
Review

Epigenetics in the pathogenesis of diabetic nephropathy
Xue Li1, Lihong Lu1, Wenting Hou1, Ting Huang1, Xiangyuan Chen1, Jie Qi2,
Yanjun Zhao3,*, and Minmin Zhu1,2,*

1Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan
University, Shanghai 200032, China, 2Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai 200080, China, and 3Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
*Correspondence address. Tel: +86-21-6417-5590; E-mail: zhu_mm@126.com (M.Z.) / E-mail: zhao_yanjun@163.com (Y.Z.)

Received 8 June 2021 Accepted 20 July 2021

Abstract
Diabetic nephropathy (DN), which is a common microvascular complication with a high incidence in diabetic
patients, greatly increases the mortality of patients. With further study on DN, it is found that epigenetics plays a
crucial role in the pathophysiological process of DN. Epigenetics has an important impact on the development of DN
through a variety of mechanisms, and promotes the generation and maintenance of metabolic memory, thus
ultimately leading to a poor prognosis. In this review we discuss the methylation of DNA, modification of histone,
and regulation of non-coding RNA involved in the progress of cell dysfunction, inflammation and fibrosis in the
kidney, which ultimately lead to the deterioration of DN.
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Introduction
Diabetes, as a major medical problem in this century, threatens
human health. About 92.4 million adults in China suffer from dia-
betes (accounting for 9.7% of the total adult population), and
60.7% of them have not been diagnosed or received relevant
treatments [1]. More seriously, the incidence rate of diabetes has
markedly increased in the last few decades around the world. Ac-
cording to statistics from the International Diabetes Federation,
there were 463 million diabetic patients in 2019. It is estimated that
the number of people with diabetes will increase to 700 million by
2045 [2].
Previously, in the Diabetes Complications and Control Trial

(DCCT), patients with type I diabetes regulated their blood glucose
level through receiving standard or intensive treatment. It has been
demonstrated that the progression of microvascular complications
is significantly reduced in patients with intensive treatment [3]. As a
consecutive experiment of DCCT, the Diabetes Intervention and
Complications Epidemiology (EDIC) trial showed that compared
with patients who had received intensive treatment throughout the
trial, the incidence of diabetes complications of the patients who
had received standard treatment and switched to intensive treat-
ment a few years later is still higher [4,5]. Therefore, for some dia-
betic patients, especially those who start to strengthen blood sugar
control after 8-11 years of illness, only applying measures to control

blood sugar within the normal range cannot effectively prevent the
occurrence of related cardiovascular complications [6–9].This kind
of hyperglycemic stress state that the body continues to maintain
even if blood sugar returns to normal is defined as ‘hyperglycemia
memory’ [10,11].
Current studies showed that some signal transduction mechan-

isms in the diabetic state, including oxidative stress, advanced
glycation end products (AGEs) receptor (RAGE) activation, tyrosine
kinases, mitogen-activated protein kinases (MAPKs), protein kinase
C (PKC), and nuclear factor kappa beta (NF-κB), participate in the
development of high-glycemic memory [12–17]. In addition, the
AGEs and transforming growth factor-beta (TGF-β) produced in
high-glycemic memory can have serious adverse effects on the
target cells of renal damage [18–21]. Whole-genome analysis de-
noted that genetic testing technology alone cannot make an accu-
rate assessment of the risk of diabetes and its complications [22].
The discovery of ‘metabolic memory’ has become sound evidence
of the mechanism of epigenetics with prolonged effects [23], which
has attracted massive attention during the study of the pathogenesis
of DN. Moreover, previous studies did not reveal a causal link be-
tween epigenetics and changes in gene sequences but did prove that
epigenetics affects phenotypes [24], causing changes in external
characteristics, revealing the interaction between genetic material
and the environment, including DNA methylation, post-transla-
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tional histone modifications, and non-coding RNA regulation
(Figure 1) [25–29]. Epigenetic modification regulates relative gene
expressions on one side, which enable the human body to respond
quickly to the change in the surrounding circumstances, and
guarantees to remember these reactions to establish a internal
metabolic memory on the other side [30]. DN is a ubiquitous mi-
crovascular complication among diabetic patients, and the main
pathogenesis of the end-stage renal disease. Its pathological char-
acteristics include the thickened glomerular basement membrane
(GBM), increased mesangial matrix, tubulointerstitial fibrosis, and
podocyte loss [31]. The formation mechanism of DN is quite com-
plicated, including genetic and non-genetic factors. High-through-
put sequencing technology revealed that epigenetics regulates gene
expression through a single or synergistic effect, which ultimately
influences the occurrence and progression of DN [32]. Hence ,
epigenetics has been extensively studied in the microvascular en-
dothelial damage caused by high glucose. So, studies on the me-
chanism by which epigenetic modifications mediate the morbidity
and mortality of patients with diabetes and on its microvascular
complications are of great practical significance [27].
Therefore, this article reviews the latest progresses in the research

