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Abstract

Immune cell function is critically dependent on precise control over transcriptional output from 

the genome. In this respect, integration of environmental signals that regulate gene expression, 

specifically by transcription factors, enhancer DNA elements, genome topography and non-coding 

RNAs (ncRNAs), are key components. The first three have been extensively investigated. Even 

though non-coding RNAs represent the vast majority of cellular RNA species, this class of 

RNA remains historically understudied. This is partly because of a lag in technological and 

bioinformatic innovations specifically capable of identifying and accurately measuring their 

expression. Nevertheless, recent progress in this domain has enabled a profusion of publications 

identifying novel sub-types of ncRNAs and studies directly addressing the function of ncRNAs 

in human health and disease. Many ncRNAs, including circular and enhancer RNAs, have 

now been demonstrated to play key functions in the regulation of immune cells and to show 

associations with immune-mediated diseases. Some ncRNAs may function as biomarkers of 

disease, aiding in diagnostics and in estimating response to treatment, while others may play a 

direct role in the pathogenesis of disease. Importantly, some are relatively stable and are amenable 

to therapeutic targeting, for example through gene therapy. Here, we provide an overview of 

ncRNAs and review technological advances that enable their study and hold substantial promise 

for the future. We provide context-specific examples by examining the associations of ncRNAs 

with four prototypical human autoimmune diseases, specifically rheumatoid arthritis, psoriasis, 

inflammatory bowel disease and multiple sclerosis. We anticipate that the utility and mechanistic 

roles of these ncRNAs in autoimmunity will be further elucidated in the near future.
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Introduction

Precise regulation of gene transcription is essential for the normal function of immune cells, 

balancing the need for appropriate responsiveness to pathogens and danger signals while 

maintaining tolerance to self-components. Broadly, transcriptional output from the genome 

can be divided into coding (messenger) ribonucleic acids (mRNAs) and non-coding RNAs 

(ncRNAs) based on the potential for translation to proteins. Although ncRNAs account for 

a large fraction of RNA species in most eukaryotic cells, relatively little is known about the 

roles played by ncRNAs in the context of immune cell differentiation and fate decisions. 

In fact, current understanding of genome biology in immune cells is mainly centered on 

the regulation of coding genes by transcription factors (TFs) and non-coding regulatory 

elements, such as enhancers. Therefore, a major knowledge gap remains in elucidating 

the functions of ncRNAs in human physiology and immune-related diseases. Nevertheless, 

recent primary studies have demonstrated a unique role for a variety of ncRNAs in the 

regulation of immune cell function at multiple levels, including lymphoid development, 

inflammatory pathway activation, cellular metabolism, antibody repertoire selection and 

cytokine secretion. Such functions indicate that ncRNAs participate in xeno-responses to 

provide immunity to pathogens. Moreover, they have also been implicated in anti-self 

responses, where components of the immune system are dysregulated and harm otherwise 

healthy tissues, evident as clinical autoimmunity. Importantly, while TFs and enhancers 

are typically challenging to target therapeutically, non-coding RNAs may provide better 

alternatives for gene therapy [1–3]. Thus, not only can ncRNAs act as potential biomarkers 

and enhance our understanding of the basic molecular mechanisms of disease, but they 

can also be therapeutically leveraged for the treatment of patients. Recent developments in 

technology required for the broad detection and discrete analysis of ncRNAs could also shed 

light on their roles in immune cells. Here, we provide an up-to-date review of ncRNAs, 

specifically discussing advances in technologies for their detection, mechanisms of action 

and putative roles orchestrated in human autoimmune diseases.

Classes of ncRNAs

Although ncRNAs make up the majority (~90%) [4,5] of transcriptional products, the 

functions of most ncRNAs remain poorly understood. Pioneering studies of transfer [6] 

and ribosomal [7] RNA in the 1950s described the function of the first ncRNAs, and 

were followed by the study of RNAse P [8], RNA granules [9], RNA methylation and 

processing [10], RNA structure prediction [11], and XIST-mediated X-inactivation [12]. 

With advancements in RNA sequencing [13], the number of ncRNAs detected amongst 

human cells has increased exponentially, with ~0.6 million ncRNAs now estimated to exist 

(Table 1). This compares to approximately 20,000 genes encoding mRNAs. In humans, the 

true number of ncRNAs and their expression in nature may vary more widely by cell-type 
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and condition and, like mRNAs, alternative-splicing. Broadly, ncRNAs are divided into 

small (<200bp in length) and long ncRNAs [14] (variously defined as either >200bp with or 

without a putative open reading frame (ORF), or >300bp without an ORF) (Figure 1). Small 

ncRNAs include micro-RNAs (miRs) [15], transfer RNAs (tRNAs) [16], tRNA-derived 

small RNAs (tsRNAs) [17], piwi-interacting RNAs (piRNAs) [18] and small nucleolar 

RNAs (snoRNAs) [19]. The long ncRNAs include linear long non-coding RNAs (lncRNAs) 

[20], long intergenic non coding RNAs (lincRNAs – essentially lncRNAs that do not overlap 

with protein-coding genes) [21], enhancer RNAs (eRNAs) [22,23] and circular RNAs 

(circRNAs) [24,25]. The number of ncRNAs in each category is increasing exponentially. 

Table 1 lists the number of ncRNAs described to date in each category and the databases 

curated to enable browsing of all those described.

Overall, many mechanisms of function have been ascribed to ncRNAs, including those 

that are specific to each class. Broadly, ncRNAs may regulate expression of other genes 

and basic cellular processes of cells. Some of these are generic to all cells, while 

others are specific to immune cells. These include regulation of cellular metabolism 

[26], polycomb repression [27], active-chromatin binding [28], gene transcription [29], 

alternative splicing [30], CTCF-associated class-switch recombination [31], ribosome 

activity [32,33], signal-transduction[34] and cytokine production [15,35]. Whereas miRs 

disrupt target molecule mRNA expression via the miR-induced silencing complex (miRISC) 

that includes argonaute-based nuclease machinery [36], long ncRNAs generally function 

differently, for example by acting as signals (i.e. transcriptional regulators), decoys (i.e. 

for miR binding and sponge activity), guides (i.e. directing localization of molecules) 

and molecular scaffolds (supporting multimeric complexes) [37]. Some ncRNAs integrate 

multiple functions. For example, HOTAIR, a regulator for anatomic specificity in anterior 

posterior differentiation, binds to the polycomb repressor complex (PRC) 2 and lysine-

specific demethylase (LSD)1 complexes as a modular scaffold and targets PRC2 localization 

toward discrete genomic locales. Thus collectively HOTAIR regulates cellular position 

identity in complex tissues by regulating gene expression through mobilization of chromatin 

modifiers [37]. The most common mechanisms by which ncRNAs regulate cellular function 

are shown graphically in Figure 2.

The focus of much of the literature has historically been on the study of lncRNAs and 

miRs. More recent attention has shifted to circRNAs and eRNAs. circRNAs and eRNAs 

are critically important ncRNAs increasingly recognized for regulating fundamental cellular 

processes. circRNAs are abundant and formed by back-splicing events distinguishing them 

from linear RNAs [38] (Figure 1C). eRNAs are non-coding RNAs transcribed from enhancer 

regions of DNA and regulate target gene expression [39–41] (Figure 1D–E). Both circRNAs 

and eRNAs are critical for mammalian gene regulation in cis and/or trans. Moreover, 

controlled over-expression or ablation of specific circRNAs and eRNAs can modulate 

biological functions of cells [42,43], providing a novel means to alter transcriptional activity 

of target genes. Because some of these, such as circRNAs, are relatively stable and long-

lived, they also have the potential to act as biomarkers of disease or to be the targets of gene 

therapy.
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Detection of ncRNAs in immune cells – old challenges and new

Conventionally, a significant portion of the knowledge gap that exists in the study of 

ncRNAs stemmed from limitations in ncRNA detection. At present, a variety of techniques 

exist to detect ncRNAs in cells and tissues under diverse immunological states. These range 

from prior knowledge-based techniques, such as qRT-PCR, to high-throughput methods 

that include bulk RNA-sequencing (RNAseq). While RNAseq is now standardized, it is 

important to point out that most experiments ‘capture’ RNAs that are 3’-polyadenylated. 

This is desirable to bias capture towards mRNAs and avoid reactions being saturated by 

rRNAs (the majority of cellular RNAs). However, because a large fraction of cellular 

ncRNAs is not poly-adenylated, this approach has low efficiency at capturing the non-coding 

transcriptome. An approach more suitable to whole transcriptome sequencing uses random 

priming combined with reagents that deplete ribosomal RNAs (‘ribo-depletion’) or enrich 

for RNA species of interest (e.g. RNase R treatment for circRNA enrichment). However, 

this approach is particularly susceptible to inefficiency if the quality of starting RNA is sub-

optimal, as ribo-depletion of partially degraded RNA works poorly. It is also worth pointing 

out that data from whole transcriptome RNAseq still pose significant challenges when trying 

to discover novel ncRNAs, partly because many of the ncRNAs have low expression and 

discerning them from “transcriptional noise” requires large numbers of samples, increased 

sequencing depth and confirmation by orthogonal methods. An additional challenge is 

identifying the exact transcription start and end coordinates which would be needed for 

functional studies, such as overexpression or gene-editing. An additional computational 

challenge for circRNAs is that identifying exact back-splicing junctions requires sufficient 

sequencing reads through the junction to distinguish it from artifacts introduced during 

RNA-seq library preparation, such as random template switching [44]. Such depth of 

coverage can be difficult to achieve for low-expressed transcripts.

