Skip to main content
. 2023 Jan 26;10:1052923. doi: 10.3389/fmed.2023.1052923

TABLE 4.

Comparison of multiple machine learning methods using fusion features.

Cross-validation Feature ML method AUROC Sn Sp Acc Mcc
10-fold cross-validation Fusion SVM 0.67 0.51 0.80 0.66 0.34
Fusion LightGBM 0.92 0.85 0.85 0.85 0.70
Fusion DT 0.80 0.83 0.77 0.80 0.60
Fusion LR 0.82 0.74 0.77 0.76 0.52
Fusion RF 0.93 0.86 0.84 0.85 0.70
Independent set validation Fusion SVM 0.74 0.61 0.78 0.70 0.40
Fusion LightGBM 0.97 0.92 0.91 0.91 0.83
Fusion DT 0.94 0.94 0.84 0.89 0.78
Fusion LR 0.89 0.80 0.84 0.82 0.64
Fusion RF 0.98 0.94 0.94 0.94 0.88

Best performance metrics are shown in bold.