about epigenetics in the pathogenesis of DN.

DNA Methylation
DNA methylation is catalyzed by the DNA methyltransferases
(DNMTs), with the methyl group being transferred to the 5’ end of
the cytosine residue in the dinucleotide cytosine guanine (CpG)
[33]. Among these DNMTs, DNMT1 plays a role during the re-
plication of DNA, while DNMT3a and DNMT3b mainly have the
function of re-methylation during cell development [34]. DNA me-
thylation directly interferes with the binding of the transcription

complex in the promoter region or indirectly recognizes 5-methyl-
cytosine, through the methyl-binding protein, to recruit the co-re-
pressor to bind to the promoter region [35]. Hence, transcription
disorders may cause abnormal methylation of key genes and con-
sequently lead to some diseases [36]. During the development of DN
from hyperglycemia, there are 694 hypomethylated CpG sites and
174 hypermethylated sites in the genome, including the inflamma-
tion of glucose metabolism, oxidative stress, mitochondrial stress
and fat metabolism, which are involved in DN pathogenic gene
locus [37]. Comparison of the type 1 diabetes patients with or
without complications showed that DNA methylation of key genes
changes over time [38], which provides direct evidence for a re-
lationship between DNA methylation and hyperglycemia-induced
metabolic memory.
Chronic oxidative stress is another crucial cause of DN [39].

Various studies have revealed that oxidative stress regulates DNA
methylation and results in disease accordingly [40–42]. Further-
more, the existence of metabolic memory exacerbates the produc-
tion of reactive oxygen species (ROS) [43]. ROS, via modulating the
activity of DNMT and damaging DNA, regulates methylation of key
genes sequentially. Namely, ROS, as extremely reactive com-
pounds, can produce many damaged sites in DNA. Superoxide
dismutase 2 (SOD2), which is a key factor in anti-oxidative stress,
can be inhibited by DNA methylation, thus mediating smooth
muscle cell proliferation [44]. On the other hand, the abnormal
methylation of SOD2 activates hypoxia inducible factor-1α (HIF-1α)
[45], which inhibits HO-1-mediated control of mitochondrial dy-
namics, and prevents the overproduction of ROS [46,47]. So, HIF-1α
can exert a protective effect in DN.
The expression of DNMT1 is increased in mouse podocytes sti-

