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Abstract

Domain adaptation (DA) is an important technique for modern machine learning-based medical 

data analysis, which aims at reducing distribution differences between different medical datasets. 

A proper domain adaptation method can significantly enhance the statistical power by pooling 

data acquired from multiple sites/centers. To this end, we have developed the Domain Adaptation 

Toolbox for Medical data analysis (DomainATM) – an open-source software package designed for 

fast facilitation and easy customization of domain adaptation methods for medical data analysis. 

The DomainATM is implemented in MATLAB with a user-friendly graphical interface, and it 

consists of a collection of popular data adaptation algorithms that have been extensively applied to 

medical image analysis and computer vision. With DomainATM, researchers are able to facilitate 

fast feature-level and image-level adaptation, visualization and performance evaluation of different 

adaptation methods for medical data analysis. More importantly, the DomainATM enables the 

users to develop and test their own adaptation methods through scripting, greatly enhancing 

its utility and extensibility. An overview characteristic and usage of DomainATM is presented 

and illustrated with three example experiments, demonstrating its effectiveness, simplicity, and 

flexibility. The software, source code, and manual are available online.

Keywords

Domain adaptation; Medical image analysis; Medical image processing toolbox; Open source 
software

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
*Corresponding author. mxliu@med.unc.edu (M. Liu). 

Code Availability Statement
The software and code of the DomainATM toolbox as well as the manual have been submitted at the time of paper submission. These 
materials can be also found at the following link: https://www.mingxia.web.unc.edu/domainatm/

Credit authorship contribution statement
Hao Guan: Conceptualization, Methodology, Software, Writing – original draft. Mingxia Liu: Conceptualization, Validation, Writing 
– review & editing, Supervision.

Supplementary material
Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.neuroimage.2023.119863

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2023 March 01.

Published in final edited form as:
Neuroimage. 2023 March ; 268: 119863. doi:10.1016/j.neuroimage.2023.119863.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.mingxia.web.unc.edu/domainatm/


1. Introduction

Medical data analysis is nowadays being boosted by modern statistical analysis tools, i.e., 
machine learning (Barragán-Montero et al., 2021; Deo, 2015; Erickson et al., 2017; Fatima 

et al., 2017; Rajkomar et al., 2019). Classic machine learning typically assumes that training 

dataset (source domain) and test dataset (target domain) follow an independent but identical 

distribution (Valiant, 1984). In real-world practice, however, this assumption can hardly hold 

due to the well-known “domain shift” problem (Kondrateva et al., 2021; Pooch et al., 2020; 

Quiñonero-Candela et al., 2009). In medical imaging, domain shift or data heterogeneity is 

widespread and caused by different scanning parameters (i.e., between-scanner variability) 

and subject populations in multiple imaging sites. It may increase the test error along with 

the distribution difference between training and test data (Ben-David et al., 2007; Torralba 

and Efros, 2011). Thus the domain shift/difference may greatly degrade statistical power of 

multi-site/multi-center studies and hinder the building of effective machine learning models.

For handling the domain shift problem among datasets and enhancing the generalization 

ability of machine learning models, domain adaptation has gradually come under the 

spotlight of the research community (Csurka, 2017; Kouw and Loog, 2019; Patel et al., 

2015; Wang and Deng, 2018; Wilson and Cook, 2020; Zhang et al., 2020; Zou et al., 

2020). In the field of medical data analysis, domain adaptation has gained considerable 

attention and increasing interest recently (Guan and Liu, 2022; Valverde et al., 2021). 

Briefly, domain adaptation can be defined as follows. Let X × Y represent the joint feature 

space of samples and their corresponding category labels. A source domain S and a target 

domain T are defined on the joint feature space, with different distributions PS and PT, 

respectively. Suppose there are ns samples (subjects) with or without category labels in the 

source domain, as well as nt samples in the target domain without category labels. Then the 

problem is how to reduce the distribution differences/variability between source and target 

domains so as to increase the performance of down-streaming tasks such as classification or 

segmentation.

Many domain adaptation methods have been proposed or utilized in the field of 

medical data analysis which shows tremendous applicability. Most solutions, however, are 

implemented independently for very specific scenarios or target applications. Researchers 

often need to re-implement an algorithm or do methodological tailoring. The differences 

in implementation will often cause inconsistent experiment and analysis results. There is a 

lack of a unified platform for extensive comparison of different domain adaptation methods, 

helping avoid hand-crafted re-implementation for specific medical data analysis research. 

Thus a software toolbox that provides a platform of different adaptation methods is quite 

beneficial and necessary for researchers to compare, evaluate and select the proper method 

for their research project.

An important issue for medical imaging researchers is the fast facilitation of domain 

adaptation algorithms. Due to privacy protection issues, many real-world medical data sets 

are not accessible or with restrictions. Using synthetic data which is able to simulate the 

“domain shift” phenomenon in a machine learning setting will greatly boost the efficiency. 

