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Abstract: Objectives: In this study, we aimed to identify the metabolic genes associated with the metastasis and 
immunotherapy resistance of oral squamous cell carcinoma (OSCC) and to construct a metabolic gene-related 
predictive model for the prognosis of OSCC. Methods: RNA-seq data were download from The Cancer Genome Atlas 
(TCGA). Weighted gene co-expression network analysis (WGCNA) was applied to identify the modules related to 
EMT, stemness, and checkpoint signatures in OSCC. Univariate Cox and the least absolute shrinkage and selection 
operator (LASSO) methods were used to construct the metabolic gene signature. Furthermore, the scRNA-seq data 
were obtained from Gene Expression Omnibus (GEO) database and analyzed using “Seurat” and “CopyKAT” pack-
ages. Results: The risk prediction model was constructed using the 12 metabolic-related gene signature. Based on 
this model, risk score of each sample was calculated and used to divide the samples into low- and high-risk groups. 
Our model was effective as the risk score was significantly associated with clinical features and genetic mutations. 
Meanwhile, we found that lipid metabolism, glycolysis, amino acid metabolism, and drug metabolism differed be-
tween high- and low-risk groups. Pathways associated with malignant tumor and immunosuppression were enriched 
in high-risk group. Furthermore, low-risk group showed a more activated immune status and was predicted to have 
better response to immunotherapy. Finally, through single-cell transcriptome analysis, we assessed the expression 
of these 12 genes in tumor and non-tumor cells and verified the existence of two clusters of tumor cells with dif-
ferent degrees of malignancy at the cellular level. Conclusions: Our study demonstrates the clinical significance of 
metabolic related gene signature for the treatment of OSCC and suggests potential therapeutic targets and path-
ways for OSCC.
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Introduction

Oral squamous cell carcinoma (OSCC) is the 
most fatal oral disease and the most common 
head and neck malignancy. Its incidence is 
increasing with approximately 400,000 new 
cases and 180,000 deaths annually [1]. OSCC 
originates from the mucosal epithelium of the 
oral cavity and pharynx, and the risk factors for 
OSCC include smoking, excessive alcohol con-
sumption, betel nut chewing, and human papil-
lomavirus (HPV) exposure [2, 3]. Although early 
OSCC can achieve a good prognosis through 

surgical resection, most OSCC patients do not 
exhibit symptoms at the early stage but in 
advanced stages at the time of diagnosis. 
Furthermore, OSCC also have high recurrence 
rates [4]; hence, the survival rate of OSCC is  
still not significantly improved even with the 
improved treatment strategies [5, 6]. 

Lymph node metastasis occurs in more than 
half of the patients with OSCC and is closely 
related to the prognosis of OSCC [7, 8]. An 
important factor attributing to lymph node and 
distant metastasis is epithelial-mesenchymal 
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transition (EMT), a genetic and epigenetically 
regulated biological process in which an epithe-
lial cell transforms into a mesenchymal state 
[9-11]. Tumor cells with EMT are characterized 
by changes in cytoskeleton, decreased adhe-
sion to their surroundings, enhanced migration, 
and apoptotic resistance [12, 13]. Many stud-
ies have demonstrated that EMT activation is 
closely interconnected with the generation of 
cancer stem cells (CSCs) in various types of 
carcinomas [14]. EMT activation also enables 
tumor cells to escape immune killing by in- 
creasing the expression of immune checkpoint 
genes and acquire resistance to chemotherapy 
and immunotherapy [15-18], which are also 
characteristics of CSCs. Anti-PD1 monoclonal 
antibodies, such as pembrolizumab and nivo- 
lumab, have been used as first-line treatment 
for malignant OSCC [19, 20], however, many 
patients do not respond to immunotherapy. 
Studies have shown that tumor cells resistant 
to chemotherapy, targeted therapy, or immuno-
therapy, commonly exhibit activated EMT [21]. 

EMT is a dynamic and reversible process that 
involves extensive crosstalk with metabolic 
reprogramming, which is regulated by EMT 
transcription factors (EMT-TFs) and epigenetic 
modifying enzymes that use metabolites as 
cofactors and substrates. Moreover, changes 
in the migration and invasion of tumor cells 
require metabolic reprogramming to provide 
energy [22]. Transforming Growth Factor β 
(TGF-β) and hypoxia can activate EMT in tumor 
cells as well as induce glycolysis and fatty acid 
oxidation (FAO) pathways [23, 24]. Glutamine 
metabolism and mitochondrial metabolism are 
also changed during EMT, and the expression 
levels of SLC2A1/3, HK2, CD36, and GLS1/2 
involved in the above metabolic processes are 
altered [25-27]. These extensive changes in 
metabolic processes are essential for EMT and 
constitute potential metabolic targets for inhib-
iting EMT.

Although EMT activation has been known in the 
tumor cells of patients with OSCC, contributing 
to the poor prognosis of OSCC [28], the interac-
tion between metabolic pathways and EMT in 
OSCC remains unclear. Investigating this link is 
essential for improving immunotherapy out-
comes in patients with OSCC and providing 
metabolically targeted therapies. Therefore, in 
this study, we used TCGA database to identify 

the most relevant metabolic gene modules for 
EMT, stemness, and checkpoint signatures in 
OSCC. We constructed a metabolism-related 
prognostic signature containing 12 genes us- 
ing least absolute shrinkage and selection 
operator (LASSO) regression. Furthermore, we 
showed the association between the risk score 
derived from the signature and the clinical fea-
tures and immune landscape. Finally, we used 
single-cell RNA sequencing (scRNA-seq) data 
from OSCC patients to explore the expression 
of these 12 genes in tumor and non-tumor 
cells. We divided tumor cells into two clusters 
based on copy number variation (CNV) to 
explain the heterogeneity of tumor cells in 
terms of risk metabolic gene.

Materials and methods

Study design and data collection

The workflow diagram of this study was pre-
sented in Figure S1. First, RNA-seq data, clini-
cal information, somatic mutations, and CNVs 
data were downloaded from The Cancer 
Genome Atlas (TCGA, https://portal.gdc.can-
cer.gov/). In total, 330 patients with OSCC were 
screened from the TCGA-HNSC cohort. Next, 
ScRNA-seq data were downloaded from the 
GEO database (GSE103322, http://www.ncbi.
nlm.nih.gov/geo/) which was provided by Brad- 
ley et al. [29], and contained data of 5902 cells 
from 18 OSCC patients. R4.1.2 software was 
used for data preprocessing. 

Co-expression network construction and identi-
fication of signature-related modules

We obtained 2119 genes related to “Meta- 
bolism” pathways (R-HSA-1430728) from the 
Reactome database using the “ReactomePA” 
package [30]. Among these genes, the EMT sig-
nature- [31], stemness signature- [32], and 
checkpoint signature- [33] related genes were 
downloaded and subjected to single-sample 
gene set enrichment analysis (ssGSEA) to cal-
culate the scores of EMT, stemness, and check-
point. The “WGCNA” package was applied to 
construct a co-expression network of metabol-
ic genes. The matrix of adjacencies was built 
based on the Pearson’s correlation value be- 
tween paired genes. An unsigned scale-free  
co-expression network was constructed based 
on a soft thresholding power of β = 4. Then, 
“TOMsimilarity” and “cutreeDynamic” were 
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used to construct the metabolic gene co-
expression module, and the merge height cut 
was set at 0.4 to merge modules. The correla-
tion between module eigengenes (MEs) and 
signatures was tested using Pearson’s correla-
tion. The adjacency threshold was set at 0.05 
to select hub genes from the MEs of interest. 
The “iRegulon” plug in Cytoscape was used to 
identify the transcription factors of hub genes 
(FDR < 0.001).

Construction of the prognosis signature

We used genes with an adjacency threshold 
greater than 0.05 in significant MEs for the uni-
variate Cox regression. LASSO regression was 
used to screen out the genes most related to 
survival and to calculate their coefficients. 
Finally, the risk score was calculated for 
patients in TCGA data using the formula below, 
and validation was performed in the GEO data-
set (GSE41613).

