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Abstract

Machine and deep learning approaches can leverage the increasingly available massive datasets 

of protein sequences, structures, and mutational effects to predict variants with improved fitness. 

Many different approaches are being developed, but systematic benchmarking studies indicate 

that even though the specifics of the machine learning algorithms matter, the more important 

constraint comes from the data availability and quality utilized during training. In cases where 

little experimental data is available, unsupervised and self-supervised pre-training with generic 

protein datasets can still perform well after subsequent refinement via hybrid or transfer learning 

approaches. Overall, recent progress in this field has been staggering, and machine learning 

approaches will likely play a major role in future breakthroughs in protein biochemistry and 

engineering.
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1. Introduction

A long-standing question in protein biochemistry, protein engineering, and evolutionary 

biology is the question of where and how proteins can be mutated. Early works on this topic 

focused on patterns of evolutionary sequence divergence, a rich research topic whose origins 
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trace back nearly six decades to the pioneering work by Zuckerkandl and Pauling [1]. 

This work was subsequently augmented with mathematical and computational approaches 

from condensed-matter physics, soft-condensed matter physics, and theoretical chemistry to 

develop models and to make quantitative predictions of the effects of mutations in proteins 

(see e.g. [2, 3, 4]). At the same time, experimental techniques to probe the effects of 

mutations have consistently improved, and today high-throughput experimental methods 

such as deep mutational scanning are routinely being used to systematically explore the 

effects of mutations empirically [5, 6].

In just the last few years, machine learning has started to complement and at times out-

perform existing empirical and modeling approaches. This development has been enabled by 

a confluence of two separate factors, on the one hand the availability of large scale sequence 

and structure datasets, and on the other the insight that major advancements in computer 

vision and natural language processing algorithms do directly apply to problems of protein 

biochemistry. These powerful algorithms require an enormous amount of data, which we 

now have available. In fact, we have seen many of the newest algorithms developed 

for computer vision or natural language processing successfully applied to problems of 

protein biochemistry, including recurrent neural networks, Long-Short Term Memory, 1D 

dilated convolutions, 2D and 3D convolutions, and attention-based architectures such as 

transformers and graph-attention networks (Table 1).

There are four distinct problems that have seen substantial progress through the application 

of machine-learning tools: First, the prediction of protein structure from sequence (the 

folding problem, see e.g. [7]); second, the prediction of sequences that fold into a specific 

structure (the inverse folding problem or protein design problem, see e.g. [8]); third, the 

prediction of protein-ligand or protein-protein interactions (the docking problem [9, 10, 11]); 

fourth, the prediction of point mutations or of mutational effects [12, 13, 14]. In this review 

article, we will focus on the fourth problem, and we will touch occasionally on the first 

or second problem to the extent that they are relevant. We first introduce the fundamental 

machine learning approaches used, such as supervised, unsupervised, and hybrid learning. 

We then consider the specific problem of predicting sites primed for mutation, and we also 

discuss the pros and cons of using sequence or structural data. We close with a perspective 

of how this field may develop going forward.

2. Supervised learning

For supervised learning, we need a large dataset of mutations with known effect, and then 

we can train a model to predict effects on novel mutations. Because of the requirement for 

a large training dataset, the types of applications in which supervised learning is possible is 

limited. The most established one is probably prediction of stability effects (ΔΔG values).

There is a long tradition of developing methods for predicting ΔΔG values in proteins. The 

earliest approaches have been physics based, typically using all-atom models combined with 

force fields [33, 34, 35]. Simpler physics-based approaches have used statistical potentials 

combined with the solvent accessibility of the mutated residue [36]. In general, physics-

based models require an input structure to make useful predictions.
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More recently, several groups have used various machine-learning methods to substitute or 

augment the physics based methods. These machine-learning methods can be based entirely 

on sequence (e.g., [37, 38]) or can use structure as an input in some form [39, 17, 23] 

or combine features from both sequence and structure. Over the years, the community has 

explored a variety of machine learning methods and their capacity for modeling protein 

stability including but not limited to support vector machines [29, 12], random forests [40, 

41, 12], Gaussian processes [21, 22], and dense neural networks [12], as well as ensemble 

models combining the different methods [39, 12]. Notably, Romero et al. [21] utilized 