Another limitation is the complexity of certain domain adaptation methods. Time-consuming 
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model training and exhaustive parameter tuning will be rather inconvenient, especially 

for researchers without high-level programming skills. Thus, fast facilitation of domain 

adaptation methods with real-time visualization for performance check is beneficial for 

medical data analysis.

We also observe that in medical imaging image-level domain adaptation is an important 

topic (Guan and Liu, 2022). For example, MRIs acquired from different scanners may 

negatively influence the analysis result (Lee et al., 2019; Wittens et al., 2021). This has 

become the concern of many radiologists and neuroscientists. Thus incorporating both 

feature-level and image-level adaptation methods into one platform is beneficial for related 

medical imaging research.

In light of these motivations, we develop the Domain Adaptation Toolbox for Medical 

data analysis (DomainATM) – a software package that offers a platform for simulating, 

evaluating and developing different domain adaptation algorithms for medical data analysis. 

The toolbox is designed with a major principle that it could help researchers do fast 

facilitation of adaptation methods. Besides real-world medical data, synthetic data with 

user-defined statistical properties can be generated quickly for real-time simulation. Both 

feature-level and image-level domain adaptation algorithms are included in the software 

package with a graphical-user-interface (GUI). The running results will be automatically 

saved which can be further analyzed by the evaluation module of the toolbox. All the 

algorithms have consistent input/output formats under which the users can define their own 

adaptation algorithms and add them to the DomainATM freely. Thus the toolbox has good 

flexibility and scalability.

This paper is organized as follows. In Section 2, we introduce the characteristics of 

DomainATM, including its overall structure, key features and functions. In Section 3, the 

workflow of DomainATM for the facilitation of domain adaptation is described. In Section 

4, representative domain adaptation methods that have been included in the toolbox are 

presented. In Sections 5 and 6, experiments for both feature-level and image-level adaptation 

are conducted to illustrate the application of the toolbox. This paper is concluded in Section 

7.

2. Toolbox overview/characteristics

The main structure of the DomainATM is illustrated in Fig. 2. Currently, the toolbox 

consists of three modules. 1) The data module is responsible for loading and generating 

datasets. It can directly load an existing medical dataset (in .mat data file) or create synthetic 

datasets with user-defined statistical properties that can simulate domain shift. A dataset 

is in the format of M × N matrix, where M denotes the number of samples while N 
represents the feature dimension. 2) The algorithm module contains the implementations 

of different domain adaptation methods. All these adaptation algorithms have uniform 

input/output parameter formats. Users can easily add their self-defined algorithms into 

the toolbox with the same input/output format. By default, several representative methods 

which have been widely used in medical data analysis are included in the DomainATM. 

These methods can be categorized into feature-level adaptation methods and image-level 
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adaptation methods. Besides, inspired by the design philosophy of fast facilitation, most of 

the algorithms included in the toolbox can run in real time and output results in seconds. 

3) The evaluation module assesses the performance of different adaptation methods. For 

feature-level adaptation methods, we employ two evaluation metrics, including: domain-

level classification accuracy and domain distribution distance. For image-level adaptation 

methods, we use three evaluation metrics, including correlation coefficient (CC), peak 

signal-noise ratio (PSNR) and mean square error (MSE). The DomainATM provides 

visualization functions to visualize the data distribution (or images) before and after 

adaptation which helps investigate and understand the performance of different domain 

adaptation algorithms.

The DomainATM is implemented in MATLAB (originally implemented in MATLAB 2021b 

on Windows 10, MATLAB 2019 or more advanced versions are all good for it). Through 

test, DomainATM can be run on Windows, Mac OS and Linux systems. It can be easily used 

with a graphical-user-interface (GUI), as shown in Fig. 3. The hardware platform can be a 

CPU-based PC (originally developed on Intel i-7 PC with 16 GB memory), which does not 

require much computation or memory resources. For advanced users, DomainATM provides 

an interface for writing MATLAB scripts to implement self-defined domain adaptation 

methods. The software, manual and source code for DomainATM are accessible online1.

3. Toolbox workflow

3.1. Creating/loading data

The DomainATM can work for both feature-level adaptation and image-level adaptation. 

These two key modules in the toolbox are independent of each other. With respect to 

the input of feature-level adaptation, the toolbox accepts data in standard MATLAB .mat 
file format. Each row represents an observation (subject or sample) while every column 

represents a feature. Existing real-world medical datasets (in .mat format) can be directly 

imported and loaded into the toolbox for processing. In addition, the users can create a 

synthetic dataset. After assigning the sample number, mean value and covariance matrix, 

the toolbox can automatically generate a synthetic dataset following a normal distribution. 

