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Cntnap2-dependent molecular networks in autism spectrum
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Autism spectrum disorder (ASD) is a major neurodevelopmental disorder in which patients present with core symptoms of social
communication impairment, restricted interest, and repetitive behaviors. Although various studies have been performed to identify
ASD-related mechanisms, ASD pathology is still poorly understood. CNTNAP2 genetic variants have been found that represent ASD
genetic risk factors, and disruption of Cntnap2 expression has been associated with ASD phenotypes in mice. In this study, we
performed an integrative multi-omics analysis by combining quantitative proteometabolomic data obtained with Cntnap2
knockout (KO) mice with multi-omics data obtained from ASD patients and forebrain organoids to elucidate Cntnap2-dependent
molecular networks in ASD. To this end, a mass spectrometry-based proteometabolomic analysis of the medial prefrontal cortex in
Cntnap2 KO mice led to the identification of Cntnap2-associated molecular features, and these features were assessed in
combination with multi-omics data obtained on the prefrontal cortex in ASD patients to identify bona fide ASD cellular processes.
Furthermore, a reanalysis of single-cell RNA sequencing data obtained from forebrain organoids derived from patients with
CNTNAP2-associated ASD revealed that the aforementioned identified ASD processes were mainly linked to excitatory neurons. On
the basis of these data, we constructed Cntnap2-associated ASD network models showing mitochondrial dysfunction, axonal
impairment, and synaptic activity. Our results may shed light on the Cntnap2-dependent molecular networks in ASD.

Molecular Psychiatry (2023) 28:810–821; https://doi.org/10.1038/s41380-022-01822-1

INTRODUCTION
Autism spectrum disorder (ASD) is a common neurodevelop-
mental disorder (NDD) with rapidly increasing incidence world-
wide. ASD patients present with social-psychological problems
that lead to the most common symptoms: social communication
impairment, repetitive behaviors, and restricted interest [1, 2].
Challenges derived from ASD affect the patients and place a
burden on their families and society [3, 4]. Despite its importance,
the pathobiology of ASD largely remains unknown.
Through genomic studies of large ASD patient cohorts, ample

novel ASD-associated genes have been identified; these genes
have been used to generate various genetically engineered mouse
models with autistic-like phenotypes, and these models have
contributed to a better understanding of ASD pathophysiology
[5–7]. However, some mouse model experimental results are not
applicable to humans due to organism differences [8, 9]. When
translating mouse study findings to the clinic and interlacing
results obtained from different organisms, these organism-specific
differences must be carefully considered to ensure that the precise

ASD etiology has been accurately recapitulated in ASD mouse
models.
Genetic defects to Contactin-associated protein-like 2 (CNTNAP2)

can cause many neurological disabilities in humans, including ASD
and intellectual disability [10, 11]. Cntnap2 knockout (KO) mice
exhibit abnormal behaviors that mimic core ASD features. Loss of
Cntnap2 led to impaired neuronal migration and reduced
neuronal density in the medial prefrontal cortex (mPFC) in
Cntnap2 KO mice [12]. Cntnap2 KO mice showed altered synaptic
plasticity and imbalanced excitation/inhibition of neural networks
[2]. Ample research with Cntnap2 KO models has revealed that
Cntnap2 was associated with neuronal circuit development
[13, 14]. However, the pathophysiology underlying these out-
comes is still poorly understood.
Advances in high-throughput molecular profiling (omics) techni-

ques have allowed researchers to understand a wide range of
molecular features (e.g., mRNAs, proteins, and metabolites) and have
revealed the molecular mechanism underlying NDDs [1, 11, 15–18].
In addition to global gene expression profiles with the complex
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mixture of cells comprising bulk transcriptome samples, single-cell
RNA sequencing (scRNA-seq) has enabled the investigation of gene
expression profiles at the individual cell level [19]. Proteins and
metabolites that play important roles in ASD pathophysiology can be
comprehensively profiled through mass spectrometry (MS)-based
proteomic or metabolomic techniques [20–22].
We have implemented a variety of omics data obtained from