mulated by high glucose [48], while this tendency can be attenuated

Figure 1. The potential mechanisms of epigenetic regulation of diabetic nephropathy
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after treatment with 5-azacytidine, an inhibitor of DNMT1, ac-
companied by a reduction of proteinuria and glomerular hyper-
trophy and an improvement of podocyte motility. Hence, DNMT1
may be a therapeutic target for protecting against DN podocyte in-
jury [48]. In the kidneys of diabetic mice, the proximal tubular cells
showed DNA hypomethylation of myo-inositol oxygenase (MIOX),
which could be firmly bound by the transcription factor Sp1 on the
gene promoter, thus mediating kidney damage progress [49].
Similar effects of abnormal DNA methylation models come under
observation in podocytes cultured in a hyperglycemic environment
[50]. The promoter region of matrix metalloproteinase (MMP)-9
also contains demethylated CpG sites, which can be induced by
hyperglycemia, leading to the epithelial-mesenchymal transition
(EMT) of podocytes [51]. The analysis of clinical samples of DN
patients revealed that the demethylated promoter region of MMP-9
is not only correlated with the diagnostic indicators of DN posi-
tively, but also correlated with the glomerular filtration rate (GFR)
negatively. This phenomenon denotes that the demethylation level
of the promoter region of MMP-9 has a strong causal relationship
with the pathophysiology of DN [52]. In addition, further research
revealed that the connection between DNAmethylation and histone
modification could be mediated partially through methylcytosine-
binding proteins, such as MECP2 and MBD2, which can recruit
histone deacetylases to the methylated region [53,54]. As a mark of
repressive chromatin, DNA methylation could also dimethylate
H3K9 through the interaction of G9a and DNMT1 with the replica-
tion complex [54,55].
In vivo experiments have confirmed that change of the methy-

lation level of differentially methylated regions of necrosis factor-
alpha (TNF-α) with the use of dCas9-Tet1 system could alter TNF-α
expression at the transcriptional level [56]. Moreover, TNF-α, pro-
duced by macrophages/monocytes [57], was proved to be related to
the development of DN consequentially. In addition, it was reported
that DNMT1 is up-regulated in peripheral immune cells of diabetic
patients, which mediates the hypermethylation of the negative
regulators of mTOR, causing the activation of the mTOR signaling
pathway and resulting in the renal inflammation [58]. What’s more,
in the leukocyte DNA methylation patterns of T2DM patients, the
methylation of 77 CpG sites was found to be associated with a
decrease in GFR [59]. Among these targets, Cdc42 GTPase activat-
ing protein (CdGAP), FK506-binding protein like (FKBPL), and ac-
tivating transcription factor 6 beta (ATF6B) show consistent
associations with the directionality of matching kidney tissue fi-
brosis. Moreover, CdGAP, FKBPL, and ATF6B have been reported to
participate in mediating immune cell migration, inflammation and
glomerulosclerosis [60–62], indicating that the argument of DNA
methylation in peripheral immune cells is a potential biomarker of
DN progression.

Histone Modification
Histones are highly conserved proteins in eukaryotic cells, which
can associate with DNA to make up the nucleosomes, thereby
constituting the basic unit of chromatin structure. Histones are
modified by a series of specific enzymes, and the types of mod-
ifications include methylation, acetylation, phosphorylation, and
ubiquitination [63]. Moreover, histone modification functions as a
crucial part of the regulation of transcription, DNA replication, DNA
repairment and chromatin aggregation. Current studies on histone
modification mainly focus on the specific amino acid residues of

histone H3 and H4. At present, many studies are carried out on
histone methylation-demethylation, acetylation-deacetylation and
lactylation. The following parts will introduce the roles of these
aspects in DN.