Gaussian processes to engineer thermally stabilized P450 enzymes, producing a chimera 

more stable (> 8°C) than any variant obtained via directed evolution. As an example of 

deep learning methods adapted to this problem domain, Li et al. [17] used 3D Convolutional 

Neural Networks (3D CNNs) to predict ΔΔG values from a voxelized representation of the 

protein structure surrounding the residue of interest. This approach, originally pioneered by 

Torng and Altman [15], treats the protein structure like a 3D image and uses well established 

techniques from deep learning image processing to problems of protein biochemistry (Figure 

1A). Li et al. [17] found that their approach worked well predicting stability effects. 

In particular, and importantly, their 3D CNN had little bias for predicting destabilizing 

mutations, a problem afflicting many frameworks for stability effects inference [42]

Mutational effects are not just limited to changes in stability. Any arbitrary phenotype we 

could be interested in will in general be affected by mutations. Methods that can predict 

such mutational effects are called variant effect predictors [43]. Examples of phenotypes of 

interest include but are not limited to the amount of fluorescence emitted by a fluorescent 

protein, the antibiotic activity of a β-lactamase, or more generally the catalytic activity of 

an enzyme. Predicting the effects of mutations on such phenotypes is a much more difficult 

problem than predicting ΔΔG, because every specific system has its own biochemistry, and 

we will have to develop a custom model for each system.

The advantage of supervised learning for this application is that the statistical learning 

approach does not require any insight or specific knowledge about the physics or biology of 

the system. As long as a suitable training dataset is available, we can train a predictor, often 

with good success. However, the number of experimental measurements required to train a 

good predictor can be massive. For this reason, early work in this area focused on swapping 

protein fragments rather than making individual point mutations [21, 44]. As large-scale 

datasets of mutational effects have become more available, machine-learning approaches 

have followed suit and have integrated these datasets into better and more fine-grained 

predictors [43, 45, 46].

Common sources for large-scale datasets of mutational effects include the extensive 

synthesis and subsequent assay of point mutants (so-called deep mutational scanning [5, 

6]) as well as the synthesis of large random sequence libraries, potentially coupled with 

directed evolution of functional variants [47]. From a machine-learning perspective, any 

such dataset is useful as long as it contains a sufficiently large number of mutations that 

have been assayed for the phenotype of interest. Finally, manual curation of many disparate 

experiments into a single, consistent dataset (e.g., [48]) can also provide useful training data 

for variant effect predictors.
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3. Unsupervised learning or zero-shot learning

Because of the requirement for large, purpose-built training datasets, supervised approaches 

are inherently limited. Therefore, there is substantial interest in the community to develop 

unsupervised approaches that can leverage general representations of protein biochemistry 

for specific applications without requiring application-specific training data.

Most unsupervised approaches start from sequence data, in particular multiple-sequence 

alignments (MSAs), and attempt to construct computational representations of the patterns 

encoded in these alignments. Early work in this area focused on covariation [49, 50], 

attempting to infer mutational effects from patterns of variation and covariation in the MSA. 

Subsequently, Riesselman et al. [19] demonstrated that higher-order effects can be learned 

by deep generative models, specifically variational autoencoders (VAEs), which can capture 

latent structure of arbitrary order in sequence families.

More recently, the research community has focused on applying concepts from natural 

language modeling to protein sequences. The goal here is to develop protein embedding 

models that can extract biophysically relevant quantitative features from sequence data. And 

as natural language modeling techniques have improved so have the protein embedding 

models. Bepler and Berger [28] applied a bi-directional Long Short-Term Memory 

(BiLSTM) network and showed they could predict global similarity of protein structures 

and protein secondary structure. Following this pioneering work, several groups have 

adapted transformer-based natural language models to learn protein embedding spaces, 

with considerable success [14, 30, 31, 32] (Figure 1B). For example, Rives et al. 

[14] demonstrated that their transformer-based ESM-1b model outcompeted alternative 

approaches, including LSTM networks and Hidden Markov Models, on a variety of 

tasks, including remote homology detection, secondary-structure prediction, and long-range 

contact prediction. Other network architectures inspired from language models that have 

shown excellent performance are deep autoregressive models [20].