Risk score expr coef1 ( ) ( )i
n

gene i gene i= )R =

Functional and pathway enrichment analyses

Functional enrichment analysis of the hub 
genes was performed using Metascape (ht- 
tp://metascape.org) [34]. The software GSEA 
(http://www.gsea-msigdb.org/) and the C2, C6, 
and C7 gene sets were downloaded to analyze 
different pathways in the high- and low-risk 
groups. Differential expression gene (DEG) an- 
alysis was performed by “limma3.50.3” pack-
age using the expression matrix of patients in 
the top 25% and the bottom 25% of the risk 
score, and genes with |logFC| > 1, P < 0.05 
were screened for Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment. Only the gene 
sets with P < 0.05 were considered significant.

Metabolic pathways, immune signatures, and 
cell types enrichment analysis

Metabolic gene sets, involving 90 human meta-
bolic pathways, were downloaded from the 
KEGG pathway database (https://www.ge- 
nome.jp/kegg/pathway.html) [35]. Immune sig-
natures were identified based on previously 
published studies [33, 36, 37]. Cell type char-
acterization and composition estimation were 
performed using CIBERSORT (http://cibersort.
stanford.edu) [38]. Package “ggplot2” was 
used to display the immune cell composition 

and immune signature of different groups. 
Function “mantel_test” was used to identify 
the relationship between the 19 signatures  
and the risk score, and the results were shown 
by “ggcor” package. The relationship among 
different types of immune cells was analyzed 
by Spearman correlation and graphed by “cor-
rplot” package. In addition, we calculated  
the hazard ratio (HR) of 22 types of immune 
cells by using “coxph” function in “survival” 
package.

Evaluation of immune-checkpoint blockade 
(ICB) response and drug sensitivity prediction

The ICB response signature was adopted from 
published research, and ssGSEA was used to 
estimate the ICB response score. Since the 
KMplot tool (http://kmplot.com/analysis) con-
tains immunotherapy data for multiple tumors, 
we selected anti-PD1 treatment data and pre-
treatment samples to obtain the survival curv- 
es of high- and low-risk patients. Furthermore, 
we used “pRRophetic” package to calculate the 
half-maximal inhibitory concentration (IC50) of 
5-Fluorouracil, Cetuximab and Cisplatin accord-
ing to “cgp2016” dataset. 

Single cell RNA-seq analysis

ScRNA-seq data of 5902 cells were first sub-
jected to quality control using the “Seurat” 
package, and the data with nFeature > 2000, 
nCount < 20000, and percent.mt < 15 were fil-
tered for further analysis, yielding a total of 
5746 cells. The data were normalized using 
log2 (TPM/10+1), and t-distributed stochastic 
neighbor embedding (tSNE) was used for 
dimensionality reduction and cluster classifica-
tion. Furthermore, CopyKAT (Copynumber Kar- 
yotyping of Tumors), a package designed to 
identify genomic copy number for scRNA-seq 
data, was used to distinguish tumor cells by 
recognizing aneuploid cells, and we set win.size 
at 25 & KS.cut at 0.2. Then, tumor cells were 
divided into two clones by calculating Euclidean 
distance with CopyKAT [39]. 

Results

Identification of significant genes related to 
EMT, stemness, and checkpoints

We obtained RNA-seq data of 546 HNSC sam-
ples from the TCGA database and screened 
330 oral cancer samples from the lip, gingiva, 
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tongue, oral cavity, and pharynx. The detailed 
patient information was provided in Table S1. 
Since EMT is a key factor contributing to the 
metastasis of cancers [40], and regulates not 
only tumor cell migration but also the genera-
tion of cancer stem cells as well as the expres-
sion of checkpoint genes [41], in this study,  
we calculated the EMT, stemness, and check-
point signature scores of 330 HNSC samples 
using ssGSEA (Table S2). A total of 2119 meta-
bolic-related genes were obtained from the 
Reactome database. We chose β = 4 (scale-
free R2 = 0.92) as the soft threshold power to 
build a scale-free network (Figure S2A and 
S2B). According to the expression of these 
genes, we divided them into seven modules by 
average linkage clustering (Figure S2C-E). We 
then displayed a heatmap of the correlation 
between modules and signatures, showing a 
significant positive relationship among the 
green module, EMT, and checkpoint signatures 
(Figure 1A). As invasive metastasis is an ineffi-
cient process in which only a small portion of 
EMT tumor cells can survive immune surveil-
lance [42], to obtain genes with greater clinical 
value for immune therapy, we also selected 
from the brown module genes that negatively 
correlated with the checkpoint for subsequent 
analysis.

According to topological overlap above 0.05 in 
MEs, there were 165 hub genes in the green 
module and 94 hub genes in the brown mod-
ule. We used “iRegulon” to predict the tran-
scription factors (TFs) of genes in green and 
brown modules (FDR < 0.001). The top 5 TFs 
for green modules were SPL1, SOX21, CTCF, 
CEBPA, ELF2, while the top 5 TFs for brown 
modules were FOXO1, TCF12, EP300, MSRB3, 
NR4A1 (Figure S3). Upon importing these 
genes into Metascape for analysis, hub genes 
in green module were significantly related to 
glycosaminoglycan metabolism and chondroi-
tin sulfate/dermatan sulfate metabolism path-
ways (Figure 1B) which are mainly involved the 
composition of the extracellular matrix and 
likely to facilitate the activation of EMT process. 
Moreover, the enrichment of vitamin and lipid 
metabolic pathways in the green module sup-
port the rapid energy supply for the malignant 
tumor cells. The hub genes in brown module 
were enriched in the pathways associated with 
oxidative stress (Figure 1B), such as NRF2 
which is activated under oxidative stress condi-

tions and can reduce inflammatory damage by 
stimulating the expression of antioxidants and 
anti-inflammatory cytokines. Furthermore, 259 
genes expressed in TCGA OSCC cohort were 
analyzed for its association with overall survival 
(OS) by univariate Cox regression, and the 
results showed that 21 genes were closely 
related to the prognosis of patients (P < 0.05) 
(Figure 1C).

Construction of a metabolism-related prognos-
tic signature in OSCC

Using the LASSO regression algorithm, an 
immune-related metabolic signature including 
12 genes for prognosis prediction was con-
structed (Figure 2A, 2B), and the coefficients  
of the 12 genes were shown in Table S3. The 
330 OSCC patients were divided into high- (n = 
165) and low-risk groups (n = 165) using the 
median risk score as a threshold, and the mor-
tality rate of patients increased with the risk 
score (Figure 2C) as the OSCC patients in low-
risk group showed better survival rates than 
those in high-risk group (Figure 2E). Gene 
expression patterns were shown in Figure 2D. 
Furthermore, the area under the curve (AUC) of 
the prognostic signature for 1-, 3-, and 5-year 
survival was 0.66, 0.74, and 0.71, respectively, 
which was further validated in GSE41613 
cohort (Figure 2F, 2G), indicating the reliability 
of this model. 

Association of the risk score with clinical fea-
tures and somatic mutations in OSCC

Figure 3A showed the distribution of the rele-
vant patient characteristics and the risk scor- 
es. To investigate the relationship between the 
risk score and the clinical features, we grouped 
patients according to TNM staging system and 
found that the risk score of the metabolic signa-
ture increased with increased T and N stages, 
suggesting that the signature was reliable 
(Figure 3B). However, because most patients 
were classified as M0, the risk score did not 
show a significant difference in the M 
classification.

Moreover, we analyzed the somatic mutations 
and CNV data downloaded from TCGA data-
base. Patients in high-risk group had higher 
tumor mutation burden (TMB) (Figure 3C) and 
exhibited a higher frequency of TP53 mutations 
than the patients in the low-risk group (Figure 
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Figure 1. Module-trait associations and identification of significant genes in green and brown modules. A. The correlation between modules and signatures. Each 
cell contains the corresponding correlation and P value. B. Function enrichment of genes in green and brown module by Metascape. C. The results of 259 genes in 
green and brown modules and 21 genes were significantly associated with the survival of patients.
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3D). Similarly, the high- and low-risk groups har-
bored different CNV alteration sites, and more 
CNVs in both amplification (AMP) and deletion 
(DEL) were observed in the high-risk group 
(Figure 3D). For example, AP_9:3q28, a large 
amplification of TP63, was observed in the 
high-risk group, but not in the low-risk group. 

