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Abstract
Since the last decade, carbon nanomaterials have had a notable impact on different fields such as bioimaging, drug delivery, 
artificial tissue engineering, and biosensors. This is due to their good compatibility toward a wide range of chemical to 
biological molecules, low toxicity, and tunable properties. Especially for biosensor technology, the characteristic features 
of each dimensionality of carbon-based materials may influence the performance and viability of their use. Surface area, 
porous network, hybridization, functionalization, synthesis route, the combination of dimensionalities, purity levels, and 
the mechanisms underlying carbon nanomaterial interactions influence their applications in bioanalytical chemistry. Efforts 
are being made to fully understand how nanomaterials can influence biological interactions, to develop commercially viable 
biosensors, and to gain knowledge on the biomolecular processes associated with carbon. Here, we present a comprehensive 
review highlighting the characteristic features of the dimensionality of carbon-based materials in biosensing.
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Abbreviations
0D  Zero-dimensional
1D  One-dimensional
2D  Two-dimensional
3D  Three-dimensional
AuNC  Gold nanocages
BOD  Bilirubin oxidase
BSA  Bovine serum albumin
CDs  Carbon dots
CNDs  Carbon nanodiamonds
CNFs  Carbon nanofiber
CNHs  Nanohorns
CNTs  Carbon nanotubes
COVID-19  New coronavirus disease
CQD  Carbon quantum dots
CSCNTs  Cup-stacked carbon nanotubes

CVD  Chemical vapor deposition
DA  Dopamine
DNA  Deoxyribonucleic acid
Dox  Doxorubicin
ds-DNA  Double-stranded DNA
FCF  Flexible carbon fibers
FEG-SEM  Field emission–scanning electron 

microscope
FET  Field-effect transistor
fM  Femtogram
GFET  Graphene field effect transistor
GO  Graphite oxide
GOx  Glucose oxidase
GQD  Graphene quantum dots
Gr  Graphene
HA  Hyaluronic acid
HRP  Horseradish peroxidase
IgG  Immunoglobulin G
ITO  Indium tin oxide
Lamp  Loop-mediated isothermal amplification
LB  Langmuir–Blodgett technique
LbL  Layer-by-layer technique
lncRNA  Non-coding RNA
LOD  Limit of detection
miRNA  MicroRNA
MWCNTs  Multiwalled carbon nanotubes
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MvBOD  Myrothecium verrucaria BOD
NIR  Near-infrared spectroscopy
OCP  Open circuit potential
OGB  Oxidated graphene bilayer
ORR  Oxygen reduction reaction
PEI  Polyethyleneimine
PL  Photoluminescence
pM  Picogram
PNR  Poly-neutral red
POC  Point-of-care testing device
QD  Quantum dots
RBD  Receptor-binding domain
rGO  Reduced graphene oxide
RNA  Ribonucleic acid
RT-PCR  Reverse transcription polymerase chain 

reaction
SEM  Scanning electron microscope
ss-DNA  Single-stranded DNA
SWNTs  Single-walled carbon nanotubes
TCVD  Monolayer graphene-based three-component 

vertically designed device
UV  Ultraviolet
WOR  Water oxidation reaction
XA-NSEC  X-ray absorption 

nanospectroelectrochemistry
XAS  X-ray absorption spectroelectrochemistry
XPS  X-ray photoelectron spectroscopy

Introduction

Diagnostic technologies represent one of the market’s top 
sectors, especially because around 70% of medical choices 
are supported by diagnostic devices [1]. Depending on the 
application, biosensors can be constructed using proteins, 
whole cells, aptamers, RNA, or DNA [2, 3]. Due to these 
broad capabilities, carbon-based material usage in bio-
sensors is established as successful, as seen in academic 
research and commercial products [3–5]. In particular, 
carbon-based materials can be used for the electrochemical 
detection of various analytes due to their distinctive electro-
chemical characteristics, including a broad potential win-
dow, low cost, and a negligibly small background current 
[6]. Additionally, the biocompatibility of carbon materials 
has completely transformed their potential application [7].

Carbon can form long chains of atoms, consequently 
exhibiting the phenomenon of polymerization. Despite 
having the same chemical composition, carbon atoms pos-
sess an electronic structure and atomic size that enable them 
to display various physical structures and distinct physical 
attributes; further, the fundamental standard for categoriz-
ing nanomaterials (Fig. 1) is the geometrical structure of 
the particles [6, 8]. The particles may include spheres and 

ellipsoids (presented as fullerene structures), carbon nano-
tubes (CNTs), and nanohorns (CNHs). Allotropes of carbon, 
such CNTs, graphene, fullerene, carbon dots (CDs), and car-
bon nanodiamonds (CNDs), are typically used in biosensing 
applications. Commonly, the dimensionality is classified as 
follows [9]: (i) zero-dimensional (0D)—including graphene 
quantum dots (GQD), fullerenes, and carbon quantum dots 
(CQD); (ii) one-dimensional (1D)—CNTs, single-walled 
carbon nanotubes (SWNTs), multiwalled carbon nanotubes 
(MWCNTs), or cup-stacked carbon nanotubes (CSCNTs); 
(iii) two-dimensional (2D)—graphite and graphene; (iv) 
three-dimensional (3D)—carbon nanofibers (CNFs), carbon 
sponges felt, and a myriad of composites [10]. The 2D and 
1D nanomaterials are gaining popularity, laying the ground-
work for a profound revolution in the flexible electronics/
sensors sector [11]. Functionalization [6] and immobiliza-
tion of biomolecules [3] are common for preparing carbon-
based materials for biosensing/sensing purposes.