Language embedding models are generally trained by taking sequence data, masking 

individual residues in a sequence, and then training a network to predict the masked residue. 

So technically speaking, these models can only predict what amino acid may reside with 

what likelihood at a given site in a protein sequence. However, the amino-acid likelihoods 

can be reinterpreted as fitness or stability effects, and this has opened the door to so-called 

zero-shot learning approaches where fitness effects are predicted in an unsupervised manner. 

This work traces back to Hopf et al. [50], who showed that sequence covariation is 

correlated with phenotypic measurements.

Meier et al. [51] systematically evaluated zero-shot learning for several language embedding 

models. They tested model predictions against an array of deep mutational scanning 

datasets [19], covering a wide range of different systems studied and different protein 

functions assayed. The general observation was that mutational effects predicted by 

language embedding models tend to correlate with measured mutational effects. As an 

interesting extension to basic language models, Hie et al. [52] parsed model predictions 

into components corresponding grammar (or syntax) and meaning (or semantics), where the 
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grammaticality of a mutation is assessed by the likelihood the model assigns to that mutation 

at a specific site and the semantics are represented by the embedding scores. The authors 

were then able to show that antigenic escape mutations tended to score high on the grammar 

axis while also scoring high on the axis representing semantic change. In other words, these 

were mutations that were consistent with the protein structure while substantially changing 

some aspect of the protein’s biochemistry.

There are two general caveats to zero-shot language models: First, there is a wide range 

in model performance for different systems. Correlation coefficients range from 0.2 to 0.8. 

Second, it is not necessarily clear why an embedding model performs well in some cases 

and poorly in others, since the model has not been trained for the specific problem at hand. 

We do not know what specific (if any) physical quantity is being predicted by the model and 

whether and how it may relate to any specific phenotypic measurement.

4. Hybrid or transfer learning

From a conceptual perspective, supervised models are the appropriate approach to predicting 

mutational effects, and they do not suffer from the problem that it is unclear what 

exactly they predict. However, in practice, we rarely have sufficiently large datasets to 

train good supervised models. In fact, for any given protein for which a sufficiently 

large dataset exists we probably have already found all the interesting mutations and 

the machine learning approach to predicting mutations is an entirely academic exercise 

for this protein. In practice, prediction is useful specifically in systems where we do 

not have experimentally surveyed many mutations and/or where such surveys would be 

impractical, and consequently supervised approaches will not usually work in those settings. 

Unsupervised approaches, of course, don’t learn any specific fitness models and therefore 

are not guaranteed to make useful predictions for any specific system.

As a way of getting the best of both worlds, it is possible to devise a hybrid approach 

where unsupervised models are first pre-trained to learn embeddings for general protein 

biochemistry and/or general properties of the protein family of interest, and then fine-tuned 

in a supervised fashion with a small training set of measured fitness effects, also called 

transfer learning. In this context, we use the term “hybrid learning” to describe approaches 

that combine different biological input data types, such as evolutionary data from sequence 

alignments and phenytopic data from biochemical assays (Figure 1D), and we use the term 

“transfer learning” to generally represent the task of taking a pre-trained generic model and 

fine-tune it to a more specific dataset.

One of the first studies to demonstrate the hybrid approach was performed by Biswas et 

al. [53], who pretrained a recurrent neural network (RNN) model [54] to learn statistical 

representations of proteins and then utilized its embeddings to train a regularized linear 

regression and validated the final model by predicting fluorescence in GFP variants and 

optimizing function in TEM-1 β-lactamase. For both systems, they showed that with as little 

as 24 to 96 functionally assayed mutant sequences, they could train a model fine-tuned on 

the RNN’s embeddings to generate computational predictions that rivaled high-throughput 

experimental screens.
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Two recent papers have performed large scale, systematic studies of hybrid learning 

approaches [27, 13]. Both studies highlight that the available training data may be more 

important than the specific network architecture or machine-learning approach taken. Hsu 

et al. [27] found that even relatively simple regression models supplied with assay-labeled 

data could outperform sophisticated embedding models without such data. Similarly, Luo et 

al. [13] found that combining a generic protein language model with information about the 

evolutionary context of a specific protein family and some measured fitness data provided 

superior predictive ability across approximately 50 separate high-throughput experimental 

datasets.