Metabolic signature was an independent fac-
tor of a survival predictive nomogram

We used univariate and multivariate Cox re- 
gression analyses to explore the relationship 

between the clinical characteristics and the 
metabolism-related risk scores. We found that 
patient’s age (hazard ratio [HR] = 1.02) and 
metabolism-related risk score (HR = 2.70) were 
two independent prognostic factors (P < 0.05) 
(Figure 4A, 4B). Furthermore, the age and the 
risk score were used to construct a nomogram 
to estimate the patient’s 1-, 3-, and 5-year sur-
vival (Figure 4C). The calibration curve for pre-
dicting patient survival indicated that the pre-
dicted OS was close to the actual OS (Figure 
4D). Moreover, the ROC curve demonstrated 
that the three-index combined model was more 

Figure 2. Construction of metabolic prognostic signature. A. Selection of the tuning parameter (lambda) in the LAS-
SO model. B. LASSO coefficient profiles of 12 genes in metabolic signature. C. Distribution of risk score in patients, 
and scatterplot of OS events with risk score. D. Heatmap of 12 genes in metabolic signature with the increasing risk 
score. E. OS between high-risk group and low risk group in TCGA cohort. F. Survival-dependent ROC curve of meta-
bolic signature at 1, 3, 5 years in TCGA cohort. G. Validation of metabolic signature in GEO41613.
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accurate than each index alone (Figure 4E). 
The C-index value of the model combining age 
and risk score was 0.721.

Identification of different metabolic pathways 
and functional enrichment analysis 

To further investigate the changes in metabo-
lism between the two risk groups, we calculat-
ed the scores of all samples in 90 KEGG meta-
bolic pathways using ssGSEA and then per-
formed a t-test to screen the pathways with 
p-values less than 0.01 (Figure 5A; Table S4). 

We found that eight of the 31 metabolic path-
ways with significant difference between risk 
groups were related to lipid metabolism and 
were enriched in the low-risk group. The path-
ways associated with glucose metabolism were 
enriched in the high-risk group, including the 
glycolysis/gluconeogenesis pathway. Notably, 
many redox-related pathways were enriched in 
the high-risk group, including ascorbate and 
aldarate metabolism, glutathione metabolism, 
and cytochrome P450-mediated xenobiotic 
metabolism, which are related to the resistan- 
ce of adverse environments. In addition, the 

Figure 3. The relationship between risk score and clinical features and comparison of somatic mutations and CNV 
in different risk group. A. Distribution of clinical features with the increasing risk score. B. Comparison of risk score 
in TNM stage and tumor stage. C. The overall TMB in different risk group. D. The somatic mutations (upper) and CNV 
(lower) in high-risk group and low-risk group.
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Figure 4. The metabolic signature was an independent factor for prognosis of the survival of OSCC patients. A. Univariate Cox regression analysis of clinical features 
and risk score with the OS of patients. B. Multivariate Cox regression analysis of risk score and age with the OS of patients. C. Nomogram predictions for survival 
predictions at 1, 3, 5 years. D. The calibration plot for the nomogram at 1, 3, 5 years. E. ROC curve for the predictions by age, risk score and the combine of them.
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enrichment of amino acid synthesis and drug 
metabolism pathways in the high-risk group 
was in consistent with high malignancy.

Subsequently, we quadrupled the patients by 
risk score and took the highest and lowest 
quartiles for differential gene expression analy-
sis. The “limma3.50.3” package was used to 
identify the DEGs among these two groups 
(high risk vs low risk), and 371 genes were 
obtained, with 281 genes upregulated and 90 
genes downregulated in the high-risk group. GO 
pathway enrichment analysis showed that the 
upregulated genes were enriched in chromo-
some segregation and nuclear division, while 
genes with decreased expression were en- 
riched in steroid metabolic process, positive 
regulation of cellular catabolic process, actin 
filament organization, regulation of stress-acti-
vated mitogen-activated protein kinase (MAPK) 
cascade, secondary alcohol metabolism pro-
cess, and response to hypoxia (Figure 5B). 
KEGG enrichment analysis showed that DNA 
replication, cell cycle, and mismatch repair 
pathways were enriched in the high-risk group, 
while the AMPK and Hippo pathways were 
enriched in the low-risk group (Figure 5C). 
Taken together, we found that more genetic 
mutations, cell cycle and metabolic disorders 
existed in the high-risk group, whereases more 
stable cytoskeleton and stronger cell adhesion 
were in the low-risk group. In addition, we ana-
lyzed the DEGs by using GSEA software with 
three gene sets: C2 (curated gene sets), C6 
(oncogenic signature gene sets), and C7 (immu-
nologic signature gene sets) (Figure 5D). The 
results showed that pathways relevant to 
immune response, such as chemokine recep-
tors, T lymphocytes, and CD40 signaling path-
ways, were enriched in the low-risk group, while 
pathways related to tumor malignancy and pro-
liferation were enriched in the high-risk group. 
In the C6 gene sets, some tumor suppressor 
gene-related signaling pathways such as P53 
and PTEN, and some oncogenic pathways such 
as NOTCH1 and KRAS were normal in the low-
risk group but were mutated in the high-risk 
group. Higher MYC expression was also noted 
in the high-risk group, indicating that tumors in 
the high-risk group were more malignant. In 

addition, the C7 gene sets were associated 
with immune pathways, where the high-risk 
group was enriched with more immunosup-
pressive pathways, including PD1 ligation, Treg, 
and IL6-induced M2 polarization of macro-
phages, while the low-risk group was enriched 
with CD8+ T cells and interferon (IFN) path- 
ways.

Distinct immune landscape and ICB efficiency 
between different risk groups

To further investigate the immune characteris-
tics of the different risk groups, 22 types of 
immune cells were analyzed using CIBER- 
SORT. We ranked the samples with increasing 
number of CD8+ T cells in the immune cell 
heatmap and demonstrated that the area of 
CD8+ T cells (blue) was larger in low-risk 
patients (Figure 6A). To better show the differ-
ences in cell type between the high- and low-
risk groups, we used box plots to present the 
results. As shown in Figure 6B, the high-risk 
group was enriched with M2 macrophages 
which are recognized as immunosuppressive 
cells. M0 Macrophages were also enriched in 
the high-risk group although the difference 
from the low-risk group was not significant. 
Interestingly, Figure 6B also indicated that 
CD8+ T cells, dendritic cells, B cells, T follicular 
helper cells (Tfh), and Tγδ were enriched in the 
low-risk group. Some studies have shown that 
B cells and CD4+ T cells contribute to the for-
mation of tertiary lymphoid structures (TLSs) in 
EMT. Crosstalk between immune cells in TLSs 
could promote a series of immune processes 
including antigen presentation, maintenance  
of T cell states, and the formation of memory T 
cells; the interplay network was shown in Fi- 
gure 6C. Given that DEGs were enriched in the 
CD40 signaling pathway in GSEA enrichment 
analysis, we investigated CD40 and CD40LG 
expression in high- and low-risk groups and 
found that CD40LG expression was higher in 
the low-risk group, which might promote the 
activation of T cells and the killing of CD40+ 
tumor cells (Figure 6D). Furthermore, we col-
lected gene sets that represented immune  
molecules and processes (Table S5) and ana-
lyzed them using ssGSEA. The data suggested 