Methylation and demethylation
Histone methylation can induce activation or repression of the
transcription process, depending on the changes in the number and
position of methyl groups caused by the combined action of histone
methyltransferase and histone demethylase. In the glomerular me-
sangial cells of the diabetic model, H3 histone modification plays an
important role. H3 histone lysine methylation (H3Kme) can aug-
ment the expressions of TGF-β1 and the extracellular matrix (ECM)
proteins-related genes, such as CTGF, collagen-α1 and PAI-1
[64,65]. Moreover, H3K4me1/2/3, H3K36me2/3, and H3K79me2
can accumulate the pro-inflammatory cytokines and exacerbate the
ECM during glomerular fibrosis, ultimately leading to the dete-
rioration of DN [66]. Conversely, H3K9me2/3 and H3K27me3 can
inhibit the expressions of fibrotic factors, superoxide dismutase and
pro-inflammatory genes, thus decreasing inflammation and fibrosis
in the kidney, and eventually delaying the progression of DN [67].
Further experiments demonstrated that the specific histone me-
thyltransferase for H3K27me is the enhancer of zeste homolog 2
(Ezh2), which can accelerate the process of renal fibrosis [68].
H3K27me3 and Ezh2 repress and maintain the expressions of fi-
brosis and inflammatory genes in the renal mesangial cells under
normal conditions [67]. However, this combination in podocytes is
suppressed under a diabetic environment [69,70], and TGF-β in-
hibits the H3K27me3 and Ezh2 levels to mediate mesangial dys-
function, thus eventually leading to kidney damage [67]. In
addition, Ezh2-methylated H3K27 can serve as an anchor point for
CpG methylation, leading to the formation of silent chromatin, and
ultimately, to transcriptional gene silencing [71]. Therefore, further
investigation is necessary to clarify the role of Ezh2 in the patho-
logical process of DN development.
In contrast, H3K27me-specific histone demethylases are lysine-

specific demethylase 6A (KDM6A, also known as UTX) and 6B [72].
Previous studies have pointed out that the expression of KDM6A
increases in the kidney tissue of diabetic mice and DN patients [73].
Moreover, the use of KDM6A inhibitor or si-RNA in diabetic model
mice improves renal dysfunction [73]. In addition, pathophysiolo-
gical indicators, such as proteinuria level, kidney weight, apoptosis,
thickening of GBM, and fibrosis are improved in KDM6A-knockout
diabetic mice [74]. Meanwhile, kruppel-like factor, as a transcrip-
tion factor, can enhance the dedifferentiation effect of KDM6A on
podocytes, leading to the disappearance of foot processes [74],
which deserve further investigation to find the potential therapy
targets of DN.
Histone methyltransferase plays an important role in hypergly-

cemia-mediated injury as well. Previous studies showed that
SET7/9 is related to the regulation of the TGF-β1/p21 pathway in
chronic kidney disease [65]. In our previous experiment, SET8 was
found to be a member of the SET domain-containing methyl-
transferase family, which is involved in the production of hy-
perglycemic memory [75]. SET8, as the only known lysine
methyltransferase involved in the monomethylation of lysine 20 of
histone H4 (H4K20) [76], modulates the expressions of proin-
flammatory enzymes and NLRP3 inflammasome activation in the
hyperglycemic HUVECs [77–79]. Furthermore, overexpression of
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SET8 leads to histone methylation, thereby regulating downstream
signaling pathways and protecting DN [80].

Acetylation and deacetylation
Over the decades, the research about acetylation and deacetylation
of histone in T2DM and microvascular complications has increased
gradually. This key process is catalyzed by histone acetyltransferase
(HAT) and histone deacetylase (HDAC). Among them, acetylation
loosens chromosomal DNA and activates gene expression, while
histone deacetylase inhibits gene transcription [81].
HAT catalyzes the acetylation of histones, relaxes the chromatin

structure, and promotes transcription positively. In DN, the hy-
perglycemic environment increases the activities and expression
levels of HATs, including p300, CREB-binding protein (CBP), and
CBP-associated factor (CAF) [82]. In addition to histones, HAT also
acetylates a variety of other proteins such as S-mads, p53/Sp1, and
NF-κB, which would further mediate the upregulation of pro-in-
flammatory cytokines and ECM, and deteriorate the process of DN
fibrosis [83]. As an activator, CAF possesses the activity of an in-
trinsic HAT [84]. Some studies further proved that CAF is closely
correlated with the H3K18Ac levels, and enriched on the promoters
of inflammatory molecules ICAM-1 and MCP-1. Intervention at this
site has the potential to improve inflammation-related renal dis-
eases [85]. Additionally, CBP and p300, as transcriptional co-acti-
vators of many vital transcription factors, can play a vital regulatory
role in epigenetics by catalyzing the acetylation of histones and
transcription factors [86]. Because of their similar structure and
redundant function, CBP and p300 often refer to combine jointly. In
renal mesangial cells, TGF-induced PAI-1 and p21 are highly related
to the interaction between p300/CBP and Smads or Sp1, while
H3K9/14Ac increases the p300/CBP-induced promoter activation,
which in turn exacerbates the glomerular dysfunction associated
with DN [87]. The subsequent experiments demonstrated that
curcumin analogue, C66, as an inhibitor of CBP/p300, can protect
renal injury in diabetic mice via restraining the expression of JNK
and inhibiting the diabetes-related increase in the expression of
p300/CBP and acetylation of H3K9/14Ac [88]. In addition, C66 can
protect diabetic aortic pathological changes by inhibiting JNK
function, accompanied by a boost in the Nrf2 expression [89]. In
summary, these data implied that HAT plays a critical role in
acetylating histones and may be a potential target for the treatment
of DN.
As mentioned above, histone deacetylase inhibits gene tran-