Carbon nanotechnology has already had a notable impact 
on different fields, such as energy storage [12], catalyst 
[13], energy conversion [14], electromagnetic shielding 
[15], bioimaging [16], drug delivery [17], artificial tissue 
engineering, DNA sequencing [7], and biosensors [18–23]. 
Efforts are underway to understand how nanomaterials can 
influence biological interactions [24]; further, to develop an 
appropriate sensor platform, integrated knowledge about 
carbon structure and biomolecular events is necessary. The 
use of carbon-based nanomaterials in biosensing is very 
versatile to create distinct biosensor platforms [16, 25–28], 
and relies on the enhanced signal and/or the immobiliza-
tion of the target analyte and bioreceptor [29]. For example, 
biomolecule immobilization together with carbon-based 
nanomaterials can be obtained in undemanding experimen-
tal setups by using nanostructured films, for example, via 

Fig. 1  Examples of 0D, 1D, 2D, and 3D carbon-based nanomaterials
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the layer-by-layer (LbL) and Langmuir–Blodgett (LB) tech-
niques, providing new biosensor nanoarchitectures [30–34]. 
Those architectures can be diverse and provide different 
types of sensing platforms depending on the application 
[6]. However, new biosensor platforms can be designed and 
chosen according to the dimensionality and structural char-
acteristics of carbon nanomaterials, which encouraged us 
to write the present review article. Here, we highlight the 
characteristic features of dimensionality of carbon-based 
materials in biosensing, with a focus on the literature of the 
last years.

0D carbon nanomaterials

The most explored examples of 0D carbon nanomateri-
als are quantum dots, either in the form of CQD or GQD, 
fullerenes, and nanodiamonds [16, 35]. GQD is considered 
a small piece of graphene with a length of less than 100 nm; 
ideally, for GQDs, a length of less than 30 nm is considered 
a practical benchmark size that greatly enhances quantum 
confinement effects [36]. An intrinsic characteristic of quan-
tum dots is that they possess an optical absorption peak in 
the UV region relative to the π–π* transition, relative to the 
 sp2 hybridization. The electronic spectroscopy characteris-
tics of QDs are greatly influenced by the presence of doping 
elements, often nitrogen, phosphorus, and sulfur; defects, 
such as the alterations of C = O bonds; or surface function-
alization, which lead to additional n–π* transitions; addition-
ally, some photoluminescence (PL) mechanistic–associated 
pathways are being under discussion [37].

A great extent of QD usage relies on their PL proper-
ties; GQDs showing a higher emission yield than CQDs, yet 
often still low, with the emission wavelength being greatly 
dependent on the particle size, amount of defects, function-
alization types, or doping concentration, renders GQDs 
highly versatile and amenable for light emission tunability 
through bandgap engineering strategies, as represented in 
Fig. 2(A) [38]. The same is noticed for electroluminescence, 
in which the fluorescence emission results from the quantum 
confinement of  sp2 domains and is modulated through  sp3 
defects and doping elements [39]. In GQDs, it is known that 
the surface functionalization associated with the delocaliza-
tion of electrons and holes affects the recombination of elec-
tron–hole pairs, leading to enhanced photoemission due to 
decreased graphene symmetry [40]. When graphene is used 
in the form of GQDs, a particular practical case occurs if the 
material is highly oxidated, often named as graphene oxide 
quantum dot, with distinct spectral features and implications 
for QD–solvent interactions [41].

The synthetic strategies include the arc discharge of 
graphite, laser ablation, and electrochemical oxidation as 
top–down examples, and CVD, micro/nanoemulsion, micro-
wave irradiation, and hydrothermal protocols as bottom–up 

examples [39]. More recently, biological and green routes 
have also been explored [42]. The commonplace balance of 
top–down versus bottom–up approaches certainly applies 
here, with the former group of methodologies requiring dis-
pendious facilities and instrumentation while enabling the 
rapid production of nanoparticles and allowing usage of less 
noble carbon sources as precursors, at the cost of limited size 
control. The latter requires less expensive instrumentation 
but often lengthy protocols, with the advantage of the con-
trollable products’ size, doping level, and overall properties, 
especially via the cautious selection of carbon precursors.

The surfaces of both CQDs and GQDs can be function-
alized through a myriad of strategies, either simple phys-
isorption or via exploring reactions, such as amide coupling, 
coupling streptavidin–biotin for affinity binding [43], and 
even click-chemistry [44]. Zero-dimensional carbon nano-
materials have a wide range of applications in bioanalysis 
literature, especially driven by the thrilling advances in liq-
uid biopsy and point of care [45, 46], owing to their pho-
toluminescence and electroluminescence properties, which 
makes these materials unique compared to 2D or 3D carbon 
nanomaterials, or via electrochemical approaches. Addi-
tionally, readers can find examples and future expectations 
concerning the use of 0D carbon nanomaterials in recent 
reviews [16, 47]. Here, some frontier applications associ-
ated with biosensing and bioimaging are highlighted as they 
represent some of the major advances in using CQDs and 
GQDs for bioanalysis.

The optical features of both CQDs and GQDs show excit-
ing versatility for their practical usage, as the wavelength of 
their maximum photoluminescence can be easily tuned via 
the introduction of distinct groups at the edges of the mate-
rial and modulating the bandgap and producing redshifts of 
up to 200 nm either by inducing the formation of an addi-
tional π character or by creating n-orbitals to the structure, 
as exemplified (Fig. 2(A)) [38].

In electrochemistry-based biosensors, the use of CQDs 
has found success in improving the early detection of bio-
markers for life-threatening conditions, such as myocar-
dial infarction and heart failure, which are often detected 
or monitored through biomarkers such as troponin-I and 
troponin-T, creatine kinase, and myoglobin. A screen-
printed electrode decorated with graphene quantum dots 
and gold nanoparticles, followed by anti-cardiac troponin-I, 
was recently developed [50]. The electrochemical analyses 
were performed using human serum, providing quantitative 
results in ca. 10 min with square-wave voltammetry, until 
concentrations as low as 0.5 pg  mL−1. In a similar context, 
a study explored the photoelectrochemical sensing of tro-
ponin-I using a modified electrode capable of generating a 
large variation in photocurrent and charge-transfer imped-
ance via antigen–antibody interactions [51]. Zinc stannate 
 (Zn2SnO4) cubes were deposited onto an indium–tin oxide 
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(ITO) glass conducting electrode, followed by subsequent 
modification with N,S-GQDs and CdS, employed to co-
sensitize the cubic particles, narrow down the bandgap, 
and enhance the photoelectric properties of zinc stannate. 
Using this approach, troponin-I concentrations as low as 
0.3 pg  mL−1 were detected in serum.