the forebrains of mice and humans and from patients’ organoids
to identify molecular networks in ASD. Taking advantage of the
technical benefits conferred by omics research, we investigated
Cntnap2-associated ASD molecular networks in the prefrontal
cortex (PFC) [23]. We performed proteometabolomic analysis with
the mPFC of Cntnap2 KO autistic mice, and found Cntnap2-
associated molecular features. By integrating the matched
expression direction of our mouse model results with ASD patient
PFC multi-omics data, we identified a set of significant ASD-related
genes. By reanalyzing the scRNA-seq of forebrain organoids of
ASD patients with Cntnap2 mutations, we identified important cell
types in Cntnap2-dependent ASD. Ultimately, through this
integration of various omics data, we constructed cellular network
models of mitochondrial dysfunction, axonal impairment, and
synaptic activity that represent Cntnap2-dependent ASD networks.

MATERIALS AND METHODS
Experimental model
Male Cntnap2−/− mice (Stock No: 017482) from The Jackson Laboratory (USA)
were used for breeding and mating to produce Cntnap2+/+ (wild-type),
Cntnap2+/− (heterozygous KO), and Cntnap2−/− (homozygous KO) mice. The
detailed information about subjects and the behavior test methods are
provided in Supplementary Information (Supplementary Fig. S1). Experiments
were conducted in accordance with the guidelines approved by the
Institutional Animal Care and Use Committee of Seoul National University
(IACUC #: SNU 171220-2-5).

Omics data generation and collection
For mouse proteomic data generation, the quantitative proteomic analysis
was performed as previously described [24–26] with minor modifications.
Briefly, proteins were extracted from the mPFC of Cntnap2 KO (n= 5) and
control mice (n= 5), and then enzymatically digested by trypsin.
The peptides were labeled with a 10-plex TMT reagent, followed by
fractionation by reversed-phase liquid chromatography (LC). Each fraction
was analyzed with a high-resolution Orbitrap MS in data-dependent
acquisition mode (DDA).
For mouse metabolomic data generation, the targeted metabolomic

analysis was conducted according to the manufacturer’s protocols [27].
Briefly, the extracted metabolites from the mPFC of Cntnap2 KO (n= 4)
and control (n= 5) mice were spiked-in with internal standards (IS) and
divided into two aliquots. The first aliquot was used to measure 21 amino
acids (AAs) and 21 biogenic amines (BAs), while the second aliquot was
used to analyze 40 acylcarnitines (ACs), 14 lysophosphatidylcholines (LPCs),
76 phosphatidylcholines (PCs), 15 sphingomyelins (SMs) and the hexoses.
The first and second aliquots were analyzed by LC–MS/MS and flow
injection analysis-MS (FIA-MS/MS) in multiple reaction monitoring mode
(MRM), respectively.
In the case of human PFC omics data, the bulk RNA-seq data (including

38 healthy and 25 ASD) was downloaded from the GEO database
(GSE51264 and GSE59288) [28]. The untargeted metabolomic data
(including 40 healthy and 32 ASD PFC) was obtained from Supplementary
Data in Kurochkin et al. [20]. The untargeted lipidomic data (including 403
healthy and 50 ASD PFC) was available at https://data.mendeley.com/
datasets/m4dt3z68s5/1 [21]. For the ASD organoid data, the forebrain
organoids scRNA-seq data were collected from the GEO database
(GSE174569) [19]. All detailed information on the samples can be found
in previous studies [19–21, 28].
A full description of this section can be found in Supplementary

Information.

Bioinformatics analysis
Differentially expressed molecular features were identified using a previously
reported statistical testing method with minor modifications [29].