Other novel opportunities for identifying ncRNAs comes from the variety of methods 

now available for sequencing of nascent RNA molecules, such as methods that sequence 

transcripts without capture or library prep to enable high-throughput characterization of 

total nucleotides. These include uninterrupted long-range sequencing, global nuclear run-on 

sequencing (GRO-seq), precision run-on sequencing (PRO-seq), native elongating transcript 

sequencing (NET-seq), mammalian NET-seq (mNET-seq) and fastGRO [45–49]. Some of 

these approaches are gaining traction but are still dependent on input bulk RNA derived 

from multiple cells and generally measure actively transcribing genes rather than steady-

state stable RNA levels.

Single cell RNA-seq (scRNAseq) is a contemporary approach to detect and quantify cell-

state specific expression without the need of microdissection [50] or laser capture [51]. 

It theoretically enables the discrete analysis of cellular transcriptomes on a per cell basis 

and the determination of heterogeneity within a given population of cells. However, current 

scRNAseq methods are less than ideal for the study of ncRNAs principally for two reasons. 

Firstly, current scRNAseq platforms are susceptible to ‘drop-out’, a phenomenon by which 

a transcript is observed in one cell, often at low or moderate level of expression, but is not 

detected in another cell within the same population. Thus, because many ncRNA species 

are of low abundance (NeST, for example [see below] is estimated to be expressed at one 
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molecule or less per T cell) or low expression, they are often subject to dropout within 

a population of identical cells. Secondly, many commercially available scRNAseq kits 

employ a reverse transcription (RT)-PCR reaction primed by polydT, which predominantly 

captures 3’-polyadenylated transcripts. This is fine for some lncRNAs that contain 3’polyA 

tails and can be captured by priming with polydT. For example, Zhou et al., recently 

conducted polydT-primed single-cell profiling of lncRNAs during hematopoiesis in vivo 
and produced an atlas of such ncRNAs during hematopoiesis [52]. Unfortunately, the lack 

of 3’polyA tails in many ncRNAs results in most of these species being ignored by the 

polydT-primed RT-PCR used in most routine scRNAseq techniques. Conversely, techniques 

that bias capture towards ncRNAs (e.g. RT-PCR primed with random hexamers) are limited 

by the opposite problem, namely that the majority of the PCR products are unwanted 

ribosomal RNAs, which saturate and dominate sequencing reactions, resulting in low depth 

of sequencing reads for detecting and quantifying desired ncRNAs. In theory, combining 

random priming with techniques that deplete unwanted rRNAs before or after RT-PCR could 

enable whole transcriptome assessment and more efficient measurement of ncRNAs at the 

single cell level, as they have in bulk RNAseq. However, protocols to achieve this aim and 

efficiently deplete rRNAs are not yet available. It is also conceivable that that innovation in 

methods for sequencing of nascent RNA molecules will capitalize on existing plate-based or 

oil-immersion approaches to perform nascent identification of RNAs and other molecules in 

singe cells at longer lengths.

Achieving single cell transcriptomic readout of cells is clearly an important advance in 

understanding biology in complex tissues. However, there are two clear limitations that 

need to be acknowledged. Firstly, many studies use cells from surrogate sites, such as 

cerebrospinal fluid or blood, to identify disturbed ncRNA expression. While hypothesis-

generating, this approach most likely only hints at the exact ncRNAs regulating disease 

within affected tissues. Secondly, most immune reactions in complex diseases are spatially 

oriented and dependent on cell-to-cell interactions between cells. Examples include the 

processes occurring in the synovia of patients with rheumatoid arthritis, kidney tissues in 

lupus nephritis or brains of patients affected by neuro-immunological diseases, such as 

multiple sclerosis. Tissue disruption required for single cell methods, such as scRNAseq, 

by intention disrupts this information. This limitation necessitated the development of post-

hoc computational methods, such as CellphoneDB [53], that infer and approximate the 

interactions that might have occurred in vivo in that tissue using existing receptor-ligand pair 

knowledge base. This approach is generally limited and somewhat tangential.

Spatial transcriptomics approaches have overcome some of the limitations of scRNAseq 

by probing tissue-level events and cell-to-cell contacts experimentally but have their own 

limitations. “On-slide” first generation spatial transcriptomic methods showed promise 

in this domain but were generally of low resolution and provided regional, rather than 

single cell, information. One reason for the low resolution is exemplified by the 10X 

Genomics Visium platform [54] that integrates existing scRNAseq approaches to capture 

cellular transcripts by arrays of barcoded mRNA-binding oligonucleotides tiled across glass 

histology slides. Inefficient capture of transcripts from individual cells, physical limitations 

of the number of barcoded oligonucleotides that can be tiled and deadspace between capture 

spots, results in low resolution and loss of spatial information. On the other hand, this 
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approach is suitable for discovery-led approach as the method is not dependent on a 

prior knowledge and will sequence all RNAs captured. Recent improvements in spatial 

transcriptomic methods have pushed the boundaries in this domain. These second-generation 

methods have largely eschewed RNA-capture and sequencing in favor of probe-based 

methods that enable higher resolution of capture. Some of these technologies, such as 

multiplexed error-robust fluorescence in situ hybridization (MERFISH) [55] or the 10X 

Genomics Xenium [56] platform, now enable mapping of transcript expression at even 

sub-cellular resolutions. This depth of resolution holds great promise for revealing how 

expression of ncRNAs in single cells or within sub-cellular compartments of single cells, 

can influence biological processes in individual cells and across tissues. In fact, a recent 

paper combined MERFISH with sub-cellular imaging to show enrichment of ~10,000 

coding and non-coding RNAs in organelles and nuclei within a given cell [57]. The major 

drawback of such second-generation spatial approaches is that they currently rely on limited 

numbers of probes/genes, which requires a priori knowledge of the target transcripts. This 

reduces the ability to make novel discoveries, such as unexpected expression of a ncRNA. 

A second major limitation is that a given cell type may not be represented, or represented at 

a very low frequency, within the plane of the tissue slice selected for probing. Thus, spatial 

transcriptomics are currently especially useful when combined with data from single cell or 

bulk RNAseq approaches (which have their inherent drawbacks, as discussed above) and for 

confirmation of data previously obtained using other methods.

Some of the detection techniques could also shed light on ncRNA function. For example, 

as discussed, one of the mechanisms of function of ncRNAs is RNA-RNA interactions. A 

number of methods currently exist to detect RNA-RNA interactions (Table 2). Briefly, they 

can be classified into low-throughput methods that probe specific individual interactions 

(‘one to one’) or high-throughput methods that identify a compendium of all interactions 

(‘one to many’ or ‘many to many’). Moreover, based on the method, the detected 

interactions can be either directly or indirectly inferred, as delineated in Table 2. RNA-FISH 

(Fluorescent in situ hybridization) [58] is an enhanced resolution low-throughput method 

to study probed RNA-RNA interactions that relies of Förster resonance energy transfer 

(FRET) [59]. Some methods, such as hiCLIP (hybrid and individual-nucleotide resolution 

UV cross-linking and immunoprecipitation) [60], MS2-TRAP (MS2-tagged RNA affinity 

purification) [61] and CLASH (cross-linking, ligation and sequencing of hybrids) [62], 

can be utilized to identify many target RNAs interacting with a previously defined RNA 

molecule of interest. More recent to the field, high-throughput methods, such as RIC-seq 

(RNA in situ conformation sequencing) [63], RNA proximity sequencing, PARIS (psoralen 

analysis of RNA interactions and structures) [64], SPLASH (sequencing of psoralen 

crosslinked, ligated and selected hybrids) [65], Liger-seq (LIGation of interacting RNA 

followed by high-throughput sequencing) [66] and MARIO (Mapping RNA interactome in 

vivo) [67], have been devised to map global RNA-RNA interactions. RIC-seq, in particular, 

has high sensitivity, relatively lower background and better coverage among all available 

high-throughput methods. Nevertheless, the resolution remains low, and advancements 

in the computational dissection and high-resolution visualization of RNA interactions in 
vitro and in vivo is still required. A relatively new method on the market is MERFISH. 