In electrochemical experiments, it is very important to 
consider the complexity of the samples, which frequently 
translates to the requirement of the anti-fouling ability of 
the biosensor surface. As an example, a research engen-
dered a sensing platform comprising of vertically ordered 
mesoporous silica–nanochannel film, with channels < 5 nm 
in size perpendicular to the underlying gold electrode, 
resulting in an anti-biofouling ability [48]. The nanochannel 
platform was modified with OH– and  NH2–GQDs through 
electrophoresis, as shown in Fig. 2(B), to act as a recogni-
tion element or signal amplifier. Their GQD-based platform 
enabled the detection of  Hg2+,  Cd2+,  Cu2+, and dopamine 
through differential pulse voltammetry in complex samples 
such as seafood, soil-leaching mixtures, and serum, achiev-
ing quantification in the pM to nM range. This approach 
complements the widely reported sensing of heavy metals 
due to their affinity to functionalized GQDs (affinities of 
HO-GQDs for  Hg2+ and  Cd2+ for  H2N-GQDs), therefore 
inducing a fluorescence quenching optical effect; in com-
plex samples, however, the selectivity of these photolumi-
nescence quenching approaches is a challenge.

In another example, GQDs were employed as substrates 
for horseradish peroxidase (HRP) to provide an ampli-
fied electrochemical signal for the biosensing of a specific 
miRNA chain, accompanied by a change in the color of the 
solution [52]. The GQD-based miRNA enzymatic biosen-
sor platform was used to analyze human serum samples and 
achieved the detection of the analyte in the fM to pM range. 
The detection of miRNA was recently explored, designing a 
biosensing platform for the quantification of a specific pan-
creatic cancer–derived miRNA, expressed as pre-miR-132, 
based on the fluorescence variation of N-doped GQDs 
when bound to a bait ss-DNA sequence or the bait-target 
assemble, in a likely charge-transfer event [53]. The mini-
mal concentration in the micromolar range indicates that 
these important biomarker sensors possess the potential for 
achieving ultrasensitive detection. It must be highlighted 
that despite the interesting electrochemical properties of 
CQDs and GQDs, the optical features of these materials, 
especially their photoluminescence, are pivotal properties 
that make them unique, compared to commonplace carbon 
nanomaterials with higher dimensionality. For this reason, 
the PL of carbon-based nanomaterials is often explored in 
the bioimaging field.

As a clear example of CQD usage as a fluorescent nan-
oprobe, a research developed an assembly of polyethyl-
eneimine (PEI)–modified CQDs (P-CD) and hyaluronic 

acid–conjugated doxorubicin (Dox, a chemotherapy drug), 
which show only weak photoluminescence emissions in the 
normal cellular environment (NIH-3T3) [49]. In the afore-
mentioned study, the authors explored the high affinity of hya-
luronic acid (HA) to CD44 receptors, which are overexpressed 
on the membranes of several cancer cells. HA is cleaved by 
hyaluronidases after endocytosis; further, it is commonly 
more abundant in cancer cells. Hence, the P-CD/HA-Dox 
probe is easily absorbed by cancer cells, and after cleavage of 
HA-Dox, the fluorescence of P-CDs is restored, and the cells 
become optically identifiable (Fig. 2(C)). Additionally, as Dox 
is then cleaved from HA, it can intercalate with DNA pairs 
and inhibit efficient replication; therefore, these probes acted 
as both bioimaging and drug-delivery probes.

For additional examples of CQDs and GQDs applied to 
biosensing and bioimaging, especially for circulating nucleic 
acid bioanalysis, the readers can refer to the selected lit-
erature [54, 55]. Although we highlighted quantum dots, 
applications of fullerenes can be found in literature as photo-
active materials bound to dyes, such as methylene blue [56], 
and as a charge-transfer mediator, especially for nucleic acid 
sensing [57, 58]. Nanodiamonds represent the other class of 
0D-carbon nanomaterials of interest, showing high biocom-
patibility, the typical chemical inertness of diamonds, a high 
surface area, the possibility to functionalize surface regions 
(as in –NH2 and –COOH-terminated nanodiamonds), and 
the ability to be used for drug delivery and bioimaging, 
especially with tailored structure defects that drive photo-
luminescence [59].

1D carbon nanomaterials

The group of 1D carbon-based nanomaterials commonly 
explores carbon nanofibers and carbon nanotubes, either 
in the form of a single cylindrical graphitic  sp2-hybridized 
carbon network denominated single-walled carbon nanotube 
(SWCNT), or in the form of concentrical multiple cylindri-
cal structures, in the so-called multiwalled carbon nanotubes 
(MWCNT); other less common presentations are also pos-
sible, such as the cup-stacked carbon nanotubes (CSCNT), 
with higher edge content and, therefore, oxidized functional 
groups, with crucial consequences to electrostatic interac-
tions and charge transfer [26]. These nanomaterials can be 
produced by arc discharge and laser ablation [60], but cata-
lytic chemical vapor deposition is a classic and very efficient 
method of producing nanotubes of a wide range of diam-
eters and lengths, with good helicity control—although still 
a challenge—due to the initial hemispherical pentagon cap 
formation, driving, and defining the elongation of the CNTs 
[26]. In these materials, the optical and chemical properties 
are greatly affected by the doping—either electron donors 
or acceptors [61], and some methods have been shown to 
promote controllable doping [62]. Structural topological and 
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incomplete bonding defects, such as vacancies, pentagons, 
and heptagons disrupt carbon hexagons’ regularity and, 
therefore, cause important electronic charge localization and 
produce changes to the density of states [63].

When it comes to CNT properties, the regularity of the 
structure as a rolled-up graphene sheet promotes high con-
ductivity in the length axis, thermal stability, and mechanical 
resistance, leading to a wide presence of these materials in 
bioanalytical devices, most often as electrical conductivity 
enhancers for transduction [18]. While MWCNTs behave as 
metallic conductors, SWCNTs are more versatile as a semi-
conducting characteristic can also be obtained depending on 
the diameter and helicity control, and the present bandgap in 
this case is responsible for near-infrared fluorescence emis-
sion [64]. The anisotropy relative to the edge regions, with 
a higher amount of oxidized groups, also provides a central 
role in electron transfer and electrocatalysis [65]. Addition-
ally, as commonplace routes for CNT production employ 
metallic precursors, researchers should be extremely careful 

about metallic impurities which can promote catalytic arti-
facts and undesired contamination in biological environ-
ments [66].