Briefly, adjusted p-values for the t-test (Pt), and median-ratio test (Pf) of
individual molecular features for each omics data were calculated based on
the permutation test (detailed methods are provided in Supplementary
Information). Additionally, the Pt and Pf per metabolite or lipid from
metabolome and lipidome were combined using Stouffer’s method (Pcom).
For the mouse proteomic data, we considered peptides with Pt ≤ 0.05 and
Pf≤ 0.10 as differentially expressed peptides (DEPeptides). DEPeptides were
summarized into differentially expressed proteins (DEPs); proteins with more
than two DEPeptides were identified as DEPs, except for proteins in which
the DEPeptides were found to be both up and downregulated. For the bulk
RNA-seq, we considered genes with Pt ≤ 0.05 and Pf≤ 0.10 as differentially
expressed genes (DEGs). For scRNA-seq, we selected genes with Pt ≤ 0.10
and Pf≤ 0.20 for each cell type cluster and referred to them as cell-type-
specific DEGs. For the metabolome and lipidome data (mouse metabolome,
human metabolome, and human lipidome), we considered metabolites or
lipids with Pcom ≤ 0.05 or unique to a single group of interest as
differentially expressed metabolites (DEMs) or differentially expressed lipids
(DELs).

RESULTS
Social behavior defects in Cntnap2 KO mice
We tested whether Cntnap2 homozygous KO (Cntnap2−/−) mice,
known as a model for ASD [10–12, 30], show a deficit in social
behavior by performing a three-chamber social preference test
(Fig. 1a and Supplementary Fig. S1). In the social preference test,
the control littermates (Cntnap2+/+ and Cntnap2+/−) spent more
time exploring a mouse than an object in the three-chamber, and
the Cntnap2 KO mice showed a comparable exploration time
between the target conspecific and an object (Fig. 1b). This result
shows that, compared to the control mice, the Cntnap2 KO mice
showed a significantly lower preference index toward the
conspecific, confirming that Cntnap2 gene deletion impaired the
conspecific social preference of the mice (Fig. 1c). To investigate
molecular changes linked to social behavior deficits, we dissected
the mPFC, known as the brain area governing social preference
[31], from phenotypically verified Cntnap2 KO and control mice.

Alteration of metabolic processes in Cntnap2 KO mouse
proteome
To assess the changes in protein expression in Cntnap2 KO mice
that might underlie the ASD-like phenotype, we performed a
quantitative proteomic analysis with Cntnap2 KO (n= 5) and
control (n= 5) mouse mPFC tissues (Fig. 2a). A total of 8821
proteins were inferred from 107,644 nonredundant peptides in
the mPFC proteome. By comparing Cntnap2 KO and control
samples, we identified a total of 844 DEPs (378 upregulated and
466 downregulated proteins) from 11,215 DEPeptides (4938
upregulated and 6277 downregulated peptides) (Fig. 2b and
Supplementary Table S1–2). To explore the systematic biological
processes altered by Cntnap2 KO, a hierarchical GO analysis of the
DEPs was conducted (Supplementary Table S2). Among the DEPs,
the strongest GO association involved metabolic processes
(40.1%) of the observed 5 comprehensive cellular categories in
the GOBP (level 1) analysis, suggesting that Cntnap2 highly
affected the metabolism of the mPFC (Fig. 2c). The DEPs involved
in metabolic processes were related to the metabolic processes of
proteins (36.5%), organonitrogen compounds (20.1%), small
molecules (18.9%), oxidation-reduction (11.5%), and lipids (9.5%)
(Fig. 2d). In addition, distinctive functional characteristics were
found between upregulated and downregulated DEPs (Fig. 2e and
Supplementary Table S3). The upregulated DEPs were mainly
involved in cellular processes related to lipid metabolisms, such as
fatty acid and phospholipid metabolism, while the downregulated
DEPs were closely associated with synaptic vesicle (SV) transport
(synaptic vesicle cycle, Ca2+-regulated exocytosis, and endocyto-
sis) and axonal compartment (neurofilament, myelin sheath, axon
terminus, and regulation of axon diameter). Interestingly, upre-
gulated and downregulated DEP was significantly associated with
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oxidative phosphorylation (OXPHOS), implying complicated
Cntnap2-associated regulation of OXPHOS.