Figure 5. The ssGSEA score of metabolic pathways in different group and the DEGs analysis by GSEA, GO, KEGG 
pathway enrichment. A. Heatmap of 31 different metabolism pathways in high-risk and low-risk group (P < 0.01). B. 
GO enrichment of DEGs. C. KEGG enrichment of DEGs. D. GSEA enrichment of DEGs.
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Figure 6. The immune landscape in different risk groups and the relationship between rick score and drug response. 
A. The heatmap of 22 types of immune cells estimated by CIBERDORT. B. The boxplots of 22 types of immune cells 
estimated by CIBERDORT. C. The crosstalk between 22 types of immune cells. D. CD40 and CD40LG expression of 
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that the low-risk group provided a microenvi-
ronment more suitable for T cell co-stimulation; 
thus, cytolytic activity and type I and II IFN 
responses were stronger in the low-risk group 
than in the high-risk group, which further 
enhanced the antitumor effect and increased 
the MHC presentation on tumor cells (Figure 
6E). Moreover, the low-risk group had higher 
checkpoint scores due to many factors, such as 
increased T-cell infiltration and better T-cell 
activation, suggesting that patients in this 
group might benefit from ICB treatment. The 
expression levels of the seven checkpoint 
genes were presented in Figure S4A. To further 
validate our ssGSEA results, we performed 
ssGSEA again using the dataset from Thomas 
Powles et al. [36] and conducted a correlation 
analysis with each signature (Figure 6F). The 
results showed that the risk score was associ-
ated with EMT, antigen presentation, CD8+ T 
effector cells, and DNA repair as well as angio-
genesis. More importantly, the metabolic risk 
score could be used as an indicator to predict 
the efficacy of immunotherapy. We compared 
the therapeutic response to anti-PD-1 between 
the two risk groups via the ICB response score 
and revealed that the low-risk group had a  
better response to ICB therapy (Figure 6G). 
Consistently, data from KMplot dataset which 
contains information on patients with anti-PD1 
mAb treatment showed that the low-risk group 
had higher survival rate than the high-risk 
group (Figure 6H). We also used pRRophetic 
package to evaluate the IC50 of three first-line 
drugs: 5-Fluorouracil (Figure 6I), Cetuximab 
(Figure S4B), and Cisplatin (Figure S4C), and 
the results suggested that 5-Fluorouracil might 
not have therapeutic effect in patients at the 
high-risk group.

Single-cell sequencing analysis reveals the ex-
pression of 12 genes on different cell clusters

The published scRNA sequencing dataset 
(GSE136103) from the GEO database con- 
tains 5902 cells from 18 patients. After filter-
ing, we used 5746 cells for subsequent analy-
sis (Figure S5A-C). Eighteen clusters were gen-
erated using the tSNE algorithm (Figure S5D). 

Based on the expression signatures of these 
cells (Table S6), we classified them into eight 
clusters: B cells, CD4+ T cells, CD8+ NK cells, 
dendritic cells, endothelial cells, tumor cells, 
fibroblasts, macrophages, and mast cells 
(Figures S5E, 7A). Our results were consistent 
with the results from dataset provided by 
Bradley et al. [29]. We also used EPCAM to 
identify malignant cell clusters (Figure 7B). 
Furthermore, we performed single cell CNV 
analysis by using the “CopyKAT” package, 
which discriminated malignant cells from nor-
mal cells. The results showed that out of the 
5746 cells, 2318 cells were malignant cells, 
while the other 3428 cells were normal cells 
(Figure S6). In addition, the malignant cells 
belonged to the same group as the tumor cell 
population we previously identified. Further- 
more, we divided the tumor cells into two clus-
ters (1654 cells in cluster 1 and 664 cells in 
cluster 2) based on CNV (Figures S7, 7C) and 
found that EPCAM was expressed at signifi-
cantly higher levels in cluster 2 compared to 
cluster 1. It is well known that EPCAM is a bio-
marker of cancer stem cells and is involved in 
EMT. In addition, cells in cluster 2 overex-
pressed SOX2, another marker of cancer stem 
cells (Figure 7D). Combined the CNV mutation 
data with the expression of EPCAM and SOX2, 
we speculated that tumors in cluster 2 were 
more malignant than that in cluster 1.

Among the 12 genes we used to construct 
metabolism-related signature, HK1, PTGR1, 
MCCC1, UGT1A10, and NADSYN1 were highly 
expressed in tumor cells, while SLC2A3, 
INPP5D, and CSGALNACT1 were highly expr- 
essed in immune cells and fibroblasts. In addi-
tion, SLC2A3 was also expressed in cluster 2 
tumor cells, while FOMD was expressed only in 
fibroblasts (Figure 7E). SLC2A3, also known as 
GLUT3, has the highest affinity for glucose 
among the four glucose transporters and  
tends to be highly expressed in malignant 
tumors to meet their metabolic requirements. 
Furthermore, PTGR1 and UGT1A10 expression 
was upregulated in tumors of cluster 2 com-
pared to tumors in cluster 1. In contrast, 
INPP5D, CSGALNACT1, and FOMD were only 

different risk groups. E. The ssGASE score of immune processes in different risk groups. F. The correlation of risk 
score and 19 signatures provided by Thomas Powles et al. G. The ICB-Response score in high- and low-risk groups. 
H. Kaplan-Meier survival of patients grouped by metabolic signature in KM plot’s anti-PD1 therapy array. I. The 
evaluated IC50 of 5-Fluorouracil. *P < 0.05, **P < 0.01, ***P < 0.001.
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Figure 7. Single cell sequencing revealed the specific expression of the 12 genes in 8 cell types. A. Cell types were 
identified by marker genes. B. The expression of EPCAM in each cell type. C. Tumor cells were divided into 2 clusters 
by CopyKAT. D. The expression of SOX2 in each cell type. E. Expression profile of the 12 genes in each cell type.
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expressed in non-tumor cells and had negative 
coefficients with the risk score. Together, our 
analysis on the gene expression profile in each 
cell type provides a useful reference for the 
development of therapeutic drugs.

Discussion

Various studies have focused on the EMT pro-
cess in OSCC to investigate the mechanisms by 
which OSCC metastasizes. EMT activation 
results in the acquisition of stem cell proper-
ties, aggressive mobility, and immune resis-
tance. EMT is usually associated with metabol-
ic reprogramming, which is widely implement- 
ed by malignant cells to meet their needs for 
rapid proliferation and mobility in harsh tumor 
microenvironments. In this study, we used 
WGCNA, a systematic biology method, to iden-
tify the metabolic genes related to EMT, stem-
ness, and checkpoints. We identified a green 
module which had the most positive correlation 
with EMT and checkpoints, but not with stem-
ness, which might be due to the existence of 
the multiple states of EMT, each exhibiting dis-
tinct cancer stem cells marker [43]. We also 
selected the brown module related to the 
checkpoint signature for subsequent analysis. 
The biological functions of the green module 
were related to extracellular matrix synthesis. It 
has been reported that glycosaminoglycan can 
suppress the activation of T cells and dendritic 
cells [44], and that abundant ECM can impede 
immune cell infiltration, leading to the immune 
escape of tumor cells in OSCC. In addition, the 
oxidative stress-related pathways were also 
enriched in the module, suggesting the impor-
tant role in the induction of EMT. One important 
molecule in the oxidative stress-related path-
ways was NRF2 which can promote the tran-
scription of several genes involved in the forma-
tion of NADPH to help scavenge ROS [45]. 

We also constructed a metabolic signature  
consisting of 12 genes for predicting OSCC 
prognosis by comprehensive bioinformatic 
analysis of the green and brown modules. We 
verified that the risk score and age could be 
used as independent prognostic factors. OSCC 
patients with high-risk scores had poor out-
comes. Furthermore, the risk score also corre-
lated with other common malignant features. 
For example, high-risk score was associated 
with a more severe TNM stage and a higher 

TMB. A high mutation rate of TP53 was found in 
OSCC patients, especially in the high-risk group. 
The CNV patterns differed between the two risk 
groups, with the high-risk group showing more 
genomic amplifications of several genes, in- 
cluding TP63. Nevertheless, whether TP63 
acts as a tumor suppressive or tumor promot-
ing factor is not clear [46-48], and our results 
showed that TP63 amplification was associat-
ed with more malignant OSCC. 

The high- and low-risk groups presented differ-
ent patterns of metabolic pathways. Glycolysis, 
amino acid synthesis, and glutamine metabo-
lism pathways were upregulated in the high-risk 
group. Similarly, drug metabolism and CYP450 
pathway were upregulated, suggesting that the 
high-risk group were more resistant to chemo-
therapy. Interestingly, the lipid metabolism and 
arachidonic acid metabolism pathways were 
enriched in the low-risk group, as these path-
ways are generally considered to be positively 
correlated with malignant tumors. Furthermore, 
GO pathway analysis revealed that the MAPK 
pathway was enriched in the low-risk group. 
Although activating mutations in MAPK are 
common in tumors and are generally consid-
ered to be oncogenic [49, 50], recent studies 
suggest that the role of MAPK pathway muta-
tions may be different in HNSCC, which was 
supported by our results. Other evidence also 
supports this notion. For example, multiple 
MAPK pathway activating mutations found in 
HNSCC could significantly suppress p-ErbB3 
expression and promote CD8+ T cell infiltration, 
which are associated with better survival [51]. 
Furthermore, previous studies have shown that 
arachidonic acid and other fatty acids can acti-
vate members of the MAPK superfamily [52, 
53], which explains why lipid and arachidonic 
acid metabolism were active in the low-risk 
OSCC group. We also found the differential 
expression of some classical tumor-associated 
pathways, including TP53, PTEN, MYC, KRAS, 
and E2F1, between the high- and low-risk 
groups. 