In terms of 1D carbon-based material applications in bio-
analytical devices, there is a wide range of well-succeeded 
examples in literature, mostly for biomarker sensing and 
cell bioimaging, with recent interests boosted by the point-
of-care (POC) development trend and the exciting research 
pathway toward ultrasensitive biosensing for liquid biopsy. 
In this context, an ultrasensitive and selective biosensor was 
developed for quantifying breast cancer exosomal miRNA21 
[67]. For this, the authors employed CNTs as the channel 
material in a field-effect transistor (FET), as in Fig. 3(A), 
with subsequent incorporation of gold nanoparticles onto 
which a thiolated DNA probe is chemically linked as the 
recognition element. The hybridization of the miRNA leads 
to a current change in the CNT-FET device, and authors 
reached an attomolar limit of detection, with satisfactory 
performance in clinical samples.

Fig. 2  (A) (Top) Schematic representation of the tuneable photo-
luminescence redshift caused by the introduction of n-orbitals or 
by the enlargement of π-systems in GQDs, with their photographs 
under a UV lamp (middle) and the respective spectra (bottom). 
Reproduced from [38] with permission from the American Chemi-
cal Society. (B) Incorporation of GQDs into a mesoporous silica–
nanochannel film through electrophoresis, resulting in anti-fouling 
properties for the electrochemical sensing of  Hg2+,  Cd2+,  Cu2+, and 
dopamine (DA) in complex samples, such as food, soil, and serum. 

Reproduced (adapted) from [48], with permission from the Ameri-
can Chemical Society. (C) Bioimaging of HeLa cancer cells based 
on the fluorescence of CQDs after endocytosis due to preferen-
tial hyaluronic acid–CD44 interactions compared to normal cells, 
in blue and red channels, and the corresponding bright field (first 
row); HeLa cancer cells pre-treated with hyaluronic acid, showing 
weak PL (middle row), and non-cancer NIH-3T3 cells indicating 
weak PL (bottom row). Reproduced from [49], with permission 
from Elsevier
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A p-type CNT-FET strategy was also employed for the 
fast detection of the SARS-CoV-2 surface spike protein S1, 
employing CNTs as charge-transfer transducers and relying on 
anti-SARS-CoV-2 S1 antibodies to grant selectivity to the pro-
tein [68]. The variation of current induced by the antigen–anti-
body coupling in the affinity sensor in the case of a positive 
response was evaluated in fortified saliva, and the platform was 
able to achieve a limit of detection of 4.12 fg  mL−1.

In the context of POC bioanalytical development, CNT-
FETs are also showing important advances to allow the 
early diagnosis of health conditions, such as through blood 
biomarkers, which brings the additional challenge of low 
biomarker concentration and high protein concentration that 
promotes surface biofouling [45, 69]. A CNT-FET biosensor 
for the β-amyloid, using aptamers as the recognition element 
in the affinity sensor and 6-mercapto-1-hexanol, tween 20, 
and bovine serum albumin (BSA) for anti-biofouling, was 
proposed [69]. The sensor delivered high selectivity ratios 
for two tested amyloid peptides and a limit of detection in 
the attomolar range.

The usage of MWCNTs as electroactive materials for the 
anchoring of metallic nanoparticles and biorecognition ele-
ments is also being frequently explored [74–76]. In recent 
work, the detection of a long non-coding RNA (lncRNA), 
a molecule with regulatory roles and with an increased cir-
culating concentration in conditions such as lung adenocar-
cinoma, was performed by the engineering of a disposable 
electrode strip based on amidated MWCNTs as a conducting 
supporting element for the incorporation of gold nanocages 
(AuNC) and a specific probe DNA (Fig. 3(B)) [70]. The rec-
ognition of the target DNA in this affinity sensing platform 
promotes a current variation and limit of detection in the fem-
tomolar range, with good results in human serum samples.

When it comes to exploring bioanalytical imaging, 
carbon nanotubes have been employed with success with 
multiple distinct strategies. A single-chirality SWCNT 
probe was used for biosensing due to their optical proper-
ties as NIR bands and Förster resonance energy transfer 
(FRET), developing a set of functionalized CNTs coated 
with helical polycarbodiimide polymers with distinct 
functionalities [71]. By differential interaction of each 
functionalized SWCNT with sub-cellular structures, the 
authors were able to observe internanotube FRET and 
image separate parts of the cell, such as the nuclear and 
cytosolic regions (Fig. 3(C)). This work emphasizes the 
exciting room for CNT-based FRET nanoprobes for mul-
tiplexing sub-cellular bioimaging. SWCNT uptake via 
cell membrane transport is still not explored as needed, 
and recent works acquired important pieces of informa-
tion regarding the role of CNT length and surface charge 
for uptake in prokaryote cyanobacteria for fluorescence 
imaging [77]. Also, it was elaborated a CNT-based bio-
sensing platform for circulating tumor cells (CTCs) in 

an antigen-independent capture fashion, where the pref-
erential attachment of CTCs to a CNT-decorated surface 
is advantageously explored (Fig. 3(D)) [72]. In this kind 
of platform, the absence of antigen dependence enables 
the isolation of distinct CTC phenotypes and imaging 
without major disturbances of microfluidic devices, as 
no transfer is needed for microscopy analyses. The ingen-
ious platform enabled the capture of multiple breast can-
cer phenotype CTCs from the same patient and offers a 
high impact for future studies of metastasis evolution, 
dynamics, and therapeutic selection with observations 
at a single-cell level.

1D materials such as flexible carbon fiber can also be 
explored combined with other carbon nanomaterials such 
as graphene oxide (a 2D material) to enhance the electron-
transfer process in enzymes as glucose oxidase, as repre-
sented in Fig. 3(E),  with a decreased activation energy of 
the process and a shorter distance to the electrode [73].