Metabolomic profiling of Cntnap2 KO mice
As metabolism was among the top-ranked processes in the
hierarchical GO analysis of proteomic results (Fig. 2c), we carried
out targeted quantitative metabolomic analysis with Cntnap2 KO
(n= 4) and control (n= 5) mouse mPFC tissues (Fig. 3a). Among
the 188 targeted metabolites, 114 metabolites were quantified in
at least one of the samples (Supplementary Table S4). To test
whether Cntnap2 KO affected any discriminative metabolic
activity, we performed a partial least squares-discriminant analysis
(PLS-DA). Results showed that the Cntnap2 KO and control groups
were separated by 1st component (LV1, 11.74%), confirming
altered metabolism in the Cntnap2 KO mPFC (Fig. 3b). By
comparing the metabolite concentrations, we found that 7 of
114 metabolites were DEMs (Fig. 3c and Supplementary Table S4).
Specifically, glutamine (Gln), 3 phosphatidylcholines (PC; PC(38:0),
PC(O-36:0), and PC(O-42:2)), 2 sphingomyelins (SM; SM(d18:1/24:0)
and SM(d18:1/20:2)), and hexose were found to be significantly
altered. Gln was reduced and all other DEMs were increased in the
Cntnap2 KO group (Fig. 3d). Relatively few DEMs were identified in
this study (~6% of detected metabolites) compared to the number
of DEPs (~12% of total proteins), leading to difficulty in
proteometabolomic data integration. Because SM(d18:1/24:0)
and PC(O-36:0) are among potential biomarkers in neurological
disorders [32, 33], we wondered whether our proteometabolomic
data represent underlying ASD mechanisms.

Molecular characteristics shared by Cntnap2 KO mice and ASD
patients
To identify the significance of our findings, it was essential to
ensure that the altered protein and metabolite levels found in
mice are also found in human samples. Therefore, we accessed
large publicly available human PFC datasets, including ASD
cohorts. Three different datasets were used for this analysis:
transcriptome from Liu et al. [28], lipidome from Yu et al. [21], and
metabolome from Kurochkin et al. [20]. A total of 12,557 genes
identified by Liu et al. were compared with 8821 proteins in our
proteomic data (Supplementary Table S5). Of the 7413 genes
found to be common to both datasets (Fig. 4a), 48 genes (12
upregulated and 36 downregulated DEGs) showed the same trend
as the DEPs in our proteomic data (Fig. 4b). When we compared

114 metabolites (17 small metabolites and 97 lipids) in our
metabolomic data with identified small metabolites and lipids
identified by Yu et al. and Kurochkin et al., 73 metabolites (five
small metabolites and 68 lipids) were detected in both datasets
(Fig. 4c). Among these overlapping metabolites, PC(38:0) and
PC(O-42:2) were DEMs with levels significantly increased in both
Cntnap2 KO mice and ASD patients (Fig. 4d-e, and Supplementary
Table S6–8). In the case of 48 genes correlating to both Cntnap2
KO mice and ASD patients, 36 downregulated genes were
significantly associated with SV function (synaptic vesicle, synaptic
membrane, and secretory vesicle) and neuronal axon (axon
development, axon terminus, and neuron projection) (Fig. 4f,
green, and Supplementary Table S9); these functions are pivotal
for maintaining synaptic function and neuronal migration, and
their dysregulation can lead to synaptic dysfunction [34] and
neuronal migration deficits [35], which have been linked to NDDs
[35], such as ASD and intellectual disabilities. Additionally, five
downregulated genes (Gabrb3, Cntnap2, Trim32, Dpp3, and
Vamp2) are genetically associated with ASD, as shown through
the SFARI database [36] (Fig. 4e, bold). In contrast, 12 upregulated
genes were found to be mainly involved in mitochondrial lipid
metabolism (with mitochondrion, lipid metabolic process, and
fatty acid β-oxidation) (Fig. 4f, pink). Thus, the proteometabolomic
analysis of the mPFC in the mouse model may be a useful
platform for comprehensively exploring molecular alterations.

