having
access to the “gold-standard” of electrophysiology and elec-
tromyography information classically used for detecting
sleep. The out-of-bag error during model training was higher
for the Eye Model (0.10 6 0.02) than the Physiological
Model (0.08 6 0.02, p = 7.0 � 10�6), as well for as the
Combined Model (0.07 6 0.02, p = 5.2 � 10�10; Fig. 7h).
However, the eye metrics did significantly improve the
Combined Model over the original Physiological Model (p =

1.0 � 10�6). Our findings indicate that monitoring the eye,
including pupil diameter and its changes in position, can be
used as a noninvasive method to determine whether head-
fixed mice are sleeping on a timescale of seconds.

Discussion
In this study, we explored the relationship between pupil di-
ameter and blinking with ongoing neural activity and hemo-
dynamic signals in the somatosensory cortex of mice during
different arousal and behavioral states. Pupil diameter was
consistently smaller during sleep states and larger during the
awake state, allowing the pupil to be used as a predictor of
arousal state (Yüzgeç et al., 2018). As a practical matter, a
threshold of ;2 z-units below the resting pupil diameter can
function as an indicator of sleep. Blinking was correlated with
changes in arousal levels, as well as with neural and vascular
dynamics. Mice were more likely to be in the awake state after
blinking than before, and bilateral synchronization in the
gamma-band envelope and accompanying hemodynamics
both decreased after blinks when the mouse was awake. The
difference in neural responses to blinks in the awake versus
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asleep conditions could be because of differences in sensory
processing in these respective states.

Because our mice slept frequently, when averaged over the
entire dataset, the pupil diameter was strongly anticorrelated
with both gamma-band power and blood volume because of the
large vasodilation occurring during NREM sleep (Turner et al.,
2020). When restricted to just data in the awake state, whose
neural and hemodynamic signals are dominated by body move-
ments and fidgeting behavior (Huo et al., 2014; Winder et al.,
2017; Tran et al., 2018; Drew et al., 2019; Musall et al., 2019;
Stringer et al., 2019; Drew et al., 2020; Salkoff et al., 2020), the
pupil diameter was positively correlated with gamma-band
power and blood volume (Fig. 8). The coherence between blood
volume and pupil diameter was stronger at lower frequencies
and was highest (.0.75) at 0.02Hz (corresponding to ;50 s pe-
riod) in the sleeping mouse. Interestingly, activity in the LC and
the concentration of noradrenaline during NREM sleep fluctu-
ates on a similar timescale (Osorio-Forero et al., 2021; Kjaerby et
al., 2022). As noradrenaline is vasoconstrictory (Raichle et al.,
1975; Goadsby et al., 1985; Bekar et al., 2012), the fluctuations in
noradrenaline during NREM may contribute to the oscillations
in blood volume (Fultz et al., 2019; Turner et al., 2020), which
simulations and experiments have suggested are important for
clearing waste from the brain (Xie et al., 2013; Kedarasetti et al.,
2020a,b; van Veluw et al., 2020; Kedarasetti et al.,2022). The fact
that there is vasodilation in somatosensory cortex during periods
of body motion and arousal when noradrenaline levels are high-
est can be accounted for by the action of local vasodilatory sig-
nals from neurons during behavior (Winder et al., 2017; Zhang
et al., 2019; Echagarruga et al., 2020). Although our LFP meas-
urements were conducted in the somatosensory cortex, we would
expect similar dynamics in other sensory areas of the cortex,
such as visual areas, which are innervated by the same LC neu-
rons (Kim et al., 2016). The vascular dynamics may differ in the
frontal cortex and other areas, which receive input from a differ-
ent subset of LC neurons (Kim et al., 2016).