After loading the real/synthetic data, their distribution will be automatically displayed in the 

toolbox. Both the real-world and created datasets are stored in the “data” subfolder of the 

toolbox.

For image-level adaptation, the toolbox currently accepts 3D volumetric data (in .nii format). 

All the data will be converted to inner-built data in MATLAB. After loading the volumetric 

data, a middle slice (in axial view) will be automatically shown. Note that the “Create 

Dataset” module currently only generates data for feature-level domain adaptation.

3.2. Selecting domain adaptation algorithms

After loading the data, the following procedure is to select, configure, and run the domain 

adaptation methods. Most adaptation methods have several hyper-parameters to be set. Users 

1 https://www.mingxia.web.unc.edu/domainatm/ 
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can tune them according to the specific tasks. Otherwise, default settings of these methods 

will be used. After configuration, the users can run the algorithms. All the built-in methods 

provided by the toolbox are simple, easy to use, and can run in real time within 5 seconds 

(on a PC with an Intel i-7 CPU, 16 GB memory).

After running the adaptation methods, the results will be automatically saved in the 

“evaluation” subfolder of the toolbox. For feature-level adaptation, the original source/target 

data, and the adapted source/target data will be saved (in .mat data format). For image-level 

adaptation, the adapted source images (target image is used as the reference image and will 

not be changed) will be saved (in .nii format). All the files are named with the corresponding 

adaptation method with time stamp.

3.3. Evaluating data adaptation performance

After running the adaptation methods and getting the results, performance evaluation can be 

conducted for the methods. For feature-level adaptation, we use distribution difference and 

domain-level classification accuracy as two metrics to assess the adaptation performance. 

For image-level adaptation, we adopt correlation coefficient (CC), peak signal-to-noise ratio 
(PSNR) and mean-square error (MSE) to evaluate the adaptation result. More details about 

these evaluation metrics will be elaborated in the experiment section.

3.4. Visualization of data adaptation results

Besides quantitative evaluation, result visualization is useful for qualitative analysis. The 

DomainATM provides visualization functions that help users better understand domain 

adaptation for medical data. For feature-level adaption, the feature distribution (in 2D space) 

before and after adaptation can be visualized. High-dimensional features will be mapped to 

2D feature space via t-SNE (Van der Maaten and Hinton, 2008). For image-level adaptation, 

the adapted source image, the original source and target images can be viewed using the 

toolbox. After the adapted images have been saved in the “evaluation” subfolder, they can 

also be visually inspected by other medical imaging software.

3.5. Extension: Adding self-defined data adaptation algorithm

In some tasks of medical data analysis, users might need to develop their own domain 

adaptation methods. The DomainATM supports self-defined algorithms for task-specific 

usage. The users can write a MATLAB script to define and implement their algorithms. 

The input/output format of the self-defined functions has to be consistent with other built-in 

adaptation methods. When adding an new algorithm, the self-defined script should be put in 

the “algorithms_feat” (feature-level) or the “algorithms_img” (image-level) subfolders in the 

toolbox. One can simply run and analyze their methods like the other built-in ones through 

GUI.

4. Algorithms

In this section, we briefly introduce the algorithms for feature-level and image-level data 

adaptation in DomainATM. More details can be found in the online manual.
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4.1. Feature-level data adaptation algorithm

4.1.1. Baseline—No feature-level domain adaptation is utilized. Both source and target 

data are kept in their original distributions (in the feature space).

4.1.2. Subspace Alignment (SA)—In this algorithm (Fernando et al., 2013), the 

source and target medical data are represented by subspaces in terms of eigenvectors. The 

source data are projected to the target domain through a transformation matrix. No category 

labels of source domain are needed. The key hyper-parameter is the dimension of the shared 

subspace.

4.1.3. Correlation Alignment (CORAL)—In this algorithm (Sun et al., 2016), domain 

shift/difference is minimized by aligning the second-order statistics (e.g., covariance) of 

source and target distributions. No category label information and hyper-parameters are 

required for this method.

4.1.4. Transfer Component Analysis (TCA)—In this algorithm (Pan et al., 2010), a 

subspace shared by the source and target domain is searched in a reproducing kernel Hilbert 

space by minimizing the maximum mean discrepancy (MMD) distance. No source category 

labels are demanded. The key hyper-parameters are the kernel type and subspace dimension.

4.1.5. Optimal Transport (OT)—In this algorithm (Guan et al., 2021b), the samples 

in the source domain are projected into the target domain while keeping their conditional 

distributions. The projection is facilitated through minimization of Wasserstein distance 

between the two distributions. No category labels of the source domain are used. The key 

hyper-parameter is the regularization coefficient.

4.1.6. Joint Distribution Adaptation (JDA)—In this algorithm (Long et al., 2013), 

maximum mean discrepancy (MMD) is adopted to measure domain distribution differences, 

and is integrated into Principal Component Analysis (PCA) to build a representation that 

is robust to domain shift. Source category labels are needed in this algorithm. The key 

hyper-parameters include kernel type, subspace dimension and regularization parameter.