The excitatory neuron is a key cell type in CNTNAP2-
dependent ASD
Since the Cntnap2 gene was deleted in the Cntnap2 KO model
mice and its expression is downregulated in ASD patients, we
were interested in mapping specific networks to cell types directly
affected by Cntnap2. To identify Cntnap2-affected cell types, we
reanalyzed public scRNA-seq data obtained from forebrain
organoids derived from ASD patients with CNTNAP2 mutation
[19]. To select PFC-specific cell types among all the cell
populations in the organoids, we first performed spatiotemporal
mapping analysis by comparing the in situ hybridization (ISH) data
of tissues in seven different developmental stages in the Allen
Developing Mouse Brain Atlas [37] using VoxHunt [38]. The best
Pearson correlation was observed when ISH data from embryonic
mouse day 15.5 (P15) were assessed; 5932 cells of 9392 pallium-
specific cells among a total of 28,108 cells in the organoids
were mapped to the dorsal pallium (DPal) (Supplementary Fig.
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S2a–S2c). Since DPal develops into the PFC, these mapped 5932
cells were further analyzed. The Leiden clustering method was
used and led to the identification of 13 clusters, of which 5
representative cell types were manually curated using neocortex
markers [39]. These cell type clusters comprised the excitatory
neuron cluster (Ex; 4303 cells), interneuron cluster (Int; 153 cells),
radial glial cell cluster (RG; 217 cells), neuronal progenitor cell
cluster (NPC; 90 cells), and ambiguous cell cluster (U; 1169 cells)
(Fig. 5a and Supplementary Table S10). Canonical cell type marker
expression confirmed these cell-type assignments (Supplementary
Fig. S2d).
To understand ASD-associated changes at the cell-type level,

we performed DEG analysis by comparing each cell type cluster in
the ASD organoids with that in the healthy normal organoids and
identified a total of 1177 cell-type-specific DEGs (Supplementary
Table S11): 619 Ex-specific DEGs, 121 Int-specific DEGs, 336 NPC-
specific DEGs, 256 RG-specific DEGs, and 17 U-specific DEGs. With
1177 cell-type-specific DEGs, we conducted a functional enrich-
ment analysis (Supplementary Table S12) and found that both the
Int- and RG-specific DEGs were closely associated with the WNT
pathway (Wnt signaling pathway, and cell–cell signaling by wnt)
(Fig. 5b, pink). Only the RG-specific DEGs were enriched in the cell
cycle (cell cycle process and cell division) (Fig. 5b, gray), and the
TOR signal pathway (regulation of TOR signaling), while protein
ubiquitination was uniquely enriched with NPC-specific DEGs
(Fig. 5b, purple). When searching for the major biological
processes in ASD, we compared our proteomic and ASD patient
integration results and found that Ex-specific DEGs were mainly
involved in axonal structure (growth cone and axon terminus), SV
function (synaptic membrane, synaptic vesicle, and exocytic
vesicle), and OXPHOS (electron transport chain, cellular respira-
tion, and mitochondria), which were previously shown in this
study to be pivotal processes in Cntnap2 KO mPFC and ASD
patient PFC (Fig. 5b, green, blue, and brown). Although Ex-specific
DEGs did not show the association to the lipid metabolism that
was found to be prevalent in Cntnap2 KO and ASD patients
(Fig. 5b, red), the Ex cluster showed the most significant
functional similarity in the cell types to Cntnap2 KO and ASD
patients. Interestingly, CNTNAP2 was generally expressed only in
the Ex and NPC clusters (Fig. 5c, d). However, CNTNAP2 was
differentially expressed between the ASD and control samples
only in the Ex cluster, not in the NPC cluster (Fig. 5d), suggesting
that CNTNAP2 in excitatory neurons may contribute to ASD
development. When looking at Ex-specific DEGs, 24 genes
showed expression patterns similar to that found in the Cntnap2
KO proteome (Supplementary Table S11). To elucidate the
Cntnap2-dependent molecular changes in the Ex cluster, network
analysis was carried out in STRING-DB with the 24 genes.
Interestingly, all 24 genes were constructed to a single connected
component, and CNTNAP2 showed high hubness within a
network (p value= 0.0767), indicating a strong association with
CNTNAP2 (Fig. 5e).