Although ostensibly a spatial transcriptomics solution, the enhanced (sub-cellular) resolution 
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or MERFISH [55,57] enables it to function as a spatial method to probe 100s to 1000s of 

targets and provide a visual confirmation of interactions or co-localization, even amongst 

other labeled molecules. Nonetheless all of these methods, with the exception of RNA-FISH, 

require millions of cells (or tissues) for input, which is a real limitation when studying rare 

cell populations, such as immune cells derived from tissues of patients. Thus, there is an 

unmet need for technology development that can utilize low(er) cell numbers.

Known functions of ncRNAs in immune cells

Among early examples of ncRNAs regulating mammalian immunity was the discovery by 

the Bartel group that miRs regulate mouse hematopoiesis [68]. ncRNAs have since been 

found to be involved in many immunological processes and participate in the development 

and function of both innate and adaptive immune cells and are particularly highly expressed 

in specific cell types. Examples include GAS5, which promotes macrophage and microglial 

polarization [69,70] and inhibits Th17-cell differentiation [71]; lnc-DC, which promotes 

monocyte to dendritic cell differentiation [72]; NeST, which regulates IFN-γ production in 

both Th1 and Natural Killer (NK) cells [73,74]; linc-MAF-4, which guides Th1 specification 

[75]; lincR-Ccr2-5′-AS, which regulates T cell development [76];-ncRNAs that direct CD8+ 

T cell specification [77]; the TAD-associated (topologically-associated domain) enhancer 

lncCSRIgA, which regulates IgA repertoire diversity in B cells [78]; and MALAT1, which 

sponges miR-155 for polarizing dendritic cells and Tregs [79]. Figure 3 shows some of the 

well-characterized ncRNAs associated with specificity for hematopoietic cells at different 

stages of lineage differentiation and maturation and Figure 4 shows some of the molecular 

functions controlled by these. A more comprehensive list of ncRNAs regulating function 

in different immune cell types is shown in Table 3. Although eRNAs and circRNAs 

have, in general, been less studied in immune cells, accumulating evidence indicates that 

both classes of RNA play a critical role in immune responses, particularly in cells of 

the myeloid and lymphoid lineages [3,80]. Some are transcribed especially in response 

to sensing of danger signals, including a number of eRNAs, transcribed from the IL1B, 

SOCS3, TNFSF8, SLC30A4, MARCKS, AZIN1 and ACSL1 loci in myeloid cells activated 

by lipopolysaccharide (via, for example, mitogen activated (MAP) kinase and NF-κB 

signaling)[81,82]. Some of these induce the expression of pro-inflammatory cytokines and 

chemokines, notably IL-1β and CXCL8 [81]. Likewise, in lymphoid cells, regulation of T 

cell receptor (TCR) recombination in both αβ- and γδ-T cell development are dependent 

on eRNAs derived from the TCRA and TCRB gene loci [83,84]. Similarly, expanding 

evidence suggests a diverse role played by circRNAs in regulating the differentiation of 

both adaptive and innate immune cells (circNUP214: Th17 cells; circKcnt2, circTmem241: 
ILC3; circSnx5: DCs; circHIPK3: macrophage) and polarization (M1 and M2 macrophage 

polarization by circCdyl and has_circ_0005, respectively) [85–89].

Broadly, ncRNAs have been described as accessory immunoregulatory nodes in the 

regulation of key processes, including regulation of interferons [90], cellular damage 

resolution [91], inflammasome regulation [92], viral interaction [93], cell growth [94], 

wound-healing [95] and tissue-repair [26]. While much informative work can be done by 

detecting and functionally assessing ncRNAs in sorted cells from non-inflammatory sites, 

such as understanding hematopoietic or immune cell differentiation [76,96], one of the 
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challenges facing the ncRNA field in the context of immunity is that multiple cells work in 

co-operation and are often spatio-temporally organized. As most immunological responses 

are characterized by the interactions of many cell types and/or pathogens acting in tandem, 

experiments directly validating cell-type specific ncRNA expression and function amongst 

multiple cell types and states in the same reaction is limited in the current literature. Single 

cell identification of ncRNAs (as discussed earlier) or microscopic analysis of ncRNAs in 

hematopoiesis, thymic development, lymph nodes or in tissues, such as in spleen or in lungs, 

are largely absent in the literature. This creates a barrier for truly establishing cell-type 

specific roles of specific ncRNAs in most autoimmune and pathogen related datasets, which, 

as discussed, mostly opt for bulk tissue instead of isolated cells.

ncRNAs in immune related diseases

ncRNAs have been experimentally described in several autoimmune diseases, including 

Sjögren’s [97], inflammatory bowel disease (IBD) [98], systemic lupus erythematosus (SLE) 

[99,100], rheumatoid arthritis (RA) [101,102], psoriasis [103], psoriatic arthritis [104], 

uveitis [105,106], Behçet’s [107], multiple sclerosis (MS) [108], lupus nephritis (LN) [109], 

myasthenia gravis [110], autoimmune hemolytic anemia [111], immune thrombocytopenia 

[71] and in other immune-related conditions such as hyperinflammatory lung disease [112], 

and dyskeratosis congenita [113]. Indeed, the role of ncRNAs in human diseases may 

be much broader than currently thought and possibly context-dependent. For example, 

alongside their known roles in immune cell development, eRNAs such as ARIEL (ARID5B-

inducing enhancer associated long noncoding RNA) and eRNA-IFNG are also associated 

with progression of T-cell leukemia in patients with T-ALL and uveitis (Table 3) [114,115]. 

Moreover, some pathogens produce ncRNAs that assist their propagation and/or evasion 

of host immunity, for example Epstein-Barr virus-encoded miRs [116]. Some of these 

studies are, however, primarily based on in silico observations, such as the identification of 

SARS-CoV-2 miRs that are predicted to interact with transcriptional co-activator subunits 

and STAT1 [117], rather than via validation experiments, such as those that are still required 

to detect and test these interactions between SARS-CoV-2 predicted ncRNAs and host cells.

Searching PubMed reveals a plethora of human ncRNAs associated with autoimmune 

diseases, several being associated with multiple diseases including small ncRNAs miR-21, 
miR-146a, miR-155, and lncRNAs NEAT1, GAS5, MEG3, MALAT1, TUG1, PRINS, 
HOTAIR, lnc-DC, hsa_circ_0044235, and circCAMSAP1. These are summarized in Tables 

4–7. Of these autoimmune disease-associated ncRNAs, most are specifically expressed in 

immune cells, implying that they are likely to play a role in the etiology or pathogenesis of 

these diseases [118]. It is possible, of course, that the functions of ncRNAs differ from cell 

to cell (e.g. between T and B cells) or between cell states (e.g. resting vs activated T cells, or 

between Th1 and Th2 cells). Of note are three lncRNAs, NEAT1, GAS5, and MALAT1 that 

demonstrate the diversity of immunoregulatory ncRNA circuits acting amongst cell types in 

autoimmunity. These are further discussed below.
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Nuclear enriched assembly transcript (NEAT1)

NEAT1 is associated with multiple autoimmune diseases (Tables 4, 6–7), as well as some 

human tumors [119] and neurological diseases (Parkinson [120] and Alzheimer [121] 

diseases). In fact, NEAT1 expression is reciprocally correlated with age of onset in female 

patients with MS, and overall NEAT1 expression is higher in the peripheral blood [122]. 

In human SLE, NEAT1 is overexpressed in circulating myeloid cells and is a regulator of 

TLR4-inflamatory pathways and cytokines, such as IL-6 and CXCL10 [99].

NEAT1 is expressed constitutively in many immune and non-immune cells. It directly 

binds active chromatin, suggesting a broad modulatory function on gene expression [28]. 

NEAT1 promotes the activation of the NLRP3 inflammasome, a key component of mature 

IL-1β production [123], in at least dendritic cells, monocytes, and lipopolysaccharide 

(LPS)-activated THP-1 cells [99,124] (Figure 4). Knockdown of NEAT1 suppresses Th17 

polarization by modulation of STAT3-ubiquitination [125,126], which may partially also 

explain why NEAT1 is considered by some as a bridge between STAT3 and histone 3 

lysine 27 acetylation (H3K27Ac) [121]. Collectively, elevated NEAT1 appears to promote 

inflammatory signatures and contribute to autoimmunity. NEAT1 is expressed in many 

cell types and is associated with several diseases, and thus there are shared and distinct 

mechanisms of action amongst cell types in the context of inflammation. Normalizing 

the expression of NEAT1 would be an attractive means of ameliorating some of these 

processes. However, the mechanisms by which NEAT1 is overexpressed, and can therefore 

be normalized, remain less clear.

Growth Arrest Specific 5 (GAS5)

GAS5 is a dynamic, alternatively-spliced, ‘inside-out’ lncRNA (i.e. one that contains 

processed introns that become intermediates for a variety of snoRNAs [126]). It can exert 

effects on gene transcription as a ncRNA decoy of the glucocorticoid receptor (GR) [127], 

or as a miR-sponge for a variety of miRs including miR-495 (32242002) and miR-21 [128]. 