4.1.7. Transfer Joint Matching (TJM)—In this algorithm (Long et al., 2014), feature 

matching and instance reweighting strategies are combined to reduce domain shift. 

Minimization of maximum mean discrepancy (MMD) and l2,1 norm sparsity penalty on 

source data are integrated into PCA to construct domain-invariant features. Category labels 

of source domain are required. The key hyper-parameters include kernel type, subspace 

dimension and regularization parameter.

4.1.8. Geodesic Flow Kernel (GFK)—In this algorithm (Gong et al., 2012), the source 

and target data are embedded into the Grassmann manifolds, and the geodesic flows between 

them are used to model domain shift. Domain adaptation is conducted by projecting the data 

into several domain-invariant subspaces on the geodesic flow. Source category labels can be 

either used or not. The key hyper-parameter is the subspace dimension.
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4.1.9. Scatter Component Analysis (SCA)—In this algorithm (Ghifary et al., 2016), 

original features are firstly projected to a reproducing kernel Hilbert space. Domain 

adaptation is then conducted through an optimization formulation, including maximizing 

the class separability, maximizing the data separability, and minimizing domain mismatch. 

Category labels of the source domain are used during adaptation. The key parameter is the 

dimension of the transformed space.

4.1.10. Information-Theoretical Learning (ITL)—In this algorithm (Shi and Sha, 

2012), an optimal feature space is learned through jointly maximizing domain similarity 

and minimizing the expected classification error on target samples. Source category labels 

are required. The key hyper-parameters include subspace dimension and regularization 

parameter.

4.2. Image-level data adaptation algorithm

4.2.1. Baseline—For two medical images acquired by different scanners/sites, no 

domain adaptation is facilitated in this method. Instead, the homogeneity/heterogeneity of 

the paired original images is directly compared in terms of certain evaluation metrics.

4.2.2. Histogram Matching (HM)—This method transforms source image to make 

its histogram matches the histogram of the target image (Shinohara et al., 2014). After 

adaptation, the intensity distributions of the source and target images become closer.

4.2.3. Spectrum Swapping-based Image-level MRI Harmonization (SSIMH)—
In this method (Guan et al., 2022), the source and target images are firstly transformed 

into the frequency domain (e.g., through Discrete Cosine Transform). Then, part of the 

low-frequency region of source image is replaced by the corresponding low-frequency area 

of the target image. Finally, the source image in the revised frequency domain is inverted 

back to the spatial domain to get the adapted image. The key hyper-parameter of this method 

is the threshold which defines the low-frequency region that is swapped between source and 

target images. In the toolbox, the default value is set to 3.

The image-level domain adaptation methods work well in two different settings. (1) One-to-

one image harmonization: Given a source image and a target/reference image, one can select 

a specific algorithm to adapt the source image to the target image space. (2) Batch image 

harmonization: Given multiple source images and a target image, we can adapt all source 

images to target image space via batch harmonization.

5. Empirical evaluation of feature-level data adaptation algorithms in 

DomainATM

5.1. Evaluation metric

For feature-level adaptation methods, we adopt the metrics that evaluate the distribution 

changes before and after the adaptation process. Specifically, we use the following three 

methods/metrics for adaptation performance evaluation.
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• Distribution difference. We adopt maximum mean discrepancy (MMD) to 

measure the data distribution differences between the source and target domains 

before and after domain adaptation. As a popular metric, the maximum mean 

discrepancy (MMD) has been widely used in domain adaptation research 

(Kumagai and Iwata, 2019; Long et al., 2013; 2014; Pan et al., 2010; Wang 

et al., 2021; Yan et al., 2017), defined as follows:

MMDk
2 = Ep ϕ xs − Eq ϕ xt ℋk

2
(1)

where ℋk denotes the Reproducing Kernel Hilbert Space endowed with a kernel 

function k, and k xs, xt = ϕ xs , ϕ xt . If the MMD distance of source and target 

domains gets lower after adaptation, it indicates the data distribution difference 

becomes smaller.

• Domain classification. Suppose an equal number of samples are sampled from 

the source and target domains, respectively. These samples are assigned with 

domain labels, i.e., the source samples are labeled as “1” while target samples 

are assigned with the label “0”. A domain discriminator/classifier is applied to 

all samples for distinguishing which samples come from the source domain and 

which ones are from the target domain. The classification result is used to assess 

domain shift/difference. A high domain classification accuracy indicates that the 

source and target samples can be easily distinguished, which means the domain 

shift is large. In contrast, if the domain classification accuracy drops down after 

the adaptation processing, it indicates the domain adaptation algorithm works 

because it makes the two domains get closer and become more difficult to 

distinguish.