Molecular network models associated with Cntnap2
We further investigated Cntnap2-associated molecular features.
We first collected subsets of DEPs, DEMs, and DEGs obtained by
Cntnap2 KO mouse mPFC proteometabolomic analysis and
Cntnap2 defect organoid single-cell profiling (Supplementary
Table S13). A total of 122 DEPs and 6 DEMs enriched in processes
related to lipid metabolism, mitochondria, synaptic vesicle, and
axonal structure were selected from our mouse data (Fig. 2d).
From the scRNA-seq results, only 71 Ex-specific DEGs were
involved in synaptic function, neuron projection, and mitochon-
dria (Fig. 5d), and they were assessed to determine the
aforementioned relationships between Cntnap2 and excitatory
neurons. Next, to understand ASD molecular mechanisms linked
to Cntnap2, we generated hypothetical molecular network models
with selected molecules representing molecular alterations in (1)

myelin sheath and mitochondria, (2) synapse, and (3) neuron
projection (Fig. 6).
The network model related to myelin sheath and mitochondria

(Fig. 6a) showed systematic changes in axonal functionality and
mitochondria (glycolytic process, lipid metabolism, and mitochon-
drial energy production). We found coordinated attenuation of
axonal functional modules, including axon myelination (Cntn2,
Plp1, Kcnab2, and Cntnap2), axon organization (Nefh/l/m and Ina),
and axon transportation (Dctn1/2/3, Kif5a, Tppp, and Tppp3) at
the protein level. In contrast, mitochondrial lipid metabolic
proteins (Adh5, Aldh7a1, Acsbg1, Acsf2, Acsl1/4, Acadm, Hadha,
and Acaa2) were induced by Cntnap2 abolition in the PFC.
Compared to the clear upregulated DEPs association in lipid
metabolism, DEPs linked to glycolysis, and TCA cycle were
unsynchronized (upregulated: Idh1, Pfkl, and Ldhb; downregu-
lated: Suclg2, Dlst, Pcx, and Slc2a3). In the electron transport chain
(ETC), most of the ETC components in DEPs, except complexes II
and IV, were decreased (Supplementary Fig. S3a). At the single-cell
RNA level, all mitochondria-located Ex-specific DEGs related to
oxidation-reduction processes (Sod1 and Bcl2l1) and glucose
metabolism (Pgk1, Eno1, Pdha1, Acyl, and Suclg1), and ETC
components (Supplementary Fig. S3a) showed higher expression,
suggesting higher mitochondrial contents in Cntnap2-deficient
excitatory neurons.
The network model related to synapses (Fig. 6b) showed

reduced synaptic function processes such as SV recycling and
neuronal cell–cell interactions. Several major stages characterize
the SV cycle, including endosome processing, SV preprocessing
and docking, exo- and endocytosis, and vesicle recycling [40].
Although some SV cycle proteins in DEPs (Igf2r, Atp5v0a1, Capzb,
and Vps26b) were upregulated, the majority of proteins involved
in SV cycle stages were reduced: endosome processing (Septin6,
Snx2/5, Stam, and Chmp6/7), SV preprocessing (Slc17a7 and
Vamp2) and docking (Erc2 and Rab3a), exo-/endocytosis (Amph,
Rab35, Cplx3, Cltb, and Hspa2), and vesicle recycling (Atp6v1d/g2,
Washc2, and Ehd3). Similarly, Syt1 and Snap25, key SV docking
elements, were downregulated in Ex-specific DEGs. Additionally,
V-type ATPases (Atp6v1d/g1/g2), acidifying vesicle in the recycling
stage, were upregulated in Ex-specific DEGs. SV release can be
activated by cAMP-mediated signals or intercellular Ca2+ [41]
(Fig. 6b, right). A cAMP signaling molecule (Prkaca) was reduced,
whereas cAMP signal inhibiting molecules (Gnai1/2/3 and Gng4)
were increased in Cntnap2 KO mice at the protein level. At the
single-cell RNA level, intercellular Ca2+ uptake (Cacna1a) was
decreased in Cntnap2-deficient excitatory neurons. Neuron-
contacting molecules play pivotal roles in organizing neuronal
circuits and enabling synaptic connectivity in the brain [42]. We
found 5 cell–cell interaction proteins among the DEPs (Cntnap2,
Lrrc4b/c, Nlgn2, Ncam2, and Nectin1) and 3 cell–cell interaction-
related genes (Lrrc4b, Nrxn1, and Cadm1) among the Ex-specific
DEGs (Fig. 6b, bottom).
Finally, the network model related to neuron projection (Fig. 6c)