GAS5 is associated with cellular proliferation, metastasis [129–131] and is downregulated in 

many cancers [128,132–134], and associated with multiple autoimmune diseases, including 

rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), 

allergy, inflammatory bowel disease (IBD) and immune thrombocytopenia (IT) (Tables 4, 

6–7). In fact, GAS5 expression in plasma can act as a biomarker of SLE [135]. In PBMCs 

from patients with IT, GAS5 expression is inversely associated with Th17 polarization via 

promoting STAT3 degradation by ubiquitin-mediated proteolysis. This is consistent with 

a direct interaction between GAS5 and STAT3 and miR-21-mediated downregulation of 

GAS5 driving Th17 differentiation [71]. However, others have reported that CD4+ T cells 

from patients with SLE have elevated expression of GAS5, as well as miR-21 [136], 

which suggests that the miR-21-GAS5 relationship may not hold true in every disease. 

GAS5 is also credited as a regulator of Th2 balance via the miR-495:circHIPK3 axis to 

upregulate GATA3 expression and promote allergic rhinitis [137], and as a putative driver of 

demyelination in MS, where it inhibits microglial M2 polarization [70].
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Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1)

Besides cancer, MALAT1 is associated with multiple autoimmune diseases (Tables 4, 

7) and widely expressed amongst immune cells. Expression of MALAT1 is detectable 

by conventional scRNAseq, as it contains a non-canonical 3’ RNAse P cleavage site, 

revealing a polyadenylation signal that directs the long MALAT1 (~7.4kb) cleavage product 

toward nuclear speckles, with the small cleavage product, termed mascRNA (that is a tRNA-

like structure), shuttled to the cytoplasm [138]. Thus, for some ncRNA molecules, like 

MALAT1, this adenylation is positively regulatory, directing the molecule to gain functions, 

whereas adenylation of other ncRNAs, such as rRNA and tRNA influences their degradation 

[139,140]. MALAT1 also has a circularized form termed circ-MALAT1 that is regulated 

by GDF15 to induce tolerogenic DCs by dampening NFκB signaling during allograft heart 

transplantation [141]. In airway epithelial cells (AECs) co-cultured with DCs, MALAT1 
levels are increased and modulate AEC cytokine secretion. Here, MALAT1 inhibition in 

AECs induces proinflammatory cytokines (IL-6, IFN-γ and TNF) and chemokines (CXCR2 

and CXCR4) secreted by the co-cultured DCs and siRNA directed against MALAT1 in 

AECs drives IL-6 secretion [142].

In many contexts, MALAT1 is found to be regulatory. Notably, overexpression of MALAT1 
in dendritic cells induces regulatory T cells by sponging of miR-155 [79]. Likewise, 

MALAT1 is responsible for regulating IL-10 expression by exerting control over expression 

of MAF [143]. Thus, mice with MALAT1 deficiency produce more aggressive responses to 

infections and are protected against experimental leishmaniasis and malaria [143]. This is 

concordant with human asthma, in which reduced MALAT1 expression is associated with 

loss of regulatory and enhanced inflammatory cytokine production [144]. Consistent with 

these observations, reduced MALAT1 expression is observed in activated B and T cells and 

macrophages, and is important for class-switch recombination, Th1 effector function, and 

M1 polarization [79,143,145]. In the experimental autoimmune encephalomyelitis (EAE) 

model, a murine model of human MS, MALAT1 is downregulated in the CNS and the 

magnitude of the change correlates inversely with the degree of inflammatory change [146].

Collectively, it is evident that dysregulated expression of NEAT1, GAS5, and MALAT1 are 

associated with multiple autoimmune diseases. While it is not possible to state definitively 

whether this association is cause or effect, the fact that all three ncRNAs are potent 

regulators of immune function suggests that they play an active role in the pathogenesis 

of these diseases. As ncRNAs commonly demonstrate a range of expression among immune 

cells, they might have shared and unique cell-type specific functions. However, many of 

these potential facets remain unexplored. By further analyzing specific ncRNAs associated 

with autoimmunity and dissecting mechanisms of function in studies of autoimmunity, we 

may be able to further explore common immunopathogenic mechanisms and the dynamic 

range under which various ncRNAs operate.

ncRNAs and Specific Autoimmune Diseases

Autoimmunity, the targeting of self-antigens by host, involves a heterogeneous set of 

processes, that are impacted by a number of cellular mechanisms and extrinsic factors. 

These include cell signaling events [147], soluble factors [148], gene transcription [149], 
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cellular metabolism [150], regional microbiota [151], circadian rhythms [152], and genetic 

polymorphisms [153]. In-depth reviews of autoimmunity can be found elsewhere in the 

literature, for example [154]. According to the current central molecular dogma, all these 

cellular processes are mediated or modified in part by protein-coding (mRNA) and non-

protein coding transcriptional intermediates. Autoimmune-associations with transcriptional 

products have been investigated since at least the 1960s beginning with the detection of 

anti-ribosome autoantibodies [155]. Taking cues from this early work, current studies are 

exploring whether RNA molecules can be useful in the diagnosis of autoimmunity and the 

design of precision therapies.

As of today, many studies have described expression of autoimmune-associated ncRNAs 

using high-throughput techniques (such as microarray and RNAseq) in peripheral blood 

mononuclear cells [101,156], plasma [100], primary immune cell subsets [3,157], tissue 

biopsies [103,109,158], and cultured human cell lines [157]. The accumulating data 

suggest that ncRNAs play important roles in the regulation of pathways contributing to 

autoimmunity and inflammation (Tables 4–7).

Moreover, ncRNAs that are consistently differentially expressed could potentially be used 

as diagnostic or prognostic biomarkers of specific autoimmune diseases, especially as 

some ncRNAs (e.g. circRNAs) are far less susceptible to degradation than others (e.g. 

linear mRNA). Here we review some of the known functions of noncoding ncRNAs in 

specific named autoimmune diseases and their putative functional significance towards the 

pathogenesis of the disease.

Rheumatoid Arthritis (RA)

RA is a systemic autoimmune disease exemplified by inflammation of the synovia leading to 

joint, cartilage and bone erosion [159]. This is a well-studied disease and, not surprisingly, 

miRs have been a major component of the research effort in ncRNAs. A variety of miRs are 

dysregulated in RA and affect expression of target mRNAs encoding cytokines, chemokines, 

and inflammation-related signaling pathways including TLR signaling [160,161]. For 

example, in the plasma of patients with RA, 33 miRs are differentially expressed compared 

to healthy controls, amongst which a single one, miR-9–5p, positively correlates with 

plasma IFN-γ, TNF, IL-17A, IL-4 and CXCL9 levels [162]. A comprehensive review about 

miRs in RA can be found elsewhere [163,164].

Apart from miRs, many lncRNAs have also been suggested as potential biomarkers of 

RA and some have been shown to regulate inflammatory processes and tissue damage 

in both patients and mouse models [165]. These are summarized in Table 4. Owing to 

unbiased high-throughput approaches, the list of disease-associated lncRNAs is growing. For 

example, one study identified upregulation of HOTAIR, together with 83 other lncRNAs, in 

the PBMCs of RA patients, as well as in serum exosomes. Although this was corroborated 

by an independent, targeted study, using qRT-PCR from serum [166], the value of HOTAIR 
as a biomarker of RA remains unestablished [167]. Likewise, microarray screening of 

serum from patients with RA identified 73 up-regulated and 61 down-regulated lncRNAs, 

including LncHIX003209, which correlated with a number of clinical outcomes [168]. A 

follow-up study from the same group confirmed elevated expression of LncHIX003209 
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in both PBMCs and circulating myeloid cells and correlation with parameters of disease 

activity [169]. Further functional assessment identified LncHIX003209 as a facilitator of 

macrophage activation via the TLR4/NF-κB pathway [169]. Specifically, LncHIX003209 
acts as a competing endogenous RNA sponge for miR-6089 [169], a miR that targets 

TLR4 directly to limit IL-6, IL-29, and TNF generation [170]. Although exhibiting some 

promise, the utility of LncHIX003209 as a clinical biomarker remains unknown at present. 

Other studies in RA have taken a more hypothesis-driven approach aimed at testing 

the role of specific lncRNAs in disease. For example, one group reported that lncNTT 
expression is upregulated in PBMCs of RA patients compared to healthy controls and 

regulates differentiation of monocytes to macrophages [171]. This is achieved through 

interaction with the promoter of PBOV1, which is required for maturation and secretion of 

mediators, such as CXCL10, that recruit inflammatory cells [171]. Consequently, a direct 

correlation is observed between lncNTT expression and parameters of disease severity in RA 

[171]. Another study noted abnormal expression of two out of ten hypothesized lncRNAs, 

LOC100652951 and LOC100506036, in T cells of patients with RA and demonstrated some 

correlation with clinical parameters [172]. Although the functionality of these lncRNAs 

were not fully investigated, silencing of LOC100506036 in Jurkat cells was associated with 

decreased IFN-γ expression [172].