5. Predicting sites primed for mutation

In application settings where there is limited to no phenotypic data available to train or 

fine-tune a hybrid predictor, we are stuck with unsupervised learning approaches. However, 

in these scenarios, there is one additional strategy we can follow: self-supervision—where 

we artificially create a supervised learning task from the data itself. Here, instead of trying 

to predict a fitness effect of unknown meaning, we focus on predicting a masked amino 

acid directly, either from sequence or, more commonly, from the local microenvironment for 

sites all throughout the protein structure. This self-supervised approach was pioneered by 

Torng and Altman [15], was validated in proof-of-concept applications to blue fluorescent 

protein, phosphomannose isomerase, TEM-1 β lactamase [16], and has since been used to 

engineer highly active hydrolases for PET depolymerization [55]. Systematic benchmarking 

has shown that microenvironments as small as 12Å in diameter are sufficient to make 

predictions with over 65% accuracy [18].

The key idea in all these applications may seem counterintuitive at first. We use a neural 

network to predict masked wildtype residues in a known protein. Since the protein is known, 

the identity of any masked residues is known as well, and so most predictions of a well 

performing network will simply recover the correct identity of the resident residue that was 

masked. This in itself may not seem like a useful prediction. However, the interesting cases 

here are the mispredictions. Conventionally, we would consider all mispredictions to be 

shortcomings of the model and an opportunity for further model improvement. However, in 

some fraction of cases, residues will be chemically incongruent with their microenvironment 

and thus primed for mutation. In other words, those residues will be at odds with their 

immediate biochemical surroundings and can be mutated to different residues without loss 

of protein function. In those cases, if the network has correctly captured the relevant protein 

biochemistry and is not overfit to predicting the wildtype amino acid, it will confidently 

predict a different amino acid than the one actually present. Those “mispredictions” indicate 

that the wildtype amino acid is likely not the optimal amino acid and can be engineered.

This approach of trying to identify residues that are at odds with their local 

microenvironment has strong support from evolutionary theory, which predicts that, due to 

epistasis, every protein structure has some residues that are to some degree in conflict with 

their current surroundings and that are primed for mutation [56, 57]. In fact, evolution tends 

to occur at those sites. However, this approach poses an interesting challenge for training 

and applying a machine learning algorithm. Usually, the goal in machine learning is to get 
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the prediction accuracy as high as possible. But, if we are interested specifically in sites 

where the machine-learning algorithm disagrees with the observed ground truth, then too 

high accuracy will be deleterious, as (in the extreme case of 100% accuracy) there won’t 

be any disagreements to guide protein engineering. It remains an open question how to best 

train models to maximize their ability to identify sites primed for mutation and predict the 

correct amino acid substitution.

We emphasize that in principle both sequence and structural data can be and has been 

used in this self-supervised approach [14, 15, 16, 18, 30]. The main distinction between self-

supervised and unsupervised learning is scope: unsupervised learning refers to all machine 

learning techniques that attempt to learn clustering structure or embeddings from data 

without an annotated label while self-supervised learning is a specific type of unsupervised 

learning where the objective is to predict the masked portion of the input data instance where 

a program automatically generates the masking.

6. Pros and cons of sequence- and structure-based approaches

Some hybrid learning models notwithstanding, the majority of current machine-learning 

models use either exclusively sequence data or exclusively structural data as their input. 

There are pros and cons to both approaches. Importantly, protein sequence data is vastly 

more abundant than structural data, and thus it may seem practical to create machine 

learning models based on sequence data alone.

In particular, it has been reported that models trained on sequences can learn protein 

structure at the resolution of atom position [14, 32, 58], demonstrating that sequence data 

may implicitly contain all information required to make any predictions of interest in 

protein biochemistry. Moreover, sequence-based models can accept entire protein sequences 

as input, capturing both long- and short-range interactions within a protein. Long-range 

interactions in 3D space are generally excluded from training models based on structural 

data. Furthermore, structure-based models often represent proteins as collections of atoms 

fixed in space rather than a polymer of amino acids. This inaccurate representation of 

protein structure may undermine a protein’s flexibility and ability to adjust to novel 

mutations [59], a limitation that is not present in sequence-based models.