showed the alteration of projection molecules and related
processes. Neuronal projection is coordinated by several regula-
tory pathways involved in actin cytoskeleton organization,
including the MAPK/ERK, RAC/CDC42/PAK, and Rho-ROCK path-
ways [43, 44]. The proteins related to actin cytoskeleton
organization (Actn2, Pfn2, Arpc3/4, and Cfl2) and its regulatory
pathway (MAPK/ERK pathway: Map2k2, Mapk1, and Pip4k2b; RAC/
CDC42/PAK pathway: Brk1, Wasf1, and Pak2/3) were decreased.
Rac and Cdc42 can activate the JNK pathway [45], which is a key
regulatory system in neuronal migration [46]. Cntnap2 is known to
regulate the MAPK/ERK pathway via IP3R1, thereby influencing
neuronal migration or projection [47]. In our models (Fig. 6c, right),
the protein related to the JNK pathway (Map2k4 and Mapk10) and
neuronal migration (Gap43) was downregulated, which correlated
with the attenuation of RAC/CDC42/PAK pathway. Although the
core molecules of RAC/CDC42/PAK pathway (Apc, Rac3, Cdc42,
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and Pak2/5) were downregulated in Cntnap2-deficient excitatory
neurons, some of the related molecules (Map2k2, Pak3, Arpc3,
Gap43, and Cntnap2) were upregulated and showed negative
expressional correlation to the Cntnap2 KO mouse proteome. In
the case of selected DEMs, increased PCs (PC(38:0), PC(O-36:0),
and PC(O-42:2)) and SMs (SM(d18:1/24:0) and SM(d18:1/20:2)) can
be explained by PC-SM conversion processes [48], but no enzyme
involved in the conversion processes was found among the DEPs.
The potential mechanism of upregulated lipids’ is the deactivation

of the MAPK/ERK pathway, which led to enhanced PC biosynth-
esis; a previous study showed that inhibition of Erk suppressed PC
biosynthesis and reduced cellular PC levels [49] (Fig. 6c, bottom).

DISCUSSION
Genetic alterations on the CNTNAP2 gene, such as copy number
variations, genomic inversion, single nucleotide polymorphisms,
and complete loss of CNTNAP2 gene are known to be associated
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with several neurological disorders. (Supplementary Fig. S4a)
[12, 50–52]. To find if Cntnap2 KO can be better explained by ASD
than other neurological disorders, we carried out disease
association analysis by using publicly available patients’ data from
different neurological diseases (ASD and schizophrenia). We found
Cntnap2 showing strong involvement in ASD pathophysiology
(Supplementary Fig. S4b). To build a molecular network of
Cntnap2-dependent ASD at the cell type level, we implemented
MS-based proteometabolomic analyses of Cntnap2 KO mice and
combined the results with the omics data obtained from human
PFC and organoids with Cntnap2 mutations. As shown in Fig. 6,
the pathways involved in autism were related to the dysregulation
of mitochondria, synaptic vesicle transport, and neuron projection.
Here, we explored genes that were found to be interlaced
between species to better describe ASD pathophysiology.