scription in the process of histone acetylation and deacetylation. Till
now, 18 HDACs have been found and classified into 4 distinct
classes according to their homology to yeast HDAC, including Class
I (HDACs1, 2, 3, and 8); Class II being composed of II-a (HDACs4, 5,
7, and 9) and II-b (HDACs6 and 10); Class III, sirtuins (SIRTs1–7)
and Class IV (HDAC11) [90]. Different HDACs participate in the
pathogenesis of DN through distinct pathways. Among the 4 dif-
ferent classes, HDAC1, as a pro-apoptotic factor, participates in
TGF-β1-induced apoptosis [91]. HDAC2 can promote fibrosis [92].
In TGF-β1-treated cells, the knockdown of HDAC2 can reduce the
ECM components, implicating the impact of HDAC2 on fibrosis in
the kidney [93]. Hydrogen peroxide (H2O2), known as a potent
oxidative stressor, also increases the level of HDAC2 [93], and this
could be the latent mechanism of DN which deserves further study.
HDAC4 was confirmed as a contributor to podocyte damage in
diabetic patients, and it can inhibit autophagy through deacetyla-

tion of STAT1 [94]. In addition, sirtuins are also involved in the
development of diabetes. SIRT1 inhibits high glucose-induced se-
nescence of vascular cells by reducing ROS accumulation [95].
p66Shc is mainly expressed in renal tubular cells, and a previous
study showed that high glucose-induced down-regulation of sirtuin-
1 promotes p66Shc expression by increasing the levels of histone H3
and p66Shc acetylation [96]. Normally in glomerular mesangial
cells, SIRT1 not only intercepts the activity of the pro-hypertrophic
Akt signaling pathway, but also enhances the anti-hypertrophic
AMP-activated protein kinase (AMPK) activation [97]. However,
the high glucose-induced decrease of SIRT1 leads to the activation
of HIF-1α, which induces the expressions of endothelin-1, TGF-β1
and VEGF, thus leading to the pathological angiogenesis and fi-
brosis of the kidney. It has also been reported that the progress of
inflammation and fibrosis can be reversed by mir-217 gene silencing
through regulating the SIRT1/HIF-1α signaling pathway [98]. The
progress of peritubular capillary rarefaction and fibrosis can be
observed in the mice with knockout of SIRT1, and SIRT1 can
ameliorate albuminuria actively in diabetic mice [99].
As an inhibitor of HDAC, valproate facilitates autophagy and

depresses the NF-κB/iNOS signaling, thereby improving the podo-
cyte damage and renal injuries [100]. Treatment with sodium bu-
tyrate (NaB) can significantly decrease the levels of blood sugar and
creatinine, improve histological alterations including collagen ac-
cumulation and fibrosis, and inhibit the expressions of HDACs, NF-
κB activation, and DNA damage in the diabetic kidney tissue [101].
NaB can also upregulate the expression of Nrf2. Compared with the
wild-type mice treated with NaB, C57BL/6 Nrf2-knockout mice de-
veloped more severe oxidative stress and inflammation in the aortic
endothelium [102]. Moreover, NaB increases the synergistic effect
between the transcription factor and the p300 on the promoter of the
Nrf2, which could be abolished by the p300 inhibitor C646 [102].