With the growing evidence of the importance of circRNAs in immunobiology, attention in 

RA has recently also shifted to this class of ncRNAs (Table 4). More than 500 differentially 

expressed circRNAs have been noted in PBMCs of patients from RA from microarray 

studies, with some (limited) computational prediction of miRs that may be sponged by these 

circRNAs [101]. This approach is limited because no experimental validation of target miRs 

was attempted, and because the methodology, in principle, does not consider the possibility 

that samples from patients and controls could have different cellularities, which may give 

the impression of differential circRNA usage. Other studies taking a more targeted approach 

have assessed individual circRNAs and assessed expression of their target miRs directly. 

For example, Tang et. al., demonstrated increased expression of hsa-circRNA-ciRS-7 in 

PBMCs of patients with RA. In this setting, expression of its target, miR-7 (ciRS-7 has more 

than 70 binding sites for miR-7), was repressed, which correlated inversely with elevated 

mRNA expression of the mammalian target of Rapamycin (mTOR) that harbors miR-7 
binding site in its 3’ UTR [173,174]. A similar targeted approach focused on circNUP214, 

which functions as a competitive endogenous RNA sponging miRs and has previously 

been implicated in Hashimoto thyroiditis [175]. Here, the investigators noted elevated 

expression of circNUP214 in PMBCs from patients with RA, although no correlation could 

be identified between its expression and parameters of disease severity or activity [85]. The 

authors did, however, demonstrate that circNUP214 indirectly induces expression of IL23R 
mRNA (via sponging of miR-125a-3p [176]), which encodes the IL-23 receptor required 

for efficient generation of pathogenic Th17 subsets [85]. Although the direct relevance of 

ciRS-7 and circNUP214 to RA is still only tangentially demonstrated, both studies did 

attempt to make a case for their utility as diagnostic biomarkers. Area under the receptor 

operator characteristic (ROC) curves (AUC) for the expression of these two circRNAs in 

PBMCs to distinguish patients with RA from healthy controls were remarkably similar, 
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0.76 for both [85,174], which represents a moderate diagnostic test. Their utility when used 

together or in combination with other metrics has not been directly tested.

Despite being a systemic autoimmune disease, one could argue that the predominant site 

of inflammation, synovial tissues, may offer greater insights into the roles played by 

ncRNAs in directing inflammation. To our knowledge, there are only a few published 

high-throughput approaches studying ncRNAs in synovium from RA [177–179]. This 

report suggests that expression of activating transcription factor 2 (ATF2) and inflammatory 

cytokines are enhanced at this site and that this transcription factor is targeted for repression 

by miR-204/211, which can in turn be sponged by hsa-circ-0001859 [177]. There are a 

number of key limitations that should be acknowledged in this report. Firstly, this study 

is based on historical expression profiling by array (GSE2053) [180] in which multiple 

samples were pooled from different donors before RNA extraction and expression profiling. 

Thus, the provenance of dysregulated ATF2 expression with respect to donor and cell 

type is not known. Secondly, neither actual expression nor abnormal expression of hsa-
circ-0001859 was demonstrated, so its role in the local pathogenesis of RA is circumspect 

and inferential at best. The insights gained from this publication remain unconfirmed by 

others. However, there are some instances of more targeted, hypothesis-driven studies. 

For example, fibroblast-like synoviocytes derived from patients with RA demonstrate 

decreased expression of circ_0008360, a circRNA that represses synoviocyte proliferation 

and production of inflammatory cytokines, including IL-1β, IL-6, and TNF, attributable to 

sponging of miR-135b-5p, a miR that represses expression of histone deacetylase 4 [181].

Psoriasis

Psoriasis is a chronic inflammatory skin disease with rapid proliferation of skin cells that 

leads to the development of red thick scaly patches on the skin. Similar to other autoimmune 

diseases, psoriasis is mediated by both innate and adaptive arms of the immune system 

[182]. Several studies have investigated the expression of ncRNAs in psoriatic skin (Table 

5).

High throughput and discovery-led methods have identified a number of differentially 

expressed lncRNAs in psoriatic skin compared to healthy control skin. One relatively 

sizeable study performed RNA-seq on 99 lesional psoriatic, 27 uninvolved psoriatic and 

90 normal skin biopsies and identified 1214 differentially expressed lncRNAs between 

normal and lesional psoriatic skin samples. Intriguingly, 505 of these were novel lncRNAs 

[183]. Although the study did not focus on any particular lncRNA, the authors did note that 

26 differentially expressed lncRNAs were from known psoriasis susceptibility regions and 

that 336 of the differentially expressed lncRNAs could be induced or repressed by IL-17 

and TNF, cytokines that play key roles in the pathogenesis of psoriasis [183]. Another 

study found 971 differentially expressed lncRNAs between lesional skin compared to 

normal healthy donor samples and confirmed 4 of these (CYP4Z2P, HINT1, RPSAP58 
and TRHDE-AS1) by qRT-PCR. Like the previous study, a large proportion of these 

lncRNAs were normalized after treatment with anti-TNF therapy, indicating that many 

lncRNAs are responsive to inflammatory signals and may be the effect rather than cause 

of disease [103]. Collectively, these data implicate lncRNAs as both potential mediators 
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of psoriasis and as potential bystanders induced by local cytokines. To help resolve these 

possibilities, a third study analyzed publicly available transcriptomes deposited in the gene 

expression omnibus (GEO) database and constructed a psoriasis-associated lncRNA-miR-

mRNA network based on the hypothesis that lncRNAs act as competitive endogenous 

RNAs for miRs. This intriguing study identified two key lncRNAs, named AL035425.3 and 

PWAR6, that interacted with at least 5 different miRs, were downregulated and hypothesized 

to play a part in a network that may be pathogenic. Although neither of these were 

experimentally validated, the analysis does provide a hypothetical pathogenic and targetable 

node for further exploration in psoriatic skin [184], especially since at least PWAR6 harbors 

binding sites for miR-155, a driver of NLRP3-dependent inflammation in psoriasis [185]. 

Interestingly, another high-throughput analysis of psoriatic lesions (12 patients and 12 

controls) employing a different computational methodology (weighted gene co-expression 

network analysis, WGNA) did not identify either of these lncRNAs as key components of a 

pathogenic causative network, but instead suggested lnc-SPRR2C as a candidate repressing 

miR-300 by sponging, leading to enhanced inflammatory STAT1 and S100A7 signaling 

[186]. Similarly, potential biomarkers of psoriatic arthritis (a variant of psoriasis that also 

affects the joints) have been identified using data analyzed from high-throughput methods 

deployed on PBMCs. Although only 4 subjects with disease were compared to 4 healthy 

subjects by RNA-seq, confirmation by qRT-PCR in a larger test cohort of >90 subjects per 

group suggested that some candidates lncRNAs (lnc-RP11–701H24.7 and lnc-RNU12) were 

upregulated in disease, correlated with clinical parameters and could distinguish patients 

from healthy subjects with moderate accuracy (AUCs of 0.76 and 0.84, respectively) [187]. 

These potential biomarkers have yet to be confirmed in a larger, independent cohort as part 

of a follow-up study.

Hypothesis-led methods have also identified abnormal expression of several lncRNAs in 

psoriatic skin, such as AGXT2L1–2:2 [188], NORAD [189], MEG3 [190], PRINS [191,192] 

and XIST [193] and experimental work has revealed some of their functions (summarized 

in Table 5). For example, MEG3 is downregulated in psoriasis samples compared to 

healthy controls and regulates the proliferation and apoptosis of keratinocytes via binding to 

miR-21, which in turn regulates Caspase 8[190]. Over-expression of MEG3 in keratinocytes, 

on the other hand, suppresses the PI3K-AKT-mTOR pathway and decreases inflammation 

on TNF treatment [194]. It is interesting to note that few of these studies include lncRNAs 

identified in the discovery-led approaches discussed above.

Review articles on the subject are largely in agreement about the disposition and 

diversity of circRNAs in psoriatic skin, indicating that lesional psoriatic skin mostly 

demonstrates repression of expressed circRNAs. This position, however, may reflect a bias 

or tendency to investigate the well-known sponging mechanism of circRNAs (Table 5). 