One downside of sequence data is that it does not directly provide information on physical 

contacts in protein structures. Although protein contacts and structure can be inferred during 

training, as a result, sequence-based models require a significantly larger training set and 

much deeper architectures than models trained on pre-solved structures [58]. This poses a 

challenge for model validation and testing. Sequence-based models are often trained on the 

entire corpus of the majority of publicly available protein sequences (e.g., UniRef100), and 

thus nearly any protein of interest is already present in the test set. Therefore, to what extent 

such models truly generalize biochemistry or rather just memorize all known sequences 

remains to be determined.

On the flip side, structures are richer in information than sequences and as more 

structures are solved with ligands, glycans, and nucleotides as co-crystals we expect to 
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see improvement in predictions at functional residues. While protein structure data is less 

abundant, it allows models to learn directly from local chemistry to make predictions based 

on immediate biochemical features as well as the silhouette formed by immediate chemical 

contacts [60, 16, 18].

More interestingly, it is likely that structure-based approaches can go beyond what sequence 

alone can predict. Sequence-based methods de-facto only use input data from natural, 

evolved proteins. Such phylogenetic information has arisen via single mutational moves, 

and at best can be used to infer the complicated physicochemical structure of the protein 

as a whole. By contrast, databases of directly acquired structural information fully represent 

all of the atomic-level physical and chemical interactions of many different amino acids 

in many different proteins, all at once, and this additional and important information goes 

well beyond the information available in sequence databases of evolutionary phylogenies. 

Overall, structure-based neural networks can utilize this broader, deeper knowledge of 

atomic-level interactions to more fully understand the many moves that evolution has made, 

and to see the moves that might yet be made. By using structural information to understand 

and predict substitutions (including multiple substitutions) the physicochemical status of 

these substitutions is implicitly validated against the backdrop of structure itself, rather than 

against phylogenetic sequence data that merely implies structure.

The remaining limitations of models using structure as input data are currently being 

explored by inverse folding graph neural networks (GNNs), which combine rigid and 

flexible backbone features. Recent work includes geometric vector perceptron GNNs (GVP-

GNNs)[8, 24, 25], structured transformer GNN [61], and protein message passing GNN 

(ProteinMPNNs) [26]. Where the GVP-GNNs encode geometric information for either 

atom-level or residue-level nodes and outperformed equivalent CNNs on the Atom3D 

Residue Identity benchmark [62], structured transformer GNNs utilize self-attention in an 

encoder-decoder architecture to capture higher-order, interaction-based dependencies that 

autoregressively decode masked residues. Protein-MPNN is a simplified variant of the 

structured transformer architecture that does away with the attention mechanism, can handle 

multiple protein chains at once and abstract over spatial symmetries, and has demonstrated 

its utility in several protein design projects by rescuing previously failed designs made with 

Rosetta and Alphafold.

Lastly, the ability of a structure-based model to properly learn protein biochemistry is 

directly dependent on the quality of experimentally-solved or computationally generated 

protein structures used as input data. Structures solved via crystallization methods often have 

low quality or display non-physiological conformations [63], and we expect this flaw to 

persist in computationally predicted structures since crystal structures are the primary source 

of training data for structure prediction models such as AlphaFold2, RosettaFold, ESMFold, 

or OmegaFold [7, 64, 65, 58]. Nevertheless, structure-based models are valuable tools as 

they can capture local protein features most critical for accurate residue prediction.
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7. Looking into the future

Machine learning algorithms are fundamentally limited by the available quality and quantity 

of training data. As datasets continue to grow, so will the accuracy of the machine learning 

models trained on them. Already, for all intents and purposes, we have infinite sequence 

data, or rather more data than can realistically be used in training. (For example, with 

current compute technology it is next-to-impossible to train a machine learning model on all 

available microbiome datasets.) By contrast, structural data remains much more limited, and 

further meaningful expansions of datasets in this area should be expected.