In this study, we showed that the risk score was 
associated with the immune landscape of 
OSCC patients. First, the population of CD8+ T 
cells was expanded in the low-risk group, and 
other factors, including HLA, cytolytic activity, 
and co-stimulation, also indicated that the low-
risk group had a more active immune environ-
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ment. In the low-risk group, T cells exhibited 
higher CD40L expression, but tumor cells 
exhibited lower CD40 expression, suggesting 
the possibility of applying CD40LG signal in the 
design of chimeric antigen receptor T cell (CAR-
T) for an improved OSCC therapy. Another sig-
nificant finding from our analysis was that the 
risk score was reliable in predicting the 
response to immunotherapy, with a lower risk 
score indicating a higher ICB-response score 
and a better survival outcome. The predicted 
IC50 results showed that the high-risk score 
predicted resistance to 5-fluorouracil but not to 
cetuximab and cisplatin, suggesting cetuximab 
and cisplatin as more efficient therapeutic drug 
in treating malignant OSCC. 

Finally, scRNA-seq data were used to further 
explain the signature we constructed. The 
tumors in cluster 2 expressed high levels of 
EPCAM and SOX2 which are markers of malig-
nant tumor cells. Among the 12 signature 
genes, PTGR1, UTG1A10 and SLC2A3, were 
differentially expressed between the two tumor 
clusters, indicating that these genes could be 
potential therapeutic targets in the treatment 
of refractory OSCC. Indeed, inhibitors of PTG- 
R1 and UTG1A10, including indomethacin 
(PTGR1 inhibitor) and sorafenib (UTG1A10 in- 
hibitor), have been used clinical in other cancer 
types [54, 55]. As for SLC2A3, the molecular 
basis for its inhibition by exofacial inhibitors 
has been reported [56], which could serve as 
potential therapeutic target. On the other hand, 
Hexokinase 1 (HK1), the first rate-limiting 
enzyme in glycolysis and a closely related 
enzyme to cancer progression, is expressed in 
both tumor and non-tumor cells. It has been 
reported that HK1 is upregulated when T cells 
are activated [57], which would probably inter-
fere with our predictions using the risk score. 
Therefore, the risk score would be more suit-
able for the assessment of patients prior to 
treatment. Notably, another two genes in the 
12 gene signature, CSGALNACT1 and FMOD 
were associated with the metabolism of the 
extracellular matrix, suggesting that the 
immune state of the EMT can be improved by 
regulating the extracellular matrix to achieve 
good therapeutic outcomes in OSCC.

In conclusion, we constructed a metabolic gene 
co-expression network for OSCC and identified 
metabolic genes most relevant to EMT, stem-

ness, and checkpoint signatures. A prognostic 
metabolic signature was constructed and vali-
dated. The risk score derived from the signa-
ture was closely related to the clinical features 
and could be used to predict the response to 
immune therapy. Importantly, some potential 
targets identified from the analyzing metabolic 
characteristics in different risk groups may 
help develop clinical treatment plans.

Nevertheless, there were some limitations in 
this work. First, datasets of large immunothera-
py, especially in OSCC, should be used to verify 
our signature. Second, in vitro and in vivo 
experiments should be carried out to validate 
these potential targets and pathways. Finally, 
our research only studied the relationship 
between metabolism and OSCC metastasis  
at the transcriptional level, and we look forward 
to a multi-omics study to reveal more details 
about the role of metabolism in OSCC 
metastasis.
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Figure S1. The flow chart of this study. 

Table S1. 330 OSCC patients information in TCGA cohort
Clinical characteristics Number n (%)
Age < 65 126 38.18

> 65 204 61.82
Gender male 229 69.39

female 101 30.61
T TX-T1 26 7.88

T2 107 32.42
T3 83 25.15
T4 101 30.61
Null 13 3.94

N NX-N0 183 55.45
N1 56 16.97
N2 85 25.76
N3 6 1.82

M MX 19 5.76
M0 309 93.64
M1 2 0.61
Null 3 0.91
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Tumor Stage I 12 3.64
II 79 23.94
III 67 20.30
IV 162 49.09
Null 10 3.03

HPV + 10 3.03
- 58 17.58
Null 262 79.39

Origin tissue Tongue 144 43.64
Mouth Floor 72 21.82
Cheek 19 5.76
Pharynx 11 3.33
Gum 10 3.03
Plate 5 1.52
others 69 20.91

Table S2. EMT, stemness, checkpoint signatures
signature genes
EMT ANLN, APLP2, CD63, CDH2, CLIC4, VCAN, CTSB, CX3CR1, DSG2, EDNRB, EMP1, ENC1, FGG, FZD1, 

TUBA4A, HMMR, ITGAV, LUM, L1CAM, MFAP1, MMP2, PFN1, PRKCA, RAB1A, RAN, RRAGA, SDCBP, 
SELENOP, SERPINA3, SMARCA1, SPA17, SPARC, TUBA4A, TUBA3C, TUBA1A, TUBB3

stemness DNMT3B, PFAS, XRCC5, HAUS6, TET1, IGF2BP1, PLAA, TEX10, MSH6, DLGAP5, SKIV2L2, SOHLH2, 
RRAS2, PAICS, CPSF3, LIN28B, IPO5, BMPR1A, ZNF788, ASCC3, FANCB, HMGA2, TRIM24, ORC1, 
HDAC2, HESX1, INHBE, MIS18A, DCUN1D5, MRPL3, CENPH, MYCN, HAUS1, GDF3, TBCE, RIOK2, 
BCKDHB, RAD1, NREP, ADH5, PLRG1, ROR1, RAB3B, DIAPH3, GNL2, FGF2, NMNAT2, KIF20A, 
CENPI, DDX1, XXYLT1, GPR176, BBS9, C14orf166, BOD1, CDC123, SNRPD3, FAM118B, DPH3, 
EIF2B3, RPF2, APLP1, DACT1, PDHB, C14orf119, DTD1, SAMM50, CCL26, MED20, UTP6, RARS2, 
ARMCX2, RARS, MTHFD2, DHX15, HTR7, MTHFD1L, ARMC9, XPOT, IARS, HDX, ACTRT3, ERCC2, 
TBC1D16, GARS, KIF7, UBE2K, SLC25A3, ICMT, UGGT2, ATP11C, SLC24A1, EIF2AK4, GPX8, ALX1, 
OSTC, TRPC4, HAS2, FZD2, TRNT1, MMADHC, SNX8, CDH6, HAT1, SEC11A, DIMT1, TM2D2, FST, 
GBE1

checkpoint IDO1, LAG3, CTLA4, TNFRSF9, ICOS, CD80, PDCD1LG2, TIGIT, CD70, TNFSF9, ICOSLG, KIR3DL1, 
CD86, PDCD1, LAIR1, TNFRSF8, TNFSF15, TNFRSF14, IDO2, CD276, CD40, TNFRSF4, TNFSF14, 
HHLA2, CD244, CD274, HAVCR2, CD27, BTLA, LGALS9, TMIGD2, CD28, CD48, TNFRSF25, CD40LG, 
ADORA2A, VTCN1, CD160, CD44, TNFSF18, TNFRSF18, BTNL2, C10orf54, CD200R1, TNFSF4, 
CD200, NRP1
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Figure S2. Construction of gene co-expression network. A. Analysis the scale-free fit index and mean connectivity 
of soft threshold of power. B. The distribution of k and liner model of fitting of R2 index. C. The dendrogram of gene 
modules. D. Gene dendrogram, the cut height was set as 0.4 to merge modules. E. Eigengene adjacency heatmap 
of 800 genes.
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Figure S3. Transcription factors of genes in green and brown modules predicted by iRegulon.