2D carbon nanomaterials

Graphene has attracted great attention with regard to bio-
sensing platforms. It is considered a two-dimensional 
nanomaterial with outstanding electronic properties that 
are widely envisioned in analytical and bioanalytical appli-
cations [78, 79]; herein, we refer to graphene as a single 
 sp2-hybridized layer of carbon atoms, in its monolayer or 
isolated form [8, 80]. When in its isolated form, whether 
obtained from mechanical exfoliation [81] or chemical 
vapor deposition (CVD) [82, 83] process, graphene is char-
acterized by its unique structural, electronic, and interfacial 
properties at the basal plane [84], isolated graphene edge 
[85–87], and an edge periphery [88, 89]. Graphene can also 
be easily handled, given its high surface area and suitable 
physical properties [90], in some cases, in its single-crystal 
form [91, 92]; further, it is a promisor candidate for use in 
the fabrication of bioelectronic devices due to its high car-
rier mobility [93], physical stability and the ease of modify-
ing its chemical characteristics [94], and characteristics of 
electro-transfer depending on functionalization and modifi-
cation [73, 95], which can be achieved by oxidative or non-
oxidative experimental protocols [96, 97].

There are still many difficulties associated with graphene 
use, for example, when reproducible sizes of single sheets or 
surface contamination from the fabrication process hamper 
its practical applications [98–100]; chemical or electrochem-
ical (e-etching) [101, 102] protocols were reported in the last 
years as methods to overcome such limitations. In addition, 
for the miniaturization of devices, it is crucial to examine 
edge effects in the diffusion mechanism of electroactive spe-
cies in low-dimensional electrodes [103].

With regard to the development of graphene-based 
bioelectronics, there is much progress in the biosensing 
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of metabolites, to the understanding of the interactions of 
graphene with peptides [104], DNA [105], or neurotrans-
mitters [106]. Bioanalytical measurements are traditionally 
performed in vitro or in vivo [107], using body fluids [108], 
via the design and integration of electronic devices on the 
body or the implantation of the devices into living tissues 
[109]. Interfacing electronics with tissues for bioanalysis 
has been an area of interest for decades, but many of these 
devices involve the use of rigid and bulky substrates with 
robust physical connections; this can make the acquisi-
tion of experimental data more difficult, since mechanical 
properties may influence the signal captured [110]. These 

physical characteristics limit the integration of such elec-
tronic devices in soft or curvilinear surfaces, such as human 
skin or brain tissues; hence, the discovery of graphene 
emerged as a versatile and promisor material for the future 
fabrication of biomedical devices in the future [110].

Another example is the regular monitoring of glucose 
which involves the conventional measurement of its levels in 
blood via invasive finger-stick procedures, which are substi-
tuted by using temporary implantable microneedles or moni-
toring glucose levels in saliva, tears, or sweat. As a more 
reliable material for measuring the levels of glucose in body 
fluids, owing to its high specificity and low selectivity for 

Fig. 3  (A) (Left) schematic of the CNT-FET based biosensing plat-
form for the detection of breast cancer exosomal miRNA21, in an 
example of affinity sensing relying on CNTs and a designed probe 
DNA. The probe is built by (1) the incorporation of gold nanoparti-
cles and thiolated DNA; (2–3) SEM images of the biosensor chip. (4) 
Part of the device channel with AuNPs uniformly distributed on the 
 Y2O3/CNT film. Reprinted (adapted) from [67] with permission from 
the American Chemical Society. (B) Representation of the electro-
chemical sensing pad designed by the incorporation of gold nanocages 
(AuNCs) and probe DNA onto MWCNTs; methylene blue adsorbed 
after the sensor’s exposition to the sample with the target DNA. 
Reproduced from [70], with permission from Nature. (C) Application 
of CNT-based FRET nanoprobes to the bioimaging of sub-cellular 
structures as (5, 6) the nuclear region and (7) cytosolic region, gen-
erating (8) a combined artificially colored image through multiplexed 

spectral analysis. Reprinted (adapted) from [71], with permission from 
the American Chemical Society. (D) Operational schematic for the 
CNT-based antigen-independent capture of circulating tumor cells in 
human blood serum, exploiting the preferential interaction of CTCs to 
CNTs and enabling the observation of multiple phenotypes of breast 
cancer cells. Reproduced from [72] with permission from the Royal 
Society of Chemistry. (E) (9) FEG–SEM image of the flexible carbon 
fibers with graphene oxide exfoliated directly onto the filaments’ sur-
face, (10) cyclic voltammograms of FCF and FCF-GO and (11) FCF-
GOx and FCF-GO-GOx in sodium phosphate buffer, (12) oxidative 
electron-transfer rate constant as a function of the overpotential for 
FCF-GOx and FCF-GO-GOx. Reproduced from [73], with permission 
from the Royal Society of Chemistry
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detection, large-area graphene has been recently shown as a 
non-invasive and promising material. The development of a 
graphene-based sensor with thermoresponsive microneedles 
for diabetes monitoring in human skin is reported [108]. 
Large-area graphene is also a very versatile material and 
has been reported as a promising platform to detect neu-
ronal activity in the brain. Also, it is reported [106] that 
single-layer graphene increases neuronal firing by tuning the 
distribution of extracellular ions at the neuronal interface.

The detection, manipulation, and sequencing of single 
DNA molecules are both scientifically and commercially rel-
evant. As an example, a study [111] reported the fabrication 
of nanopores onto single and suspended graphene ribbons to 
detect the translocation of single DNA molecules. In this case, 
the simultaneous ionic and electrical current of graphene was 
recorded when DNA molecules flow through an isolated gra-
phene nanopore (single event or translocation of DNA). As 
other examples of ultimate advances in graphene-based tech-
nology, graphene has been investigated for its use in electri-
cal–electrochemical point-of-care devices, DNA sensing, and 
electrical–electrochemical sensing devices (Fig. 4).