5.2. Experiment 1: Adaptation on synthetic dataset

We first conduct experiments on synthetic datasets using DomainATM. Users can set the 

statistical properties of the synthetic data freely using DomainATM, and thus, can conduct 

fast test of different domain adaptation methods, which is helpful for understanding the 

characteristics of different methods and avoiding the access restrictions of many real-world 

medical datasets. Specifically, we generate two domains by Gaussian distributions. Each 

domain has two classes, with 30 positive samples and 30 negative ones, respectively. For the 

source domain S, the means of positive and negative samples are [0, 0] and [0, 1], while 

their covariance matrices are [0.2, 0; 0, 0.2] and [0.1, 0; 0, 0.1]. For the target domain T, 

the means of positive and negative samples are [1, −0.5] and [1, 0.2], while their covariance 

matrices are [0.2, 0; 0, 0.2] and [0.1, 0; 0, 0.1].

5.2.1. Data distribution visualization—The distributions of the original data and the 

adapted data by different methods are visualized in Fig. 4. From the visualization result, 

different domain adaptation methods can reduce the distributions of source and target 

samples to certain extent. For example, the optimal transport adaptation (OT) can project 

the source data into the target domain, and make the source distribution quite similar to the 

target domain.
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5.2.2. Distribution difference—The data distribution differences (in terms of 

maximum mean discrepancy) of the source and target domains after domain adaptation 

are shown in Fig. 5. The result of the Baseline method shows the original distribution of the 

source and target domain without any adaptation processing. From Fig. 5, we can observe 

that domain adaptation can reduce the distribution differences between the original source 

and target domains.

5.2.3. Domain-level classification—We conduct domain-level classification on the 

source and target data. A domain classifier (we use a k-nearest neighbors classifier) is 

trained with source data (with the label “1”) and target data (with the label “0”). Source and 

target data are combined together and shuffled. In the experiments, we use 60% of the entire 

data samples for training the domain classifier while 40% are for test. The result of domain 

classification accuracy is shown in Fig. 6.

We also use another two classifiers, i.e., support vector machine (SVM) and random forest 

(RF) for domain-level classification. For the SVM, we use a linear kernel and the penalty 

parameter C is set to 1. For the RF, 50 decision trees are used for the ensemble classification. 

These settings are also used for the other experiments. Their domain-level classification 

results are shown in Table 1.

From Fig. 6 and Table 1, it can be seen that the domain classification accuracy drops after 

domain adaptation even different classifiers are used. This implies that source and target data 

become more difficult to be distinguished, i.e., domain adaptation makes their distributions 

become more similar than in the original space.

5.3. Experiment 2: Adaptation for Alzheimer’s disease analysis on ADNI

We conduct experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

dataset (Jack Jr et al., 2008). The dataset consists of T1-weighted MRI data for Alzheimer’s 

disease (AD) analysis. We use two subsets of ADNI, i.e., ADNI-1 (100 subjects with 

1.5T T1-weighted structural MRIs) and ADNI-2 (100 subjects with 3.0T T1-weighted 

structural MRIs) as the source and target domains, respectively, to test the domain 

adaptation algorithms using DomainATM. ADNI-1 contains 50 patients with Alzheimer’s 

disease (AD) (positive samples) and 50 normal control (NC) subjects (negative samples). 

ADNI-2 has 50 CE subjects and 50 NC subjects. All the MRIs have been processed 

through a standard pipeline, including skull stripping, intensity correction, registration and 

re-sampling. Regions-of-interest (ROIs) features which are defined on 90 regions in the 

Anatomical Automatic Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) are used to 

represent each subject. The 90-dimensional features denote the gray matter volumes in each 

brain region.

5.3.1. Distribution visualization—The distributions of original ADNI-1 and ADNI-2 

data (in feature space) and the adapted data by different methods are visualized in Fig 

7. From the visualization results, the original source and target data have a relatively 

clear boundary. After domain adaptation, the domain boundaries become blurred, and the 

distribution of source and target domains gets closer to each other.
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5.3.2. Distribution distance—The distribution differences (in terms of maximum mean 

discrepancy) of the source data, i.e., ADNI-1, and target data, i.e., ADNI-2, after domain 

adaptation are shown in Fig. 8. The baseline illustrates the original distribution of the source 

and target domain without any adaptation processing. From the result, it can be observed 

that domain adaptation is able to reduce the distribution differences between the original 

source and target domains.

5.3.3. Domain-level classification—We facilitate domain-level classification on the 

source data, i.e., ADNI-1, and target data, i.e., ADNI-2. A domain classifier (k-nearest 

neighbors classifier) is trained with source data (with the label “1”) and target data (with the 

label “0”). Source and target data are combined together and shuffled. 60% of the entire data 

are adopted for training while 40% for testing. The result of domain-level classification is 

illustrated in Fig. 9. Another two classifiers, including support vector machine (SVM) and 

random forest (RF) are also adopted for domain-level classification, and the result is listed in 

Table 2. From Fig. 9 and Table 2, we can see that the domain classification accuracy drops 

after domain adaptation despite the different types of domain classifiers. This indicates that 

the adapted source and target data get more difficult to be correctly classified, i.e., domain 

adaptation is effective in reducing their distribution differences.