Our findings that the pupil diameter was strongly anticorre-
lated with blood volume should be taken in the context of the lit-
erature relating arousal and pupil diameter to LC activity and the
vasoconstrictory impact of noradrenergic inputs of LC on the
cerebral vasculature. The noradrenaline levels in the brain

correspond with LC neuron cell body activity (Berridge and
Abercrombie, 1999; Feng et al., 2019; Poe et al., 2020). Sensory
stimuli drive increases in LC neural activity, noradrenergic tone,
and pupil dilation (Gilzenrat et al., 2010; Murphy et al., 2014;
Schwarz and Luo, 2015; Joshi et al., 2016; Gray et al., 2021; Yang
et al., 2021), although the correlations between pupil diameter
and spiking of individual LC neurons is low (Megemont et al.,
2022). Activation of noradrenaline-releasing neurons in the LC
drive awakening from sleep (Carter et al., 2010; Hayat et al.,
2020; Kjaerby et al., 2022), and this awakening from sleep is fol-
lowed by profound cortical vasoconstriction (Turner et al., 2020)
and brain-wide hemodynamic changes (Liu et al., 2015, 2018;
Fultz et al., 2019; Zhang et al., 2022a). Electrical stimulation of
the LC and subsequent increases in noradrenaline levels (Bekar
et al., 2012) cause vasoconstriction (Raichle et al., 1975; Goadsby
et al., 1985), but Toussay et al. (2013) observed that stimulation
of the LC can increase cortical perfusion in the anesthetized rat.
We saw that the blood volume–pupil diameter correlation was
positive in the Alert state, which seems to contradict the vasocon-
strictory nature of noradrenaline. The Alert state contains many
fidgeting and whisking bouts, which can be nearly continuous
body movements. Although cortical noradrenaline levels are
known to rise during locomotion (Polack et al., 2013; Paukert
et al., 2014) and movement (Feng et al., 2019), the activity of vas-
odilatory neuronal nitric oxide synthase neurons (Echagarruga et
al., 2020) and vasodilatory extracellular potassium are both ele-
vated during locomotion (Longden et al., 2017; Rasmussen et al.,
2019), and these two vasodilators are likely strong enough to
drive vasodilation even in the face of elevated noradrenaline.
Furthermore, the magnitude of noradrenaline increases dur-
ing movement are much smaller than the decreases during
sleep. During sleep, microdialysis measured cortical noradren-
ergic levels fall.50% (Bellesi et al., 2016), although recent
studies using fluorescent biosensors have shown there are
large fluctuations over the timescales of minutes in noradrena-
line levels in frontal areas during NREM (Kjaerby et al., 2022).
The arousal-induced noradrenergic level increases during volun-
tary body movements and fidgeting are of a substantially smaller
magnitude than the decreases seen during sleep (Feng et al.,
2019), which would explain why vasodilation dominates in these
behaviors. The positive correlations between pupil diameter and
blood volume during REM might be because of fluctuations in
cholinergic drive, which is high during REM sleep (Jing et al.,
2020; Jones, 2020) and is also linked to pupil dilations (Larsen
and Waters, 2018). Our observations of state-dependent correla-
tion between blood volume and pupil diameter (Fig. 8) is consist-
ent with noradrenergic modulation in the cortex playing a state-
dependent role in neurovascular coupling in concert with local
neural activity (Hamel, 2006; Kleinfeld et al., 2011).

Monitoring the pupil (Privitera et al., 2020) can provide a sec-
ond-by-second insight into the sleep/wake state of mice. These
periods of sleep can be an issue not only in behavioral tasks but
can also be a confound in studies looking at spontaneous neural
and hemodynamic activity. In human studies, sleep episodes
occur frequently during resting-state imaging (Tagliazucchi and
Laufs, 2014), drastically affecting functional connectivity meas-
urements and other measures of network dynamics. In mice,
bilateral neural and hemodynamic correlations are much higher
during sleep (Turner et al., 2020), supporting the need for
arousal-state monitoring in both animal and human studies as
detecting and monitoring changes in arousal are essential for
accurate interpretations of any resting-state study (Tagliazucchi
and Laufs, 2014; Liu et al., 2018; Drew et al., 2020). Fortunately,
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monitoring pupil diameter and eye motion can provide a simple,
noninvasive way of detecting sleep and monitoring arousal state
transitions in rodents.
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