Lactylation
With the in-depth research on histone, a new type of histone
modification, named histone lactylation, was identified [103]. Lac-
tylation of histone lysine residues serves as an epigenetic mod-
ification that directly stimulates gene transcription [104]. In a
previous study, histone lactylation was found to accelerate the
pulmonary fibrosis of mice and humans [105]. This modification
pattern also promotes tumorigenesis through activating m6A reader
protein directly [106]. In addition, a histone modification and
transcription assay revealed that histone lactylation can directly
activate gene transcription in a p53-dependent p300-mediated
pathway [104], it means that p300 is not only an acetyltransferase,
but also a promising candidate lactyltransferase. Currently, histone
lactylation has not been reported in DN. Therefore, this new mode
of histone modification is worthy of further study.

Non-coding RNAs
Recent studies have demonstrated that non-coding RNAs (ncRNAs)
play a vital role in the progression of renal disease, and may be
adopted as novel biomarkers and treatment sites of the DN. ncRNA
refers to RNA that does not encode any protein, and the most fa-
mous ones are miRNAs and long non-coding RNAs [32,107,108].
They regulate the expressions of genes through modulating protein
synthesis at the post-transcription and translation levels [109].
miRNAs, as a kind of endogenous ncRNAs composed of 22 nu-

cleotides, can bear the function of degrading or inhibiting transla-
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tion through participating in the regulation of post-transcriptional
gene expressions via binding to target mRNA [110]. Most of them
are the primitive transcripts produced by RNA polymerase acting on
the intron regions of protein-coding genes [111]. Researchers have
illustrated that the process of miRNA regulation is complex, which
means that a single miRNA can simultaneously regulate multiple
target genes and vice versa [112,113]. What’s more, numerous
pieces of evidence have shown that the expression, regulation, and
localization of miRNA can be modulated by changes in the cellular
environment accordingly [114].
The hyperglycemia environment can increase the expressions of

part of the miRNAs. Among them, miR-21 expression is elevated in
DN by inhibiting the expression of TIMP3. As a result, high glucose-
induced inflammatory responses and podocyte apoptosis are ag-
gravated in the DN patients [115]. The other mechanism by which
miR-21 regulates renal injury is via the regulation of Smad7 level.
Knockdown of miR-21 would restrain the TGF-β and NF-κB sig-
naling pathways and restore Smad7 level in diabetic mice [116].
Moreover, it has been shown that miR-21 can enhance the leakage
of the slit membrane through inhibiting PTEN-mediated movement
of podocytes, thus leading to albuminuria [117]. At the same time,
the changing trend of miR-21 in serum is consistent with that in
kidney tissue, which enables the level of miR-21 in serum to reflect
the kidney function indirectly and to be regarded as a biomarker for
the diagnosis of DN [118]. Another oxidative stress-related miRNA
is miR-217, and it was characterized in podocytes cultured in a
hyperglycemic environment. PTEN is the target of miR-217, which
would affect cell apoptosis and ROS production through the path-
way of PI3K/AKT/mTOR [119]. From the aspect of inflammation,
miR-27 as a pro-inflammatory miRNA, can negatively regulate Nrf2
[120] and PPARγ/β-catenin [121], thus inducing the pro-in-
flammatory cytokines in the podocytes of the diabetic model. EMT,
carried out by the EMT-activated transcription factor (EMT-TF), is
one of the important mechanisms of tissue fibrosis. It has been
demonstrated that the ubiquitin E3 ligase complex Skp1-Pam-
Fbxo45 (SPFFbxo45) can dynamically repress EMT-TF, while miR-
27a can reduce the expression of Fbxo45 directly, thereby hindering
the degradation of EMT-TF and guaranteeing the occurrence of EMT
[122]. Different from the aforementioned findings, another study
indicated a nephroprotective role of miRNA-29 [123]. Wang et al.
[123] discovered low levels of miRNA-29 exist in high glucose-in-
duced early-stage renal fibrosis, advanced diabetic renal fibrosis,
and advanced nondiabetic kidney disease. However, another study
reported that the expression of miR-29c was higher in kidney tissue,
urine sediment, and blood samples of DN patients than that in
normal controls. Finally, in-depth research demonstrated that miR-
29c is closely related to the increased secretion of inflammatory
cytokines [124]. In HK-2 cells cultured in high glucose medium,
miR-34a-5p accelerates the transcriptions of SIRT1-related fibrotic
genes through the signaling of SIRT1/TGF-β [125]. Furthermore,
miR-133b and miR-199b can also induce EMT and renal fibrosis
through SIRT1/TGF-β pathway [126].
Among the down-regulated miRNAs, miR-192 is dysregulated