5.4. Experiment 3: Domain adaptation for autism analysis on ABIDE

We conduct experiments on the Autism Brain Imaging Data Exchange (ABIDE) dataset (Di 

Martino et al., 2014). This database consists of resting-state functional MRI (fMRI) data 

for Autism analysis. We use two sites from the ABIDE project, i.e., NYU (184 subjects) 

and UM (145 subjects) as the source and target domains, respectively, to test the domain 

adaptation algorithms using the DomainATM. The NYU site consists of 79 positive samples 

(autism patients) and 105 negative samples (normal controls). These fMRIs are acquired 

by a 3 Tesla Allegra scanner. The UM site includes 68 positive samples (autism patients) 

and 77 negative samples (normal controls). These fMRIs are acquired using a 3 Tesla GE 

scanner located at the UM Functional MRI Laboratory. All the fMRIs go through a standard 

pipeline, including slice-timing and motion correction, nuisance signal regression, temporal 

filtering, and registration. The mean time series of 116 regions-of-interest (ROIs) defined 

by the Anatomical Automatic Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) are 

extracted. Then, a 116×116 symmetrical resting-state functional connectivity (FC) matrix 

is generated for each subject, with each element representing the Pearson correlation 

coefficient between a pair of ROI signals. We extract the node betweenness centrality 

(Rubinov and Sporns, 2010) based on the FC matrix to represent each subject/sample.

5.4.1. Distribution visualization—The original distributions of two sites in ABIDE (in 

feature space) and the adapted data by different methods are visualized in Fig. 10. From 

the visualization result, it can be observed that the boundary between original source and 

target data is relatively clear. After the domain adaptation processing, the domain boundaries 

become blurred, and the distributions of source and target domain get similar to each other.

5.4.2. Distribution distance—The data distribution differences (in terms of MMD) of 

the source NYU domain and target UM domain after domain adaptation are shown in Fig. 
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11. The baseline is the original distribution of the source and target domain without any 

adaptation processing. The result shows that the distribution differences become smaller 

after adaptation processing by different algorithms.

5.4.3. Domain-level classification—We facilitate domain-level classification on the 

source data, i.e., NYU, and target data, i.e., UM. A domain classifier (k-nearest neighbors 

classifier) is trained with source data (with the label “1”) and target data (with the label 

“0”). Source and target data are combined together and shuffled. 60% of the entire data are 

adopted for training while 40% for test. The result of domain-level classification accuracy 

is illustrated in Fig. 12. We also use support vector machine (SVM) and random forest 

(RF) to conduct the domain-level classification, and the result is shown in Table 3 From 

the results, the domain classification accuracy gets worse after domain adaptation processing 

regardless of what domain classifiers have been used. This indicates that the adapted source 

and target data become more difficult to be discriminated, i.e., using domain adaptation has 

successfully reduced their distribution differences.

5.5. Discussion

In the above experiments, we use two quantitative metrics, i.e., MMD and domain 

classification accuracy, to evaluate the performance of different domain adaptation methods 

in DomainATM. The MMD is a direct assessment metric because it is directly calculated 

based on the statistical properties of source and target domains (datasets). Generally, if 

method A achieves a smaller MMD than method B, then A is supposed to be better. Domain 

classification accuracy is an indirect metric because it relies on a specific domain classifier. 

But it can also reflect the adaptation performance since confusing a classifier is difficult. 

If method A achieves a smaller domain classification accuracy than method B, then A is 

supposed to be better. Based on the experimental results, we have the following empirical 

findings.

• The CORAL, TCA and SCA algorithms have relatively worse domain adaptation 

performance than the other methods. They get significantly higher MMD values 

and domain classification accuracy than the others.

• The OT algorithm achieves the overall best performance among these 

adaptation methods. It generally produces the smallest MMD value and domain 

classification accuracy in all these three experiments.

• On the ADNI dataset, the TJM, JDA, GFK and ITL have comparable 

performance. They get similar domain classification accuracy and low MMD. 

On the ABIDE dataset, the algorithm ITL is worse than the others.

• Most algorithms are effective in significantly reducing the MMD value. By 

contrast, the domain classification accuracy is more difficult to reduce. This 

implies that it is challenging to confuse or deceive a domain classifier with 

certain domain adaptation methods. Thus, domain classification accuracy is a 

rigorous metric to assess the robustness of an adaptation algorithm.