The development of novel technologies for the detection 
of bacteria [112] or viruses [113] is of great importance to 
our society. The early diagnosis of emerging pathogens is 
very critical for human health. With respect to the COVID-
19 pandemic, graphene has also shown powerful potential for 
the development of hybrid electrical electrochemical devices 
[114]. The importance of such protocols for early detection 
can be substantiated by their specificity and speed of detec-
tion compared to those of the conventional molecular RT-PCR 
methods [115, 116]. For instance, graphene was reported as a 
powerful miniaturized platform for the development of POC 
serologic COVID-19 diagnosis (Fig. 4(A)), with an analysis 
time of up to 15 min [113]. The application of an electri-
cal–electrochemical vertical device (EEVD) was proposed, 
based on hybrid electrical and electrochemical working prin-
ciples [113]. Different from a G-FET, it utilized a hybrid sys-
tem operating under a quasi-circuited mode and comprising a 
Ag/AgCl/Cl electrode as the gate. This innovation produces 
10 × more signal when compared to a traditional G-FET. Fig-
ure 4(B) shows the EE Ids vs. Vds curves that were acquired 
within a potential range with no faradaic process, consider-
ing the bare graphene and all following modification onto its 
surface. Fig.  4(C) shows the wide linear dynamic range of 
IgG concentrations varying from  10−12 to  10−7 g  mL−1, and 
Fig. 4(D) shows the distribution of OCP displacement values 
for n = 9 for positive and negative IgG detections in diluted 
patient serum samples by G-PNRAuNP/RBD EEVD. This is 
clearly exampling that graphene technologies could be adapted 
for use in other emerging bioanalytical strategies for control-
ling pandemic diseases with a high probability of success.

Monolayer graphene-based three-component verti-
cally designed device (TCVD) has also been used as a 

biosensing platform for DNA, either by ds-DNA adsorp-
tion onto graphene or DNA hybridization from the bulk 
solution (Fig. 4(E)). Interestingly, the interface properties 
of the device change according to the characteristics of the 
components used and can be adjusted due to its versatile-
ness. For example, the absence of a semicircle in the EIS 
spectra and the Nyquist plots indicates a diffusive response 
for the graphene monolayer deposited onto the gold (Au) 
electrode. From the Nyquist plots, the characteristic linear 
lines indicate the absence of charge transfer, as well as the 
diffusive response for the pristine graphene on the Au elec-
trode (Fig. 4(F, I); black curve). The electrochemical imped-
ance response changes either for the adsorption of ferrocene 
(Fc) or ds-DNA (concentration of 0.2 μmol  L−1). The total 
interfacial capacitance values of the graphene monolayer 
electrodes in the presence or absence of ds-DNA are shown 
in Fig. 4G, H and J, K, respectively, and were acquired from 
the simulation of the equivalent circuit.

Graphene monolayers show a high sensitivity to any 
change on the surface and can be monitored by measuring 
the capacitance of the electrodes. In this case, the TCVD 
(C = 2.5 ± 0.08 μF  cm−2) showed a higher decrease in the 
capacitance after Fc adsorbed onto the surface of the gra-
phene monolayer (C = 1.6 ± 0.06 μF  cm−2, C = 2.4 ± 0.10 μF 
 cm−2, respectively), and a threefold higher sensitivity for 
detecting ds- than biosensors in which graphene monolayers 
deposited onto Si/SiO2 substrates. EEVDs have also been 
reported to be constructed via the combination of horizon-
tally aligned graphene–ferrocene heterojunctions as a pow-
erful electrode configuration for DNA sensing. The EEVD 
was composed using two working and auxiliary electrodes 
in a short-circuit configuration and compared with the field-
effect conventional device (Fig. 4(M)). The quantification 
of ss-DNA with EEVD graphene-Fc devices that were able 
to reach an LOD of 5 ×  10−21 mol  L−1 for the detection of 
ss-DNA is shown in Fig. 4(N).

Beyond the graphene monolayer, bilayer-based devices 
have been proposed as a new strategic design of biosensors 
and its fundamental study on the atomic behavior of defects 
and stacking layers of oxidated graphene bilayer (OGB) pro-
vides devices with superior electrochemical performance, 
when compared to pristine graphene electrodes [118]. The 
electrochemical impedance spectroscopic study showed that 
the charge transfer of the OGB electrodes improved by 90% 
as a result of the existence of edge-like defects 100 times 
greater than those of pristine electrodes. Attributable to 
the superior electrochemical activity of the OGB electrode 
and conciliating the surface modification on the upper layer 
with exceptional electron transport of the bottom layer (that 
remained intact), this study provided a new insight into the 
superior electrochemical properties of OGB electrodes, mak-
ing it a potential electrode for application on-chip devices. 
Additionally, the presence of high-oxygen content has been 
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Fig. 4  Graphene-based bioelectronics. (A) Schematic representation 
of the method for immobilizing AuNP/RBD onto G-PNR. (B) Hybrid 
Ids vs. Vds EE curves for bare graphene (black), G-PNR (red), G-PNR-
AuNP/RBD (cyan), and G-PNR-AuNP/RBD after interactions with 
human IgG (orange) in PBS buffer. (C) Calibration curve for IgG detec-
tions from 1.0 pg  mL−1 to 1.0 μg  mL−1 in PBS as support electrolyte by 
hybrid Ids vs. Vds EE experiments. (D) Distribution of OCP displacement 
values positive and negative IgG detections in diluted patient serum sam-
ples by G-PNRAuNP/RBD EEVD. Reproduced from [5], with permis-
sion from Elsevier. Monolayer graphene-based three-component verti-
cally designed (TCVD) device. (E) Schematic illustration of the detection 
of ds-DNA adsorption and hybridization in solution using the TCVD 
device. (F) Nyquist plots obtained during the adsorption of Fc and ds-
DNA onto the device surface. (G) Plot of the measured capacitance of 
the TCVD and Gr/SiO2/Si electrode fitting the Nyquist plots to the equiv-
alent circuit (inset of F). (H) Plot of the change in the capacitance after 
the adsorption of ds-DNA to the electrode surface. (I) Nyquist plots of 
the TCVD electrode obtained during the adsorption of Fc, ss-DNA, and 