An interesting middle ground in this context is computationally predicted structures, which 

are rapidly becoming more available and more high-quality. For example, DeepMind and 

EMBL-EBI recently released 200 million computationally predicted structures [66]. While 

it seems risky to train downstream models on predicted structures [8] (the downstream 

models may learn idiosyncracies of the predictions rather than true protein biochemistry), 

predicted structures can certainly be used as input to generate inferences from structure-

based models. One open question for future research will be whether it is better to predict 

mutational effects directly from sequence or rather predict structure from sequence and then 

predict mutational effects using a structure-based model. Finally, we expect advancements 

in structure prediction that take into account conformational changes observed upon ligand 

binding.

Hybrid approaches integrating multiple different data sources are likely going to become 

increasingly important, as they can augment rather limited datasets in one domain with 

extensive and well understood datasets in other domains. Going forward, it may become 

routine to develop models that include sequence data, structural data, phenotypic data, 

and evolutionary data such as multiple sequence alignments and/or phylogenetic trees. 

Additionally, it may be possible to leverage deep learning to improve mechanistic models, 

for example by developing force fields that are generated by deep learning models trained on 

quantum chemistry data [67, 68, 69].

Finally, while much research has been focused on identifying the best architectures and 

training modalities to obtain well performing models, less emphasis has been placed on 

trying to understand the underlying biochemical principles these networks embody and 

abstract to make predictions. These principles can be probed with salient methods developed 

by the natural language processing and computer vision communities (e.g., [70]). We 

expect that such research will provide access to the underlying patterns (chemistries) these 

models are learning. Ultimately, salient methods may uncover principles of biochemistry 

or of protein design that have been underappreciated or undiscovered using conventional 

approaches. Similarly, it is possible that an understanding of how evolution has traversed 

phylogeny can be garnered from machine learning approaches, especially hybrid approaches 

that take into account both the single mutational steps available from sequence-based 

predictions, and the potential for multiple changes in parallel present in structure-based 

predictions. Based on such hybrid approaches, we may get a bird’s eye view of how 

evolution considers the overall issues relating to improving protein function, both the paths 
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available, and the paths taken, and in so doing come to a deeper understanding of proteins as 

evolvable machines.
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Figure 1: 
Commonly used network architectures for predicting mutations in protein sequences or 

structures. (A) 3D Convolutional Neural Networks (3D CNNs) take all the atoms in a subset 

of 3D space as input, use convolutional layers to extract features, and then use a traditional 

multilayer perceptron for classification. (B) Transformer models take protein sequences 

as input, which they process via embedding combined with the attention mechanism. 

The final classification occurs with a multilayer perceptron, just like for 3D CNNs. (C) 

Ensemble models process the same set of input data via multiple independent models, whose 

predictions are then combined into a final output. (D) Hybrid models are architecturally 

similar to ensemble models but now each of the independent models can have different input 

data, such as sequence data, structural data, phenotypic measurements, etc.
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Table 1:

Machine learning approaches commonly used to model mutational effects, and key references that have used 

these approaches to study mutations in proteins.

Method Description Key References

Convolutional neural 
network (CNN)

A neural network architecture that processes protein structure data with convolutional filters, 
similar to common image processing networks.

[15, 16, 17, 18]

Deep generative 
network

A neural network architecture that learns a low-dimensional latent space that can be 
sampled to predict high-resolution data (such as complete protein sequences) from the latent 
representation.

[19, 20]

Gaussian Process A Bayesian learning technique that provides a probability distribution over possible functions 
that fit a dataset. Because this technique includes an explicit representation of model 
uncertainty, it enables efficient search through protein sequence space.

[21, 22]

Graph neural network A neural network architecture that represents either atoms or residues as nodes and the 
relationship between the atoms or residues as edges. These models learns how to update their 
node embeddings by aggregating information for each node based on it’s neighbors for the 
particular learning task.

[23, 24, 25, 26, 27]

Long Short-Term 
Memory (BiLSTM) 
network

A type of recurrent neural network originally developed in the context of language modeling. 
These models can learn positional dependencies in sequence data.

[28]

Support Vector 
Machine (SVM)

Traditional supervised machine learning method that learns boundaries in feature space 
separating distinct categories. One of the oldest machine learning methods applied to 
predicting mutational effects.

[29, 12]

Transformer A very powerful neural network architecture that learns a feature embedding space and 
combines it with an attention mechanism to make predictions from sequence data.

[14, 30, 31, 32]
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