Mitochondrial dysregulation
Mitochondrial dysfunction is one of the common molecular
characteristics in ASD [53, 54]. We found that some of the
mitochondrial proteins such as Mcu, Etfdh, Acaa2, Acadm, Acsbg1,
Aldh7a1, and Acsf2 were altered in the mouse and human ASD
subjects (Fig. 6a). MCU is essential for mitochondrial calcium
uptake into the inner matrix, and plays a role in maintaining the
mitochondrial membrane potential (MMP) [55]. Since Mcu was
downregulated, we expect MMP discordance to disrupt mito-
chondrial functions. ETFDH guides several flavin-containing
dehydrogenases on OXPHOS complex II and affects the activity
of mitochondrial lipid oxidation and ETC system [56]. As Etfdh and
OXPHOS complex II (Supplementary Fig. S3a) were upregulated,
the mitochondrial lipid metabolism and ETC activity may increase.
Consistently, we found that lipid metabolic enzymes such as
Aldh7a1, Ascbg1, Acsf2, Acadm, and Acaa2 were increased in both
the mouse and human ASD subjects. Interestingly, mutations in
ALDH7A1 have been found in NDD patients with typical symptoms
of ASD [57].

Disruption of synaptic vesicle transport
Synapse disturbance is among the most recognized molecular
disruptions in various NDDs, including ASD [57]. Certain DEPs
(Vamp2, Cntnap2, Erc2, Gad2, Nectin1, Rrab3a, Rab35, Chmp6,
Chmp7, and Sept6) were downregulated in both the mouse and
human ASD subjects, and found to be involved in SV functions in
excitatory neurons (Fig. 6b). Downregulation of Rab3a, a core SV
docking molecule [58, 59], indicates that vesicle transport in the
SV docking was affected in ASD. Interestingly, RAB family genes
have been identified as ASD-associated genes [60], and down-
regulation of Rab3a has been shown in other ASD models [61].
VAMP2 affects SV docking to syntaxin and SNAP25, and down-
regulated Snap25 in Ex clusters of ASD organoid indicated a
reduction in binding efficiency. Mutations in Vamp2 have been
implicated in vesicle fusion impairment in ASD [62]. Furthermore,
Rab35 plays a role in endocytic recycling; specifically, a SV-
reformation is transported from the early endosome to replenish
the SV pool [63]. Mutations in Rab35 cause various diseases,
including mental disorders [64].

Neuron projection impairment
Studies have reported that many ASD risk genes are related to
axonal growth [65–67]. Coordinated regulation of actin cytoske-
leton is critical for proper axon growth in the growth cone during
neuronal development [35]. We identified Pak3, Gap43, PC(38:0),
and PC(O-42:2) involved in the JNK and MAPK/ERK pathways to
regulate the actin cytoskeleton (Fig. 6c). Pak3 is a core regulator
for actin cytoskeleton dynamics. In our analysis, Pak3 was
downregulated in both the mouse and human ASD subjects,
indicating dysregulation of the actin cytoskeleton. A previous
study showed that Pak3-deficient mice showed impaired long-
term synaptic plasticity and learning disability [68]. JNK controls

axon growth/pathfinding in the growth cone, as well as neuronal
polarity. The downregulation of Gap43 inhibits axon building via
the JNK pathway [69]. Gap43-deficient mice exhibited a subset of
ASD symptoms [70]. In addition, MAPK/ERK pathway was
deactivated, leading to an increase in lipid metabolism (e.g.,
PC(38:0) and PC(O-42:2)).
Although various studies have been reported, fully under-

standing the pathology of Cntnap2-associated ASD remains a
challenge. Here, we describe core pathways directly or indirectly
related to Cntnap2, which we found by integrating various omics
study results. We incorporated multidisciplinary experimental
data, allowing us to focus on the molecular functions of Cntnap2
in ASD. We concluded that the networks related to synaptic
vesicle transport, mitochondria, myelin sheath, and neuronal
projections were dysregulated by Cntnap2 mutations in ASD.
Based on the identification of these central biological processes, a
few genes in these pathways were found to be pivotal in the
pathology of Cntnap2 KO mice and humans with CNTNAP2
variants. These genes should be further studied within ASD
models to determine whether they are central to ASD models and
patients.
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