Table S3. The 12 genes signature and coefficient 
Gene Coef
PTGR1 0.006695
FUT7 0.006255
ALDH1B1 0.307717
FMOD -0.17457
MCCC1 0.084753
SLC2A3 0.276657
UGT1A10 0.032856
INPP5D -0.1686
HK1 0.464965
PRKCA 0.245153
CSGALNACT1 -0.53195
NADSYN1 0.243603
NADSYN1 0.243603

Table S4. KEGG metabolic pathways
Pathways statistic p.value

1 2-Oxocarboxylic acid metabolism - Homo sapiens (human) 5.110798 5.47E-07
2 Alanine, aspartate and glutamate metabolism - Homo sapiens (human) 4.916578 1.39E-06
3 alpha-Linolenic acid metabolism - Homo sapiens (human) -6.06745 3.59E-09
4 Amino sugar and nucleotide sugar metabolism - Homo sapiens (human) 2.567315 0.010711
5 Arachidonic acid metabolism - Homo sapiens (human) -5.05392 7.22E-07
6 Arginine and proline metabolism - Homo sapiens (human) 0.578506 0.563321
7 Arginine biosynthesis - Homo sapiens (human) -0.23138 0.817162
8 Ascorbate and aldarate metabolism - Homo sapiens (human) 3.877937 0.000128
9 beta-Alanine metabolism - Homo sapiens (human) -0.36899 0.712372
10 Biosynthesis of amino acids - Homo sapiens (human) 6.769541 5.97E-11
11 Biosynthesis of unsaturated fatty acids - Homo sapiens (human) -1.04469 0.296937
12 Biotin metabolism - Homo sapiens (human) -1.83431 0.067514
13 Butanoate metabolism - Homo sapiens (human) 0.351868 0.725168
14 Caffeine metabolism - Homo sapiens (human) -1.66422 0.097038
15 Carbon metabolism - Homo sapiens (human) 4.715426 3.62E-06
16 Citrate cycle (TCA cycle) - Homo sapiens (human) 0.085758 0.931713
17 Cysteine and methionine metabolism - Homo sapiens (human) 2.376877 0.01804
18 D-Arginine and D-ornithine metabolism - Homo sapiens (human) -1.85745 0.064143
19 D-Glutamine and D-glutamate metabolism - Homo sapiens (human) 1.691564 0.091706
20 Drug metabolism - cytochrome P450 - Homo sapiens (human) 1.332127 0.183755
21 Drug metabolism - other enzymes - Homo sapiens (human) 3.482113 0.000565
22 Ether lipid metabolism - Homo sapiens (human) -5.70615 2.59E-08
23 Fatty acid biosynthesis - Homo sapiens (human) -2.89668 0.004025
24 Fatty acid degradation - Homo sapiens (human) 0.338237 0.735408
25 Fatty acid elongation - Homo sapiens (human) -2.79499 0.005496
26 Fatty acid metabolism - Homo sapiens (human) -1.02522 0.306018
27 Folate biosynthesis - Homo sapiens (human) -0.29924 0.764948
28 Fructose and mannose metabolism - Homo sapiens (human) 5.032899 8.03E-07
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29 Galactose metabolism - Homo sapiens (human) 2.088841 0.037496
30 Glutathione metabolism - Homo sapiens (human) 3.517366 0.000498
31 Glycerolipid metabolism - Homo sapiens (human) -1.42396 0.155408
32 Glycerophospholipid metabolism - Homo sapiens (human) -1.26808 0.20567
33 Glycine, serine and threonine metabolism - Homo sapiens (human) 1.570814 0.117192
34 Glycolysis/Gluconeogenesis - Homo sapiens (human) 3.694357 0.000258
35 Glycosaminoglycan biosynthesis - chondroitin sulfate/dermatan sulfate - Homo 

sapiens (human)
1.517116 0.130202

36 Glycosaminoglycan biosynthesis - heparan sulfate/heparin - Homo sapiens (human) 1.350717 0.177728
37 Glycosaminoglycan biosynthesis - keratan sulfate - Homo sapiens (human) 1.484128 0.138735
38 Glycosaminoglycan degradation - Homo sapiens (human) -0.71578 0.474636
39 Glycosphingolipid biosynthesis - ganglio series - Homo sapiens (human) 2.67079 0.007947
40 Glycosphingolipid biosynthesis - globo and isoglobo series - Homo sapiens (human) -0.20665 0.836411
41 Glycosphingolipid biosynthesis - lacto and neolacto series - Homo sapiens (human) -1.46715 0.143298
42 Glycosylphosphatidylinositol (GPI)-anchor biosynthesis - Homo sapiens (human) 1.936882 0.053618
43 Glyoxylate and dicarboxylate metabolism - Homo sapiens (human) 2.579394 0.010345
44 Histidine metabolism - Homo sapiens (human) -3.73655 0.00022
45 Inositol phosphate metabolism - Homo sapiens (human) -2.509 0.012593
46 Linoleic acid metabolism - Homo sapiens (human) -5.93368 7.59E-09
47 Lipoic acid metabolism - Homo sapiens (human) 1.082252 0.279937
48 Lysine degradation - Homo sapiens (human) 1.825642 0.068813
49 Mannose type O-glycan biosynthesis - Homo sapiens (human) 4.115939 4.90E-05
50 Metabolic pathways - Homo sapiens (human) 0.329685 0.741849
51 Metabolism of xenobiotics by cytochrome P450 - Homo sapiens (human) 2.643925 0.008599
52 Mucin type O-glycan biosynthesis - Homo sapiens (human) -0.23394 0.81518
53 N-Glycan biosynthesis - Homo sapiens (human) 0.638976 0.523286
54 Neomycin, kanamycin and gentamicin biosynthesis - Homo sapiens (human) 4.040443 6.67E-05
55 Nicotinate and nicotinamide metabolism - Homo sapiens (human) 0.820551 0.412499
56 Nitrogen metabolism - Homo sapiens (human) 0.442635 0.658322
57 One carbon pool by folate - Homo sapiens (human) 2.410379 0.016486
58 Other glycan degradation - Homo sapiens (human) 0.884766 0.376937
59 Other types of O-glycan biosynthesis - Homo sapiens (human) 3.175186 0.00164
60 Oxidative phosphorylation - Homo sapiens (human) 0.190115 0.849337
61 Pantothenate and CoA biosynthesis - Homo sapiens (human) -5.84823 1.23E-08
62 Pentose and glucuronate interconversions - Homo sapiens (human) 2.829573 0.004956
63 Pentose phosphate pathway - Homo sapiens (human) 4.044598 6.56E-05
64 Phenylalanine metabolism - Homo sapiens (human) -0.29081 0.771388
65 Phenylalanine, tyrosine and tryptophan biosynthesis - Homo sapiens (human) 0.122598 0.902501
66 Phosphonate and phosphinate metabolism - Homo sapiens (human) 3.727206 0.000228
67 Porphyrin and chlorophyll metabolism - Homo sapiens (human) 3.366537 0.000854
68 Primary bile acid biosynthesis - Homo sapiens (human) -3.37802 0.000818
69 Propanoate metabolism - Homo sapiens (human) 1.604057 0.1097
70 Purine metabolism - Homo sapiens (human) 0.847311 0.39745
71 Pyrimidine metabolism - Homo sapiens (human) -1.04799 0.29542
72 Pyruvate metabolism - Homo sapiens (human) 2.582007 0.010257
73 Retinol metabolism - Homo sapiens (human) -0.59925 0.549423
74 Riboflavin metabolism - Homo sapiens (human) -0.95403 0.340774
75 Selenocompound metabolism - Homo sapiens (human) 3.339217 0.000938
76 Sphingolipid metabolism - Homo sapiens (human) -3.30776 0.00105



Metabolic signatures of OSCC

7 

77 Starch and sucrose metabolism - Homo sapiens (human) 0.724978 0.468983
78 Steroid biosynthesis - Homo sapiens (human) 0.555455 0.578964
79 Steroid hormone biosynthesis - Homo sapiens (human) 1.646613 0.100607
80 Sulfur metabolism - Homo sapiens (human) -1.58328 0.114323
81 Synthesis and degradation of ketone bodies - Homo sapiens (human) -0.49565 0.620471
82 Taurine and hypotaurine metabolism - Homo sapiens (human) -1.06229 0.288888
83 Terpenoid backbone biosynthesis - Homo sapiens (human) -1.99851 0.046487
84 Thiamine metabolism - Homo sapiens (human) 0.457475 0.647634
85 Tryptophan metabolism - Homo sapiens (human) -1.53283 0.126328
86 Tyrosine metabolism - Homo sapiens (human) 0.226162 0.82122
87 Ubiquinone and other terpenoid-quinone biosynthesis - Homo sapiens (human) 2.923608 0.003705
88 Valine, leucine and isoleucine biosynthesis - Homo sapiens (human) 3.22197 0.001401
89 Valine, leucine and isoleucine degradation - Homo sapiens (human) 2.326173 0.020629
90 Vitamin B6 metabolism - Homo sapiens (human) 0.122998 0.902184