For example, one (small) study reported that circRNAs are largely depleted, demonstrating 

that circiRS-7, circCAMSAP1, circTRIM35, circTULP4, circARAP2 are all decreased, 

without a correlative change in miRs, in lesional skin compared to paired non-lesional skin 

using RNAseq [195]. The same group subsequently provided additional evidence of this 

phenomenon and demonstrated that ciRS-7 is downregulated and could act as a disease 

biomarker distinguishing psoriasis from atopic dermatitis (AUC of 0.92), a distinction that 

can sometimes be difficult to make using current clinical tools [196]. The same publication, 

Kumar et al. Page 14

J Autoimmun. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



however, also noted that circZRANB1 is actually upregulated and that its performance as a 

biomarker is comparable to that of ciRS-7 (AUC of 0.89) [196]. The top 50 most abundant 

circRNAs annotated in skin of psoriasis patients by these papers [195] were adopted in 

a subsequent publication from an independent group for designing a targeted NanoString 

panel to study circRNAs in lesional skin [197]. As expected, the majority of these were 

found to be repressed in lesional skin and subsequently be normalized following treatment 

with secukinumab (anti-IL-17 antibodies), suggesting that IL-17, a known driver of the 

disease, may be a driver of circRNA repression in psoriasis [197]. Hypothesis-led studies 

also largely follow similar patterns. Notably, circRAB3B has been shown to be repressed 

in psoriatic skin and to regulate PTEN by sponging miR-1228–3p. Thus, low circRAB3B 
expression enhances cell proliferation and migration [198].

Other studies, in contrast, suggest that circRNAs can be both up- and down-regulated in 

psoriatic lesional skin. For example, one publication reported 3016 upregulated and 1940 

downregulated circRNAs in psoriatic lesions compared to healthy control samples, with 

many of these, such as hsa_circ_0061012, predicted to sponge miRs that regulate T cell 

function and development [199]. Additional experiments by the same group demonstrated 

that circOAS3, a psoriatic skin induced circRNA, physically interacts with Hsp70 and 

regulates signaling through the JNK-MAPK, NF-κB and STAT3 pathways to enhance 

proliferation of keratinocytes [200]. In a further follow-up study, the authors of the original 

publication [199], found that one of the circRNAs upregulated in lesional skin, termed 

circEIF5, is an activator of the NF-κB and STAT3 pathways (through undetermined 

mechanisms) and regulates cellular proliferation and chemokine production [201]. Of 

these circRNAs, hsa_circ_0061012 has since been independently verified by others as 

upregulated in psoriatic skin and to regulate proliferation of HaCaT cells, an immortalized 

human keratinocyte cell line, by upregulating GAB2 via sponging of miR-194–5p [202]. 

Meanwhile, two other high-throughput analyses reported differentially expressed circRNAs 

in skin mesenchymal stromal cells (sMSCs) of patients compared to healthy donors 

[203,204]. The first identified 123 upregulated and only 6 downregulated circRNAs in 

sMSCs [203]. One of the downregulated circRNAs labeled chr2:206992521|206994966 
was functionally analyzed and its knockdown in sMSCs found to support enhanced T cell 

proliferation and altered cytokines secretion (higher IL-11 and lower IL-6 and hepatocyte 

growth factor secretion)[203]. In the second study, 129 circRNAs were differentially 

expressed; although it is clear that more circRNAs were up rather than down in terms 

of detected level, the exact number of detected circRNA were not reported [204]. Of 

these, expressions of three circRNAs, hsa_circ_0003689, chr4:121675708|121732604 and 

hsa_circ_0003718, were also elevated in plasma and correlated with clinical severity index 

[204]. The performance of these circRNAs as predictors of disease was not evaluated, nor 

were functional analyses conducted, but a link to the MAPK pathway was computationally 

suggested [204]. A number of circRNAs in serum from psoriatic patients detected by 

microarray are differentially expressed (123 upregulated, 9 nine downregulated) compared to 

healthy donors, of which the topmost induced, hsa_circ_005685, shows some promise as a 

disease biomarker (AUC of 0.853 to distinguish patients over controls) and iss predicted to 

act as a miR sponge [205].
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Psoriasis is a complex disease, with many immune and non-immune cells participating in 

the pathology. The major drawback of the available data is due to their being generated 

from bulk RNA inputs derived from biopsy or blood-derived samples. This means that at 

least some of the highlighted changes in ncRNAs might reflect changes in cellularity rather 

than changes in transcriptional output in cells that express transcripts of interest. What is 

striking from reviewing publications using high-throughput methods is the lack of agreement 

among them. This may represent an inherent problem with the approach (bulk cells instead 

of single cells), differences in populations, sample size or the effects of treatments on 

patients in different cohorts. Part of the disparity in the numbers and identities of circRNAs 

reported in different publications also relates to computational challenges in identifying 

back-spliced circularized RNA species. There is room for computational innovation in this 

area and recent evidence points to novel methods that have been deployed in psoriasis 

to identify additional sets of previously unrecognized differentially expressed circRNAs, 

including those that may act as competitive endogenous RNAs sponging cellular miRs 

[206]. The lack of data on eRNAs is also evident and may reflect similar difficulties in 

correctly identifying eRNA species using simple methods. Coupled with these limitations, 

the paucity of proof-of-concept experiments renders it difficult to assess whether highlighted 

transcripts are abnormally expressed as cause or effect of the disease. These studies, are 

however, hypothesis-generating and are a reasonable starting point for more in-depth studies 

that address causation and mechanism.

Inflammatory Bowel Diseases (IBD)

IBD, including ulcerative colitis and Crohn disease, characteristically causes inflammation 

of the gastrointestinal mucosa. These are another group of diseases in which host genetics 

and cell-intrinsic mediators (e.g. CXCL10 [207]) interact with cell-extrinsic factors, such as 

the microbiome. As a result, there is considerable heterogeneity in these diseases, resulting 

in variable presentation to the clinic. Consensus on the role of the roles of ncRNAs may 

therefore prove to be difficult to achieve in this sphere.

Aberrantly expressed ncRNAs in Crohn disease are of broad groups and including lncRNAs, 

lincRNAs and circRNAs (Table 6). miRs in IBD are reviewed elsewhere [208]. Multiple 

groups have assessed ncRNA expression in mucosal biopsies from patients [209–212] 

and reported dysregulation of a number of lncRNAs. As anticipated, and similar to 

other diseases reviewed in this article, there is generally low agreement amongst studies, 

which may reflect biopsies taken at different sites or differences in cellularity or clinical 

activity between collected samples used in bulk RNAseq. Briefly, one study identified 

329 lncRNAs upregulated and 126 downregulated in colitis using a microarray approach 

on sigmoid colon biopsies [210]. Here, the authors focused on enhanced expression of 

lncRNA BC012900, which could also be induced by treatment of colorectal adenocarcinoma 

cells (HT29) with pro-inflammatory agents, including TNF, IL1-β, LPS, Flagelin or 

CpG oligodeoxynucleotide [210]. The increased expression of BC012900 was positively 

correlated with apoptosis in HT29 cells and could be reversed using siRNA mediated 

knockdown of BC012900 [210]. In another study, lncRNAs KIF9-AS1, linc01272, and 

DIO3OS were found to be differentially expressed in colitis and were suggested as potential 

biomarkers for the disease, with some of them demonstrating reasonable AUCs (generally 
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0.8–0.9) in differentiating patients from healthy controls [212]. In a third study, differentially 

expressed lncRNAs identified in Crohn disease and ulcerative colitis were associated with 

antigen processing and presentation, immune system processes, and NK cell activation 

[209]. Finally, a fourth group identified between ~300–2000 lncRNAs as differentially 

expressed between healthy mucosa and mucosa from patients with uncreative colitis [211], 

amongst which upregulation of NeST, a key regulator of IFN-γ expression, was one of 

the most statistically significant [211]. In blood, targeted approaches (e.g., qRT-PCR) have 

identified downregulated lncMIRT2, which regulates IL-22 production and apoptosis of 

colonic epithelial cells [213], and upregulated DQ786243, a driver of CREB and FOXP3 

expression, in patients with IBD [214]. Perhaps importantly, elevated expression of the 

lncRNA THRIL in serum has very high predictive power for distinguishing patients with 

IBD from healthy individuals (AUC 1.0) [215]. The interested reader is directed to a number 

of review articles for a more in-depth discussion of the association between many lncRNAs 

and IBD [98,216].

Relatively less is known about the role of other ncRNAs in IBD. CircRNAs are no 

exception in this regard. Although circRNAs are known to play an important role in 

epithelial cell function in the bowels [217,218] and to immune cell function more 

generally, little is known about their role in inflammatory bowel diseases. In colonic 

tissues, circCDKN2B-AS1 has been reported to be downregulated, and to be a negative 

regulator of colonic epithelial cell proliferation [219]. In blood, a study of PBMCs from 

Crohn disease identified 155 upregulated and 229 downregulated circRNAs, amongst 

which circRNA_0004662 was predicted to sponge mTOR pathway-related miR [220], 

hinting at dynamic regulation of cellular immunometabolism. The same group proposed 

another circRNA, named circRNA_103765, as a candidate biomarker of IBD. Although 

circRNA_103765 was not a strong biomarker (AUC 0.65–0.7), this circRNA was induced 

by TNF and normalized after therapy with anti-TNF drugs. Functional experiments indicated 

that circRNA_103765 functions to protect epithelial cells from TNF-associated apoptosis, 

possibly through sponging of members of the miR-30 family, which negatively regulate 

expression of delta-like ligand 4 [221]. In other studies, expression of another circRNA, 

circRNA_103516, in PBMC has been shown to be elevated in patients and to correlate with 

disease severity [222] however the utility of this circRNA as a single biomarker appears 

to be modest (AUC between 0.6 and 0.79). To our knowledge, eRNAs have not been the 

subject of intense study in IBD, potentially for the same reasons as their understudy in other 

diseases, namely difficulties in correctly identifying eRNA species using simple methods.