We also conduct statistical testing for performance comparison in terms of domain 

classification accuracy. Specifically, we compute the p-values via paired sample t-test 
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between each adaptation method and the baseline. The p-values are smaller than 0.05, 

indicating that their differences are significant. In addition, we calculate the running time of 

each domain adaptation algorithm for each dataset on a PC with an Intel i-7 CPU and 16 GB 

memory. The comparison result is listed in Table 4.

6. Empirical evaluation of image-level data adaptation algorithms in 

DomainATM

6.1. Evaluation metrics

For image-level adaptation methods, we adopt the metrics that evaluate the image similarity/

dissimilarity before and after adaptation. Specifically, we adopt the following three metrics 

for image-level adaptation performance evaluation.

• Correlation Coefficient (CC). Denote the source and target images as ℐs and 

ℐt. After adaptation, we get ℐs′ . For performance assessment, if the correlation 

coefficient of ℐs′  and ℐt is higher than ℐs and ℐt, it indicates the corresponding 

adaptation algorithm works.

• Peak Signal-to-Noise Ratio (PSNR). If the peak signal-to-noise ratio of ℐs′  and 

ℐt is higher than ℐs and ℐt, it indicates the adaptation algorithm works.

• Mean-Squared Error (MSE). If the mean-squared error of ℐs′  and ℐt is smaller 

than ℐs and ℐt, it indicates the adaptation algorithms are effective.

6.2. Materials and settings

Phantom data of five traveling subjects with T1-weighted (T1-w) structural MRIs from the 

ABCD dataset (Volkow et al., 2018) are used for performance evaluation. Phantom-1 is 

scanned by GE and Philips scanners, respectively. Phantom-2 and Phantom-3 are acquired 

by Siemens and GE scanners, respectively. Phantom-4 and Phantom-5 are scanned by 

Philips and Siemens scanners, respectively. The protocols of the GE, Philips and Siemens 

scanners are consistent. These phantoms are used to test the performance of image-level 

domain adaptation methods in handling domain shift caused by different scanners. All these 

3D MRIs are raw data in the NIfTI file format. We do not perform any pre-processing 

such as skull-stripping, registration or segmentation before image-level adaptation. During 

adaptation, the intensity of each image is normalized to the range of [0, 1]. For these 

volumetric images which contain multiple slices, the adaptation is facilitated on each slice, 

then the performance is calculated as an average metric value for all the slices within an 

image (volume).

6.3. Result

We conduct image-level domain adaptation on these five phantom structural MRI data, and 

the adaptation results in terms of the three metrics are shown in Table 5. From the result, it 

can be observed that image-level domain adaptation methods can generally achieve higher 

scores of correlation coefficient (CC) and peak signal-to-noise ratio (PSNR) and smaller 

mean square error (MSE). In some cases (e.g., GE → Philips), the Histogram Matching 
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(HM) does not perform very well in terms of PSNR and MSE. Overall, the result indicates 

that image-level adaptation methods are useful in reducing the distribution shift between 

images caused by different scanners.

6.4. Visual inspection

To further investigate the effectiveness of image-level domain adaptation, we do visual 

inspections of the MRIs that are adapted to different scanner styles. We divide the phantom 

MRIs into three groups in terms of the scanners. Then we adapt MRIs acquired by one 

scanner to the styles of MRIs scanned by other scanners. We use the SSIMH method 

(Guan et al., 2022) in DomainATM to perform image-level adaptation. Fig. 13 shows the 

results of three different MRIs and their corresponding adapted images to different scanner 

styles. From the result, we have the following two observations. 1) Different scanners (i.e., 
Siemens, Philips and GE) have a significant impact on the MRIs, which can cause the 

domain shift. 2) The image-level domain adaptation method is effective in harmonizing the 

source image to the target image (reference image) and reducing the domain shift caused by 

different scanners.

7. Conclusion and future work

Domain adaptation has become an important topic in the field of medical data analysis. 

In this paper, we develop a Domain Adaptation Toolbox for Medical data analysis 

(DomainATM), aiming to help researchers facilitate fast domain adaptation for medical data 

acquired from different sites/scanners. The DomainATM is easy to use, efficient to run, and 

most importantly, it is able to do both feature-level and image-level adaptation. In addition, 

users can add their own domain adaptation algorithms into the toolbox, making it flexible 

and extensible. Experiments on both synthetic and real-world medical datasets have been 

conducted to show the usage and effectiveness of DomainATM. We hope the toolbox can 

provide more convenience and benefit for researchers to do domain adaptation research in 

medical data analysis.