Table S5. Immune related process and ICB-response signatures
signature genes
APC co inhibition C10orf54, CD274, LGALS9, PDCD1LG2, PVRL3, CD40, CD58, CD70, ICOSLG, SLAMF1, 

TNFSF14, TNFSF15, TNFSF18, TNFSF4, TNFSF8, TNFSF9
CCR CCL16, TPO, TGFBR2, CXCL2, CCL14, TGFBR3, IL11RA, CCL11, IL4I1, IL33, CXCL12, CXCL10, 

BMPER, BMP8A, CXCL11, IL21R, IL17B, TNFRSF9, ILF2, CX3CR1, CCR8, TNFSF12, CSF3, 
TNFSF4, BMP3, CX3CL1, BMP5, CXCR2, TNFRSF10D, BMP2, CXCL14, CCL28, CXCL3, BMP6, 
CCL21, CXCL9, CCL23, IL6, TNFRSF18, IL17RD, IL17D, IL27, CCL7, IL1R1, CXCR4, CXCR2P1, 
TGFB1I1, IFNGR1, IL9R, IL1RAPL1, IL11, CSF1, IL20RA, IL25, TNFRSF4, IL18, ILF3, CCL20, 
TNFRSF12A, IL6ST, CXCL13, IL12B, TNFRSF8, IL6R, BMPR2, IFNE, IL1RAPL2, IL3RA, BMP4, 
CCL24, TNFSF13B, CCR4, IL2RA, IL32, TNFRSF10C, IL22RA1, BMPR1A, CXCR5, CXCR3, IFNA8, 
IL17REL, IFNB1, IFNAR1, TNFRSF1B, CCL17, IFNL1, IL16, IL1RL1, ILK, CCL25, ILDR2, CXCR1, 
IL36RN, IL34, TGFB1, IFNG, IL19, ILKAP, BMP2K, CCR10, ILDR1, EPO, CCR7, IL17C, IL23A, 
CCR5, IL7, EPOR, CCL13, IL2RG, IL31RA, TNFAIP6, IFNL2, BMP1, IL12RB1, TNFAIP8, IL4R, 
TNFRSF6B, TNFAIP8L1, TNFRSF10B, IFNL3, CCL5, CXCL6, CXCL1, CCR3, TNFSF11, CSF1R, 
IL21, IL1RAP, IL12RB2, CCL1, IL17RA, CCR1, IL1RN, TNFRSF11B, TNFRSF14, IL13, IL2RB, 
BMP8B, CCL2, IL24, IL18RAP, TGFBI, TNFSF10, TNFRSF11A, CXCL5, IL5RA, TNFSF9, IL1RL2, 
TNFRSF13C, IL36G, IL15RA, TNFRSF21, CXCL8, IL22RA2, TNFAIP8L2, IL18R1, IFNLR1, 
CXCR6, CCL3L3, TNFRSF1A, IL17RE, IFNGR2, IL17RC, TNFAIP8L3, ILVBL, TGFBRAP1, CCL4L1, 
CSF2RA, CCRN4L, CCL26, TNFAIP1, CCRL2, IFNA10, TNFRSF17, IFNA13, IL20, IL18BP, 
CCL3L1, TNFSF12-TNFSF13, IL5, IL23R, IL26, TNF, TGFA, CSF2, IL1F10, CXCL17, TNFSF13, 
IFNA4, IL37, IL12A, IL7R, IFNA1, IL1A, IL4, IL2, CCL22, CSF3R, IL10, IFNK, TGFB2, IL1R2, IL1B, 
IL17F, IL27RA, IL15, TNFSF8, IL36B, XCL1, CXCL16, TNFRSF19, IL3, CCL3, IFNA2, BMPR1B, 
IFNA21, TNFSF18, CCL8, IL17RB, TNFRSF25, IL22, IL10RB, IFNAR2, CCL18, IFNA16, CSF2RB, 
IL36A, TNFAIP3, IL13RA2, IL13RA1, CCR9, TNFRSF10A, IFNA7, IFNW1, XCL2, TNFSF14, CCR2, 
BMP15, BMP10, CCL15-CCL14, TGFBR1, IFNA5, BMP7, IFNA14, IL20RB, IL10RA, IFNA17, 
CCR6, TGFB3, CCL15, CCL4, CCL27, TNFRSF13B, TNFAIP2, IL31, IL17A, TNFSF15, CCL19, 
IFNA6, IL9

checkpoint IDO1, LAG3, CTLA4, TNFRSF9, ICOS, CD80, PDCD1LG2, TIGIT, CD70, TNFSF9, ICOSLG, 
KIR3DL1, CD86, PDCD1, LAIR1, TNFRSF8, TNFSF15, TNFRSF14, IDO2, CD276, CD40, 
TNFRSF4, TNFSF14, HHLA2, CD244, CD274, HAVCR2, CD27, BTLA, LGALS9, TMIGD2, CD28, 
CD48, TNFRSF25, CD40LG, ADORA2A, VTCN1, CD160, CD44, TNFSF18, TNFRSF18, BTNL2, 
C10orf54, CD200R1, TNFSF4, CD200, NRP1

Cytolytic activity PRF1, GZMB, GZMA
HLA HLA-E, HLA-DPB2, HLA-C, HLA-J, HLA-DQB1, HLA-DQB2, HLA-DQA2, HLA-DQA1, HLA-A, HLA-

DMA, HLA-DOB, HLA-DRB1, HLA-H, HLA-B, HLA-DRB5, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-
DRB6, HLA-L, HLA-F, HLA-G, HLA-DMB, HLA-DPA1

Inflammation-promoting CCL5, CD19, CD8B, CXCL10, CXCL13, CXCL9, GNLY, GZMB, IFNG, IL12A, IL12B, IRF1, PRF1, 
STAT1, TBX21

Parainflammation CXCL10, PLAT, CCND1, LGMN, PLAUR, AIM2, MMP7, ICAM1, MX2, CXCL9, ANXA1, TLR2, 
PLA2G2D, ITGA2, MX1, HMOX1, CD276, TIRAP, IL33, PTGES, TNFRSF12A, SCARB1, CD14, 
BLNK, IFIT3, RETNLB, IFIT2, ISG15, OAS2, REL, OAS3, CD44, PPARG, BST2, OAS1, NOX1, 
PLA2G2A, IFIT1, IFITM3, IL1RN
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T cell co-inhibition BTLA, C10orf54, CD160, CD244, CD274, CTLA4, HAVCR2, LAG3, LAIR1, TIGIT
T cell co-stimulation CD2, CD226, CD27, CD28, CD40LG, ICOS, SLAMF1, TNFRSF18, TNFRSF25, TNFRSF4, TN-

FRSF8, TNFRSF9, TNFSF14
Type I IFN Reponse DDX4, IFIT1, IFIT2, IFIT3, IRF7, ISG20, MX1, MX2, RSAD2, TNFSF10
Type II IFN Reponse GPR146, SELP, AHR
ICB-response AKR1C4, KCNA1, CREB3L3, NEU4, PIGR, ACOD1, CPN2, CCL16, HGD, DEFA1, TAT, PDCD1, 

GLYATL1, MT1H, COLEC10, THRSP, HS3ST3B1, IL24, IFNG, SMCO2, TMEM155, DBH
CD8 T effector CD8A, CXCL10, CXCL9, GZMA, GZMB, IFNG, PRF1, TBX21
DNA damage repair ALKBH2, ALKBH3, APEX1, APEX2, APLF, ATM, ATR, ATRIP, BLM, BRCA1, BRCA2, BRIP1, CCNH, 