Multiple Sclerosis (MS)

Multiple sclerosis is an inflammatory immune-mediated demyelinating disease of the central 

nervous system. Inflammation and the loss of myelin disrupt neural signal conduction and 

lead to a broad spectrum of mild to severe relapsing-remitting and/or progressive symptoms 

including pain, motor impairment, cognitive deficit and sensory disturbances [223]. Many 

miRs are associated with MS, and these are reviewed elsewhere [224]. Of the long ncRNAs, 

the existing data is currently light on mechanistic insights as most published articles have 

sought to identify lncRNAs that are surrogates or biomarkers of disease occurring in the 

central nervous system (CNS), a site that is difficult to access routinely in live humans. The 
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lack of concerted follow-up or overlapping publications from different groups also makes 

it difficult to obtain consensus on the disposition of ncRNAs in MS. The main findings are 

summarized in Table 7.

Genomic variants in several lncRNAs including GAS5, MALAT1, HOTAIR and ANRIL 
are associated with MS [225–230] with several other susceptibility loci close to or within 

lncRNA-encoding regions [231]. Although it is known that GAS5 can inhibit microglial M2 

polarization and exacerbate myelin loss in EAE [70], the mechanisms of these associations 

remain largely unknown. In the serum, initial studies reported that lncTUG1, NEAT1 
and RN7SK (7SK small nuclear RNA) [232], plus MALAT1 and lnc-DC [233], are 

upregulated in MS patients. The ability of these lncRNAs as biomarkers of disease were 

either not reported, or in the case of MALAT1 and lnc-DC they had modest performance 

(AUC ~0.65 alone and 0.75 in combination) [233]. There is, however, some biological 

plausibility to the functional relevance of MALAT1 in MS as this lncRNA is a regulator 

of gene splicing and backsplicing events, including those of MS-associated genes [234]. 

Microarrays conducted on PBMCs have revealed 2353 upregulated and 389 downregulated 

lncRNAs in patients with MS and enrichment of these in pathways including tight junctions, 

regulation of axon guidance, axon guidance receptor activity, and regulation of endothelial 

cell chemotaxis [235]. Separately, RNAseq of PBMCs using a discovery and validation 

cohort of patients identified four novel lncRNAs that might potentially serve as biomarkers 

for the disease [236]. However, the strength of these lncRNAs as biomarkers is still not 

established and their functional relevance to MS, if any, remains unknown. The associations 

of transcriptional profiles derived from blood with MS is certainly interesting as these cells 

are remote from the site of CNS injury. One method to systematically classify peripheral 

blood transcriptional changes involves creation of an MS-associated competing endogenous 

RNA network, in which lncRNAs are considered as central hubs. Such a network was 

constructed by Ding et al., who identified three discrete lncRNAs, XIST, OIP5-AS1, and 

CTB-89H12.4 as hub lncRNAs. Of these, XIST was proposed as part of an XIST-miR-326-

HNRNPA1 regulatory module that could be pharmacologically targeted [237]. Interestingly, 

another method to computationally delineate an MS-associated competing endogenous RNA 

network by weighted gene co-expression network analysis (WGCNA) identified none of 

these as a key node and instead focused on FAM13A-AS1 as the central hub [238]. 

Unfortunately, the validity and utility of the insights from either analysis have not yet been 

tested.

Hypothesis-driven studies using qRT-PCR have identified that lncRNA-PVT1, FAS-AS1 and 

MEG3 expression are downregulated and THRIL, NEAT1, lncTUG1, PANDA, lncGAS8, 

GAS8-AS1 and PINK1-AS expression are upregulated in PBMCs from MS patients 

compared to healthy controls [122,239–242]. Likewise, APOA1-AS and IFNG-AS1 are 

elevated in PBMCs, especially during relapses [243]. Because the number of subjects in 

many of these studies are small and there is heterogeneity in severity, disease stage and 

treatment, it is not surprising that opposing results for some have also been reported. For 

example, others have reported that IFNG-AS1, MALAT1, ANRIL, lncTUG1 and XIST are 

actually repressed in PBMCs of patients with MS [244,245]. Furthermore, despite these 

associations, almost no functional experiments have been conducted to help substantiate a 

plausible biological link. One exception is the case of LncDDIT4, which is more highly 
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expressed in PBMCs and CD4+ T cells of patients and acts to promote DDIT4 mRNA in cis, 

thus enhancing differentiation of naïve CD4+ T cells to Th17 cells [246]. Similarly, another 

group identified enhanced expression of linc-MAF-4 in patients with MS and, in a series 

of functional experiments, showed that linc-MAF-4 regulates MAF expression to promote 

encephalitogenic Th1 responses [75].

Comparatively fewer data exist with respect to other forms of ncRNAs. Some studies 

have described a broad distribution of differentially expressed circRNAs in PBMC 

samples of patients with MS [247–249], including downregulated circRNAs originated 

from ANXA2 (circ_0005402 and circ_0035560) as putative markers of disease [247] and 

circRNA species that potentially sponge interacting miRs [248,249]. Some differentially 

expressed circRNAs in blood are detectable within extracellular vesicles [250]. Another 

study examining exosomes isolated from the cerebrospinal fluid of patients with immune-

mediated demyelinating disease (MS and Guillain-Barré syndrome) agreed with broadly 

dysregulated circRNA dynamics (2364 upregulated and 2730 downregulated), suggesting 

that exo-hsa_circ_0087862 and exo-hsa_circ_0012077 in CSF can function as diagnostic 

biomarkers for immune-mediated demyelinating diseases [251]. Both these circRNAs 

performed admirably to distinguish patients from controls (AUCs of 1.0 for both when 

used alone), although it has to be acknowledged that this was a very small study (n=5 

patients and controls each) that has not yet been validated in an independent cohort [251]. A 

recent report indicates the increased expression of circ_0000518 at multiple sites, including 

PBMCs and CSF, of patients with MS [252]. Here, experimental work in microglial cell 

lines showed that knockdown of this circRNA increased M1 and decreased M2 phenotype 

[252]. Mechanistically, circ_000518 interacted with the RNA Binding Protein FUS and 

its knockdown decreased immune cell infiltration in the CNS of mice with EAE [252]. 

A significant development in obtaining mechanistic insights into the roles of circRNAs 

in MS was recently published. Here, the authors showed that circINPP4B is upregulated 

in the peripheral blood CD4+ T cells of EAE and that it positively correlates with the 

clinical score [253]. Knockdown of circINPP4B ameliorated clinical severity and decreased 

Th17 cells in vivo and decreased Th17 differentiation in vitro. Mechanistically, circINPP4B 
sponged miR-30a, although the targets of miR-30a were not elucidated. Finally, the authors 

showed upregulation of circINPP4B in peripheral blood lymphocytes of 18 patients with MS 

compared to 20 healthy controls [253]. Little is currently known about the disposition of 

enhancer RNAs in MS.

To summarize, there is a broad collection of dysregulated ncRNAs detected in many 

autoimmune diseases (Tables 4–7). In most autoimmune workflows, the activities, functions, 

and utility of many of these ncRNAs remain mostly unknown. There are also many 

other caveats to these studies, such as the collection of plasma, bulk tissue or circulating 

PBMCs in lieu of affected tissue or single cells. Consistency is lacking, biased by detection 

techniques, sample handling, and or biological variability in human samples amongst 

diverse genomic backgrounds. Nevertheless, emerging studies have genuinely expanded the 

mechanism of pathogenesis of these various autoimmune diseases and are beginning to show 

how ncRNAs underpin some of the basic molecular mechanisms of autoimmunity.
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Exploiting ncRNAs as diagnostic and therapeutic targets

The study of ncRNAs may offer three potential benefits. Firstly, strong associations between 

disease and a given ncRNA or sets of ncRNAs could point to clinical utility as biomarkers 

for diagnostic or prognostic purposes. Autoimmunity, especially if sub-clinical, can be 

difficult to diagnose in patients and to track. Biomarkers for diagnosis, especially early 

disease detection, and disease activity represent some of the unmet needs in this domain. 

The accumulating evidence suggests that most autoimmune diseases are associated with 

abnormal expression of at least some ncRNAs in accessible sites. Indeed, most human 

tissues and fluids, such as peripheral blood, plasma, cerebrospinal fluid, vitreous and 

aqueous humors, saliva, urine, nasal washes, tears, sperm, synovial fluid, vomitus, skin, 

biliary brushings, feces, cerumen, amniotic fluid, and sputum contain ncRNA signatures 

and can be sampled. Secondly, a strong association between transcriptional products and 

a given ailment can form the basis for a more detailed mechanistic understanding of the 

basic processes of disease. This supposition is likely to depend on precise delineation 

of the site of expression, the cells in which expression occurs and how expression is 

switched on and off. Finally, greater understanding of how a transcriptional product relates 

to disease opens the possibility for therapeutic intervention, either by directly targeting the 

RNA species of interest, a key node in its regulatory pathway or its mechanism of action. 