There are several potential future works to further enrich and extend the DomainATM. First, 
for the sake of fast and easy facilitation of domain adaptation in medical imaging data, we 

only include machine learning methods in the current version, without considering deep 

learning methods that often require large computation resources. In the future, we plan to 

develop another version of the toolbox to include deep learning methods (such as various 

GANs (Sinha et al., 2021; Yi et al., 2019) and CNNs (Guan et al., 2021a; Tibrewala et al., 

2020)). Second, the current evaluation metrics merely reflect domain differences, lacking 

the ability to further analyze practical applications (e.g., to what extent Dice scores in a 

segmentation application varies before and after domain adaptation). We will address this 

issue to enrich the toolbox in the future. Besides, we plan to further improve the graphic 

user interface to enable users to set and tune the hyper-parameters of each domain adaptation 

method in a more convenient manner.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Illustration of the “domain shift” phenomenon (Quiñonero-Candela et al., 2009) (top row) 

and the fundamental of domain adaptation (distribution of source and target samples before 

and after adaptation).

Guan and Liu Page 17

Neuroimage. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Illustration of workflow of the DomainATM software. The DomainATM consists of three 

major components: 1) the data module loads or creates the datasets; 2) the algorithm module 

conducts feature-level or image-level domain adaptation and saves the results; and 3) the 

evaluation module assesses the adaptation performance according to specific metrics. DA: 

Domain Adaptation.
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Fig. 3. 
Graphical-User-Interface (GUI) of DomainATM.
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Fig. 4. 
Distribution of the synthetic data (baseline) and adapted data by nine different domain 

adaptation methods in the DomainATM toolbox. (+ positive source samples; + positive 

target samples; • negative source samples; • negative target samples).
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Fig. 5. 
Synthetic data distribution differences in terms of maximum mean discrepancy before 

(baseline) and after domain adaptation using nine feature-level adaptation methods.
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Fig. 6. 
Synthetic data distribution differences in terms of domain-level classification accuracy on 

the synthetic dataset before (baseline) and after domain adaptation using nine feature-level 

adaptation methods.
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Fig. 7. 
Distribution of the original ADNI data (baseline) and adapted data by nine feature-level 

domain adaptation methods in the DomainATM toolbox. (+ positive source samples; + 
positive target samples; • negative source samples; • negative target samples).
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Fig. 8. 
Data distribution differences in terms of maximum mean discrepancy on ADNI-1 and 

ADNI-2 before (baseline) and after domain adaptation operations.
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Fig. 9. 
Data distribution differences in terms of domain-level classification accuracy on ADNI-1 

and ADNI-2 before (baseline) and after domain adaptation operations.
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Fig. 10. 
Distribution of the original ABIDE data (baseline) and adapted data by nine feature-level 

domain adaptation methods in the proposed DomainATM toolbox. (+ positive source 

samples; + positive target samples; • negative source samples; • negative target samples).
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Fig. 11. 
Data distribution differences of two sites of ABIDE in terms of maximum mean discrepancy 

before (baseline) and after domain adaptation using nine feature-level adaptation methods.
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Fig. 12. 
Data distribution differences in terms of domain-level classification accuracy on two sites 

of ABIDE before (baseline) and after domain adaptation using nine feature-level adaptation 

methods.
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Fig. 13. 
Image-level domain adaptation via the Spectrum Swapping-based Image-level MRI 

Harmonization (SSIMH) method (Guan et al., 2022) for T1-weighted (T1-w) MRIs acquired 

by different scanners. Domain shift caused by the use of different scanners can be partly 

reduced by image-level adaptation via SSIMH.
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Table 1

Domain classification accuracy (%) using different classifiers on the synthetic dataset. (SVM: support vector 

machine; RF: random forest).

Method Baseline SA CORAL OT TCA TJM JDA GFK SCA ITL

SVM 85 47 80 35 77 40 41 39 60 41

RF 85 51 82 24 60 47 37 41 78 59
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Table 2

Domain classification accuracy (%) using different classifiers on the ADNI-1 and ADNI-2 datasets. (SVM: 

support vector machine; RF: random forest).

Method Baseline SA CORAL OT TCA TJM JDA GFK SCA ITL

SVM 79 43 79 43 77 43 43 43 43 43

RF 85 64 85 52 80 63 58 60 50 57
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Table 3

Domain classification accuracy (%) using different classifiers on two sites of ABIDE dataset. (SVM: support 

vector machine; RF: random forest).

Method Baseline SA CORAL OT TCA TJM JDA GFK SCA ITL

SVM 69 55 67 55 68 55 55 55 55 65

RF 66 55 64 31 66 48 43 50 65 63
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Table 4

Running time (in terms of seconds) of nine domain adaptation algorithms in DomainATM on three datasets.

Method SA CORAL OT TCA TJM JDA GFK SCA ITL

Synthetic 0.09 0.05 1.28 0.06 0.19 0.85 0.09 1.04 0.06

ADNI 0.05 0.01 2.78 0.04 0.21 0.92 0.09 1.13 0.13

ABIDE 0.03 0.01 6.07 0.07 0.26 0.92 0.09 1.74 0.25
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