complementary DNA to the electrode surface. (J) Plot of the measured 
capacitance of the TCVD and Gr/SiO2/Si electrode obtained from fitting 
the Nyquist plots to the equivalent circuit (inset of J). (K) Plot of change 
in the capacitance after the hybridization of the DNA on the electrode 
surface from the solution. Reproduced from [117], with permission from 
Elsevier. (L) Electrical–electrochemical vertical device (EEVD) device 
preparation description. Steps 1 and 2 correspond to graphene wet trans-
fer methodology. Step 3 presents an optical micrograph of graphene on 
 SiO2/Si. Step 4 depicts an electrochemical response of typical pristine 
graphene. Step 5 illustrates ferrocene in ethanol drop casting and its 
adsorption onto graphene, forming a graphene-fc vdW heterojunction. 
Step 6 illustrates a typical final cyclic voltammogram obtained for gra-
phene-fc in phosphate buffer solution. (M) Schematic representation of 
the working principles of an EEVD with the proposed graphene-fc heter-
ojunction. (N) Schematic representation of a GFET’s working principles 
for comparison with M. (O) Representation of ss-DNA quantification 
using EEVD graphene-fc devices. Reproduced from [113], with permis-
sion from Elsevier
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shown to affect molecule adsorption, including eventually 
hindering the process [119].

3D carbon nanomaterials

The class of 3D carbon–based materials can be regarded as 
a network of lower-dimensional structural elements, such as 
carbon felts comprising carbon fibers [120], carbon nanotube 
weaves [121], graphene-based composites [122, 123], and 
combined hierarchical materials [124, 125]. These carbon 
materials can be presented as stand-alone matrices or com-
bined with other materials as a multitude of polymers and 
biopolymers, gels, metallic particles, and oxides. Among the 
advantages of 3D carbon-based materials is their capability to 
offer a high surface area for the adsorption and immobiliza-
tion of biomolecules, practical manipulation for the construc-
tion of biosensing platforms, and versatility, regarding both 
chemical functionalization and mechanical properties. Here, 
we will highlight some studies using different platforms to 
produce nanoblisters for flexible biosensors, wearable biosen-
sors, and porous and mesoporous structures to provide a rel-
evant increase in both sensitivity and molecular recognition.

As the orientation of adsorbed redox-active enzymes 
onto electrodes deeply affects the electron transfer from the 
enzyme’s active center to the electrode, a research employed 
a carbon fiber matrix decorated with reduced graphene oxide 
(rGO) as inter-fiber sheets and cup-stacked carbon nanotubes 
(CSCNTs) coating the fibers’ surface, as seen in Fig. 5(A), 
enabling favorable surface–enzyme interaction, efficient 
electron transport, and high accessibility to the active sites to 
drive effective electrochemical communication [120]. This 
platform was employed to study glucose oxidase (GOx) as a 
model redox enzyme, and the results indicated that not only 
does a kinetic improvement depend on the presence of rGO 
and CSCNT combined, that is, a 3D composite, but also 
that a considerable conformational change of GOx is evident 
when it is adsorbed onto the modified felt electrode, which 
exposes its active center at the same time, compromising the 
biocatalytic activity.

Flexible carbon fibers can also be applied to produce car-
bon-based nanoblisters, as represented in Fig. 5(B). Nanob-
listers can improve the electrocatalytic processes for high-
performance glucose dehydrogenase [126]. When it comes 
to wearable devices, carbon nanotubes have been employed 
combined with hydrogels to construct conducting, adhesive, 
and mechanically resistant stretchable materials for sens-
ing. A study exploited the remarkable conductivity of CNTs 
modified with polydopamine in a composite with agarose 
hydrogel and glycerol (Fig. 5(C)) [127]. The composite pre-
sented humidity retention, skin biocompatibility, and ther-
mal stability across a wide temperature range, underscoring 
its promising applicability for use in skin-based wearable 
biosensors.

3D carbon-based nanomaterials can also be employed for 
coupled technique studies [117, 118], such as the study of 
the oxygen reduction reaction process by bilirubin oxidase 
(BOD) using in situ X-ray absorption spectroelectrochemis-
try. Mesoporous 3D carbon nanoparticles can form matrices, 
as in Fig. 5(D), and maximize BOD loading while maintain-
ing high electronic conductivity.

The production of 3D hierarchical and structured plat-
forms with carbon nanomaterials is another exciting pos-
sibility, especially when combined with smart materials, 
such as thermoresponsive polymers. A multilayered porous 
graphene oxide coating onto ITO electrodes was proposed 
using the breath-figure method [129]; the porous graphene 
oxide surface inside and outside the pores was then locally 
functionalized with brushes of poly(N-isopropylacrylamide), 
a thermoresponsive polymer, generating a platform that 
blocks the access of species from the external medium to 
the electrode at room temperature, while enabling the access 
of these species to the electrode after heating; this, in turn, 
causes the reversible contraction of the polymeric brushes 
and the opening of the pores, reversibly (Fig. 5(E)). This 3D 
carbon-based thermoresponsive physical gate platform opens 
the room for smart chemical sensors that are self-activated 
through external stimuli, such as body temperature, and can 
be extrapolated to light, pressure, and chemical activation.

A similar rationale can be obtained using a glassy car-
bon electrode decorated with MWCNTs to improve enzyme 
immobilization and communication [128]. In their work, a 
carbon cloth loaded with carbon nanoparticles was employed 
to maximize BOD loading while maintaining high electronic 
conductivity. A similar rationale was explored elsewhere 
[130], using a glassy carbon electrode decorated with MWC-
NTs, BOD and Nafion for acquiring XAS data for water 
oxidation reaction (WOR) in multiple steady-state electro-
chemical potentials (Fig. 5(F)).

Additionally, mesoporous structures of electrodes applied 
with different in situ analytical techniques facilitate the in-
depth study of interface elements and signal transduction 
and provide relevant information for the fabrication of more 
sensitive and stable biosensors. The combination of carbon 
nanomaterials has been a new trend to support, mainly, new 
configurations of biosensors operating under either direct or 
mediated bioelectrocatalysis [131–133].