RNA is amenable to the design of discretely targeted therapies, using antisense and related 

technologies targeted toward the exact RNA of interest. For example, antagonizing miR 

activity can be accomplished with antisense oligonucleotides to decrease active levels of 

mature miRs or overexpression of miR sponges (synthetically designed or native), or miR 

activity can be enhanced using miR mimics. Silencing of long ncRNAs can be achieved with 

antisense (e.g siRNA, shRNA [254]) or CRISPR technologies (e.g. CRISPR-Cas13 [255]) 

and disruption of context-specific promoter-associated ncRNAs to modulate gene activation 

or silencing. Some ncRNAs are candidates for targeted therapies, such as anti- miR-21, 
MALAT1, MEG3, GAS5, and NEAT1. Expression of these molecules can theoretically be 

normalized or modulated, however delivery of the intervention to the correct cellular and 

sub-cellular compartment is likely to be key [256]. Indeed, delivery is the major limiting 

factor given most tissues are composed of orthogonally stacked cells that form intricate 

layers. It is likely that a technological evolution will be needed for the optimal delivery of 

anti-RNA or RNA-decoy lncRNAs to specific subsets of cells. Care must be taken not to 

alter putatively healthy cells, and to limit off-target behaviors. Some tissues lend themselves 

to particular routes of local administration, such as lungs (inhaled delivery), skin (topical 

delivery), eyes (eyedrops and topical ointments) and joints (direct injection), but off-target 

effects on “healthy” cells in these tissues is a real possibility. Other tissues will most likely 

require development of novel delivery methods.

There are some clear limitations with respect to the current state of the field that should 

be acknowledged. Most of the studies reviewed here are limited by small sample size and 

geographically isolated populations (most are of European descent). Markers associated with 

disease in such small studies need first to be confirmed in larger, more heterogeneous 

populations. Second, poor reproducibility across different studies could indicate either 

differences in cellularity of samples, or in the case of RNAs that track with disease activity, 
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differences in disease activity/stage at the time of sampling and/or computational challenges. 

Processing of samples before capture of ncRNAs should also be standardized, given that 

sample handling and experimental isolation and necrosis of material can alter the expression 

of RNA and possibly result in a thanatotranscriptome [257].

Concluding Remarks

As this collection of studies demonstrates, ncRNAs are dynamically associated with and/or 

regulate a plethora of autoimmune diseases. High-throughput methods reveal a complex 

network of tissue-level and disease associations. Implementation of single cell methods 

and advances in spatial transcriptomics are enabling finer molecular dissection of the roles 

of ncRNAs within individual organelles, individual cells and within tissues as a whole. 

Rigorous computational network modeling is most likely needed to accurately quantify 

ncRNAs and correlate respective datasets with one another, given the propensity for 

autoimmune diseases to share common and unique signatures. An in silico machine learning 

approach of all data may well also define unbiased novel ncRNA regulator associations 

with immune cell function, which can then be experimentally validated. The curation of 

larger datasets is critical as part of this endeavor. It is possible, of course, that some 

ncRNAs may be patient-specific and dependent on individual genetics, so coupling of 

transcriptomes to patient-specific genomes will probably be an important resource in linking 

ncRNAs to disease across populations. Likewise, ncRNA studies should be performed in 

the context of mRNAs, proteins, lipids, organelles and other omics and functional assays, 

establishing gene-set relationships that are integrated between the library of all available 

molecules. The majority of studies have focused on highly detected ncRNA molecules. It 

is likely that low expressed, or harder to detect ncRNAs, such as NeST (reported as one 

ncRNA molecule per IFNG allele in some conditions) [73], and their subtle differences in 

expression, are likely critical for properly assessing the regulatory nature of all ncRNAs in 

the context of immunological function and disease. Nevertheless, by using and regularly 

curating community-driven ncRNA resources, it is reasonable to be confident that future 

studies will directly test and find novelty in many of these hypotheses. Finally, because 

there are too many ncRNAs with unknown function and/or importance to disease, screening 

of ncRNAs, for example using a CRISPR library or RNAi, may help to uncover potential 

functions.
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Highlights

Precise regulation over transcriptional output is key for appropriate immune function

ncRNAs represent the majority of cellular RNAs and perform indispensable functions

ncRNAs act as biomarkers of autoimmune diseases and are therapeutic targets

We review novel methods for their detection and known roles in autoimmunity
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Figure 1. Types of non-coding RNAs and schematic of Circular (circRNAs) and enhancer 
(eRNAs) RNAs.
A, Small ncRNAs. B, Long ncRNAs. In B, coding exons are denoted as blue boxes. C, pre-

mRNA (above) can be spliced in a linear fashion to generate mRNA (below left) or undergo 

back-splicing to generate circRNA (below right). D, conventional enhancers participate in 

DNA looping bringing transcription factors (TF) and polymerase II (Pol II) together with 

gene promoters to enhance gene transcription. E, some enhancers are themselves transcribed 

to non-coding RNAs (called eRNAs) that participate in loop formation to enhance gene 

transcription. For simplicity, loop formation has not been depicted in the cartoon in E. 

miR, micro-RNA; tsRNA, tRNA-derived small RNA (5’-tiRNA/3’-tiRNA, stress induced 

tRNA-derived RNAs from 5’ or 3’ ends of tRNA; 2-tRF, anti-codon loop cleaved by 

unknown ribonuclease; 1-tRF, generated by RNase Z in the 3’ trailer of tRNA); piRNA, 

piwi-interacting RNA, snoRNA, small nucleolar RNAs; lncRNA, linear long non-coding 

RNA; lincRNA, long intergenic non-coding RNA (lncRNAs that do not overlap with 

protein-coding genes); eRNA, enhancer RNA; circRNA, circular RNA.

Kumar et al. Page 47

J Autoimmun. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Common mechanisms of action by which ncRNAs regulate cellular function.
Shown in A-E are examples of how ncRNAs regulate cellular function, with exemplar genes 

included. A, activation of gene transcription. A common mechanism is physical interactions 

that facilitate recruitment of the transcriptional machinery to the promotors of target genes to 

enhance transcription. B, inhibition of gene transcription. Here, lncRNAs can act as decoys 

and bind to transcription factors to alter their recruitment or that of polymerase II to the 

promoter, resulting in transcriptional suppression. C, enhancement of gene transcription. 

eRNAs transcribed from enhancer elements commonly function to stabilize enhancer-

promoter interactions via DNA looping and recruit transcription factors and polymerase 

II. D, chromatin remodeling. ncRNAs, for example lncRNAs, can interact with chromatin 

remodeling complex proteins, such as EZH2 and PRC2 (promoting polycomb repressor 

complexes), modulating histone modification and thereby gene expression. E, competing 

endogenous RNAs. Some ncRNAs, such as lncRNAs and circRNAs can act as sponges for 

miRs, thereby modulating the degradation of mRNAs that are the cognate targets of those 

miRs. F, many of these mechanisms can converge to regulate biological pathways in cells. 

Shown are just some of the cellular processes implicated in the pathogenesis of autoimmune 

diseases and how ncRNAs could impact pro- and anti-inflammatory gene expression 
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programs in those pathways. TLR, Toll Like Receptor; PKR, Protein Kinase RNA; AKT, 

Protein Kinase B; NFκB, Nuclear Factor kappa-light-chain-enhancer of activated B cells; 

STAT, Signal Transducer and Activator of Transcription; MAPK, Mitogen-Activated Protein 

Kinase; JAK, Janus Kinase.
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Figure 3. Well-characterized ncRNAs associated with specific hematopoietic lineage cells.
Expression of labeled ncRNAs in different immune cell-types are marked. Arrows indicate 

expression of ncRNAs in cells: up-arrow, ncRNA upregulated; down-arrow, ncRNA 

downregulated. Colors represent functions of the indicated ncRNA: blue, impairs cell 

differentiation and/or function; red, induces cell differentiation and/or function; black, 

inconclusive effect on differentiation and/or function.
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Figure 4. Immune cell ncRNA regulatory circuits.
Examples of known effects of ncRNAs in diverse myeloid and lymphoid cell types. Putative 

mechanism of regulation is shown for each cell type indicated. Details of these mechanisms 

(and those of other ncRNAs) are included in Table 3. CSR, class switch recombination; 

LPS, lipopolysaccharide; Infl., inflammasome; LSD1, lysine-specific demethylase 1; EZH2, 

enhancer of zeste homolog 2; WDR, tryptophan-aspartic (WD) repeat subunits; Diff., 

differentiation.
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