CDK7, CETN2, CHAF1A, CHEK1, CHEK2, CLK2, DCLRE1C, DDB1, DDB2, DUT, ENDOV, ERCC1, 
ERCC2, ERCC3, ERCC4, ERCC5, ERCC6, ERCC8, FAN1, FANCA, FANCB, FANCC, FANCD2, 
FANCE, FANCF, FANCG, FANCL, FANCM, GTF2H1, GTF2H2, GTF2H3, GTF2H4, GTF2H5, H2AFX, 
HLTF, HUS1, LIG1, LIG3, LIG4, MBD4, MDC1, MGMT, MLH1, MLH3, MMS19, MNAT1, MPG, 
MSH2, MSH3, MSH4, MSH5, MSH6, MUTYH, NEIL1, NEIL2, NEIL3, NHEJ1, NTHL1, NUDT1, 
OGG1, PALB2, PARP1, PARP2, PARP3, PCNA, PER1, PMS1, PMS2, PNKP, POLB, POLD1, POLE, 
POLG, POLH, POLL, POLM, POLQ, PRKDC, RAD1, RAD17, RAD18, RAD23A, RAD23B, RAD51C, 
RAD9A, RECQL4, RECQL5, RIF1, RNF168, RNF4, RNF8, RPA1, RPA2, RPA3, RPA4, RRM2B, 
SETMAR, SHPRH, SMUG1, TDP1, TDP2, TOPBP1, TP53, TREX1, UBE2A, UBE2B, UBE2N, 
UBE2V2, UNG, UVSSA, WRN, XAB2, XPA, XPC, XRCC1, XRCC4, XRCC5, XRCC6

Pan-F-TBRS ACTA2, ACTG2, ADAM12, ADAM19, CNN1, COL4A1, CTGF, CTPS1, FAM101B, FSTL3, HSPB1, 
IGFBP3, PXDC1, SEMA7A, SH3PXD2A, TAGLN, TGFBI, TNS1, TPM1

Antigen processing machinery B2M, HLA-A, HLA-B, HLA-C, TAP1, TAP2
Immune checkpoint CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2, TIGIT
EMT (1) CLDN3, CLDN7, CLDN4, CDH1, VIM, TWIST1, ZEB1, ZEB2
FGFR3-related genees FGFR3, TP63, WNT7B
KEGG discovered histones HIST1H2AG, HIST1H2AI, HIST1H2BL, HIST2H2BF
Angiogenesis CDH5, SOX17, SOX18, TEK
Fanconi anemia APITD1, ATR, ATRIP, BLM, BRCA1, BRCA2, BRIP1, C17orf70, C19orf40, EME1, EME2, ERCC1, 

ERCC4, FAN1, FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, 
HES1, MLH1, MUS81, PALB2, PMS2, POLH, POLI, POLK, POLN, RAD51, RAD51C, REV1, REV3L, 
RMI1, RMI2, RPA1, RPA2, RPA3, RPA4, SLX4, STRA13, TELO2, TOP3A, TOP3B, UBE2T, USP1, 
WDR48

Cell cycle ABL1, ANAPC1, ANAPC10, ANAPC11, ANAPC13, ANAPC2, ANAPC4, ANAPC5, ANAPC7, ATM, 
ATR, BUB1, BUB1B, BUB3, CCNA1, CCNA2, CCNB1, CCNB2, CCNB3, CCND1, CCND2, CCND3, 
CCNE1, CCNE2, CCNH, CDC14A, CDC14B, CDC16, CDC20, CDC23, CDC25A, CDC25B, 
CDC25C, CDC26, CDC27, CDC45, CDC6, CDC7, CDK1, CDK2, CDK4, CDK6, CDK7, CDKN1A, 
CDKN1B, CDKN1C, CDKN2A, CDKN2B, CDKN2C, CDKN2D, CHEK1, CHEK2, CREBBP, CUL1, 
DBF4, E2F1, E2F2, E2F3, E2F4, E2F5, EP300, ESPL1, FZR1, GADD45A, GADD45B, GADD45G, 
GSK3B, HDAC1, HDAC2, MAD1L1, MAD2L1, MAD2L2, MCM2, MCM3, MCM4, MCM5, MCM6, 
MCM7, MDM2, MYC, ORC1, ORC2, ORC3, ORC4, ORC5, ORC6, PCNA, PKMYT1, PLK1, PRKDC, 
PTTG1, PTTG2, RAD21, RB1, RBL1, RBL2, RBX1, SFN, SKP1, SKP2, SMAD2, SMAD3, SMAD4, 
SMC1A, SMC1B, SMC3, STAG1, STAG2, TFDP1, TFDP2, TGFB1, TGFB2, TGFB3, TP53, TTK, 
WEE1, YWHAB, YWHAE, YWHAG, YWHAH, YWHAQ, YWHAZ, ZBTB17

DNA replication DNA2, FEN1, LIG1, MCM2, MCM3, MCM4, MCM5, MCM6, MCM7, PCNA, POLA1, POLA2, 
POLD1, POLD2, POLD3, POLD4, POLE, POLE2, POLE3, POLE4, PRIM1, PRIM2, RFC1, RFC2, 
RFC3, RFC4, RFC5, RNASEH1, RNASEH2A, RNASEH2B, RNASEH2C, RPA1, RPA2, RPA3, RPA4, 
SSBP1

Nucleotide excision repair CCNH, CDK7, CETN2, CUL4A, CUL4B, DDB1, DDB2, ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, 
ERCC6, ERCC8, GTF2H1, GTF2H2, GTF2H3, GTF2H4, GTF2H5, LIG1, MNAT1, PCNA, POLD1, 
POLD2, POLD3, POLD4, POLE, POLE2, POLE3, POLE4, RAD23A, RAD23B, RBX1, RFC1, RFC2, 
RFC3, RFC4, RFC5, RPA1, RPA2, RPA3, RPA4, XPA, XPC

Homologous recombination BLM, BRCA2, EME1, MRE11A, MUS81, NBN, POLD1, POLD2, POLD3, POLD4, RAD50, RAD51, 
RAD51B, RAD51C, RAD51D, RAD52, RAD54B, RAD54L, RPA1, RPA2, RPA3, RPA4, SHFM1, 
SSBP1, TOP3A, TOP3B, XRCC2, XRCC3

Mismatch repair EXO1, LIG1, MLH1, MLH3, MSH2, MSH3, MSH6, PCNA, PMS2, POLD1, POLD2, POLD3, POLD4, 
RFC1, RFC2, RFC3, RFC4, RFC5, RPA1, RPA2, RPA3, RPA4, SSBP1

EMT2 AXL, FAP, LOXL2, ROR2, TAGLN, TWIST2, WNT5A
EMT3 FOXF1, GATA6, SOX9, TWIST1, ZEB1, ZEB2
WNT target EFNB3, MYC, TCF12, VEGFA
Cell cycle regulators ATM, CCND1, CCNE1, CDKN1A, CDKN2A, E2F3, FBXW7, MDM2, RB1, TP53



Metabolic signatures of OSCC

9 

Figure S4. Checkpoints and IC50 of drugs. A. The 7 checkpoints expression in different risk group. B, C. IC50 of 
Cetuximab and Cisplatin estimated by “pRRophetic” package.
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Figure S5. Quality control of scRNA-seq data 
of OSCC and identify cell clusters. A. Data 
with nFeature > 2000, nCount < 20000. 
B. Visualization nCount-nFeature relation-
ships. C. Normalization of raw_counts. D. 
tSNE algorithm is used to divide all cells into 
18 clusters. E. The dotplot of marker genes 
expression in 18 clusters.
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Table S6. Markers used to identify cell types in 18 cell clusters
Cells Maker genes
Tumor cells EPCAM
Endothelial cells PECAM1
Fibroblasts COL3A1
B cells CD79A, MS4A1, IGHM, CD19, CD79B
Dendritic cells CD1A, CD1C, CD207, PTGDS, IRF4
T cell CD3D, CD8A, CD4
NK cells GNLY, NKG7, CD160, GZMB, CCL3
Mast cells TPSAB1, TPSB2, CPA3, HPGDS
Macrophages CD14, CD163, CD68, CSF1R

Figure S6. The estimated CNVs of 5746 cells analyzed by CopyKAT.
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Figure S7. The estimated CNVs of tumor cells analyzed by CopyKAT.