Challenges and perspectives

With regard to commercial prospects, it is reported that the car-
bon material market is segmented as follows: MWNTs, CNTs, 
other categories, and end-user industries (electronics, health-
care, energy, aerospace and defense, automotive) [134, 135], 
and its global market is projected to reach almost $32.8 billion 
by 2030 [135]. Although these numbers involve the utilization 
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Fig. 5  (A) Scanning electron microscopy images of (1) felt/CSC-
NTs/graphene oxide material, (2) felt/CSCNTs/graphene oxide 
image at higher magnification, and (3) CSCNT/RGO-coated fibers 
and the corresponding voltammograms in the presence of immobi-
lized GOx in 20 mmol  L−1 PBS and 0.1 mol  L−1 KCl. Reproduced 
from [120], with permission from Elsevier. (B) (4–9) Micrographs 
of carbon fibers and carbon nanoblisters generated through chemi-
cal processing and (10) the electrochemical response to glucose. 
Reprinted (adapted) from [126], with permission from Elsevier. 
(C) (11) Fabrication and mechanical tests of a 3D CNT-agarose 
hydrogel composite for (12) application in skin-based wearable 
biosensors. Reprinted (adapted) from [127] with permission from 
the American Chemical Society. (D) (13) SEM micrographs of 
the mesoporous carbon matrix with high carbon nanoparticle 
loading employed as the working electrode for BOD immobiliza-
tion, (14) cyclic voltammogram of MvBOD-modified electrode in 

(red line)  O2-saturated electrolyte performing the ORR and (black 
line) Ar saturated demonstrating no process for the bioelectroca-
talysis of ORR. Reprinted (adapted) from [128], with permission 
from Nature. (E) (15–17) SEM micrograph of a graphene oxide/
poly(N-isopropylacrylamide) porous formed after a polymeriza-
tion time with the (18) electrochemical signals from redox probes 
in the external medium before and after sequential thermal opening 
of the polymeric brushes gate, operating in a smart-sensing ther-
mal stimulus-activated electrochemical sensor. Reprinted (adapted) 
from [129], with permission from the American Chemical Society. 
(F) (l9) A MWCNT-based bioelectrode for BOD immobilization to 
a XAS-analysis assembly; (20) a chemical Cu K-edge XA-NSEC 
mapping onto a MWCNT/BOD/Nafion bioelectrode, enabling the 
localization of high enzymatic loading; (21) biocatalytic water oxi-
dation reaction obtained with the MWCNT/BOD/Nafion bioelec-
trode. Reprinted (adapted) from [130], with permission from Wiley
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of carbon-based materials in the automotive industry, health-
care represents a critical area of focus for these materials, 
given that they can be used for assessing medication-associ-
ated aspects, e.g., tissue imaging. MWCNTs are the principal 
material of the carbon nanotube market, particularly for clini-
cal applications [135]. There are many possibilities contained 
in the properties of carbon-based materials discovered so far. 
However, additional adjustments/revisions or even modifica-
tions for commercial-level applications are necessary, espe-
cially when aiming at the production of biosensing platforms.

Among the main perspectives, one can secure that the 
future of carbon nanomaterials will roam through the pursuit 
of new technologies, applications, and also the assurance of 
safe handling and in vivo safety, based on current research 
[136]. Recently, discussions concerning CNT safety and 
pressure for restricted usage have been presented, including 
the addition to the Substitute It Now (SIN) List by Chem-
Sec, in a decision taken after reports indicating potential 
carcinogenicity, reproductive deleterious effects, and addi-
tional long-term health damage in in vitro and mice studies 
[137]. An immediate response by multiple researchers was 
issued, with a worry that an unclear depiction of the facts 
would hinder relevant advances and safe usage of CNTs 
[138]. It is clear that the risk assessment of a wide class of 
materials with an immense presentation variation as CNTs 
is an extremely difficult task, and reports from other agen-
cies emphasize the importance of avoiding the absorption 
of long, aggregated, and concentrated CNTs with metallic 
particles as remaining impurities from catalytic production. 
The data heterogeneity in toxicity studies implies that CNT 
concerns should be narrowed down to specific ranges of 
length, diameter, concentration, aggregation, and purity.

Concerning the applications, the purity, form, presence 
of heteroatoms, and oxidation levels have a notable impact 
on carbon-based biosensor performance, since these factors 
frequently affect electrical conductivity, binding interactions 
between the surface and biomolecules, and the ability of 
biomolecules to adsorb onto the biosensor surface. Addition-
ally, to construct biological sensors, it is crucial to evaluate 
the overall design concept, production techniques, and real-
world application based on these materials. There are numer-
ous scientific publications using the keywords “carbon-based 
sensors” and “carbon-based biosensors,” with most of them 
being original research articles. Certainly, modern-tech 
advances, such as portable, flexible, and wearable devices, 
are relevant for a multitude of applications. However, only 
a minority are currently commercially available. Although 
many biosensors show promise for a variety of technological 
and scientific applications, they are associated with several 
challenges in terms of mobility, selectivity, sensitivity, and 
multi-analyte detection in commercial fields. To overcome 
these challenges, the devices need to be low cost and suitable 
for large-scale production; demonstrate rapid, robust, and 

efficient performance; and achieve quick data acquisition 
and transmission, which will aid the construction of data-
bases to monitor a specific disease or target analyte.

Regarding carbon-based materials, an expansion of novel 
carbon forms, especially in academic fields, including new 
precursors, especially those obtained via sustainable meth-
ods, such as the use of biomass, and the combination of dif-
ferent hybridization states (sp,  sp2, and  sp3), synthesis routes, 
functionalization, heteroatoms, or even new carbon forms, is 
expected. All these improvements are closely related to our 
interdisciplinary knowledge; innovation in technologies can 
lead us into a new era of the transformation and synthesis of 
materials, especially aiming at the ecofriendly manufactur-
ing process for these materials. Additionally, it is important 
to mention that to achieve this goal, theoretical studies are 
needed, given their valuable contribution to predicting the 
structures, electron mobility, functionality, and reactivity 
of carbon surfaces. The functionalization of carbon-based 
materials is also an upcoming trend, since it provides the 
ability to customize the chemistry of the surface required for 
a specific application. It is worth mentioning that the stand-
ardization of the biomolecule immobilization procedure is a 
notable challenge that can affect the interactions of the tar-
get biomolecules with the carbon-based material. Synthesis 
methods that combine different carbon-based materials with 
dimensionalities are not a simple task, and achieving this 
goal could represent a breakthrough as it could simplify the 
construction of miniaturized devices.
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