and mediates the activation of TGF-β/Smad3 signaling in the early
development of renal fibrosis [127,128]. In the kidneys of diabetic
rats, TGF-β targets ZEB1/2 in the proximal tubular epithelial cells
through silencing miR-192 expression. It should be noted that ZEB1
and ZEB2 are E-box-binding proteins which have an important
impact on the early phase of EMT [129]. In addition, the miR-192

level in serum and urine is relatively stable and hard to degrade,
which may denote that miR-192 could be used to diagnose the level
of kidney damage better than the commonly used clinical test index,
i.e., the albumin-to-creatinine ratio [130]. Another downregulated
miRNA in DN is miR-30e, and the overexpression of miR-30e can
promote the proliferation of renal tubular endothelial cells and in-
hibit EMT through inhibiting GLIPR-2 expression, thus ultimately
avoiding renal fibrosis [131]. Moreover, miR-25 decreases in a time-
dependent manner in HK-2 cells cultured in high glucose medium.
Overexpression of miR-25 can inhibit the production of ROS and
activate the PTEN/AKT pathway to produce anti-apoptotic effects
[132]. Liu et al. [133] also found that miR-25 overexpression in the
podocytes of DN mice can reduce proteinuria, attenuate glomerular
fibrosis, and inhibit the RAS system to decrease renal hypertension.
Furthermore, monocyte chemoattractant protein (MCP)-1 recruits
macrophages to inflammatory sites, thus aggravating the develop-
ment and progression of DN. It was reported that miR-374a has an
anti-inflammatory effect through the negative regulation of MCP-1
expression [134]. In DN patients, restoration of miR-374a expres-
sion can effectively prevent inflammation in renal tubular epithelial
cells [134].

Long Non-coding RNAs
As mentioned above, long non-coding RNAs (lncRNAs), which
have a nucleotide length greater than 200 nt with no protein-coding
function, is another type of ncRNAs that can regulate gene ex-
pression. Similar to protein-coding mRNAs, lncRNA is also tran-
scribed by RNA polymerase II or polymerase III, and most of them
have 5-caps and 3-terminal polytails. However, the conserved se-
quences between species are less than 10%, and the expression
abundance is not high. Therefore, they have strong tissue and cell
specificity [135–137]. In terms of its function, lncRNA can regulate
gene expression at the levels of transcription, post-transcription,
and translation [138]. The biological evidence for extracellular
lncRNA is limited, but numerous studies have successfully illu-
strated that, similar to miRNA, lncRNAs exist in vesicles or circulate
freely in biological fluids [139]. More importantly, under normal
circumstances, lncRNAs are usually expressed at low levels, but the
levels will increase specifically at a specific stage of disease pro-
gression [140,141].
As the first lncRNA that has been demonstrated to be related to

kidney diseases, plasmacytoma variant translocation (PVT1) was
confirmed to have a close relationship with the occurrence and
development of DN [142]. As a type of lncRNA located in the 8q24
region of the human chromosome, the increase of PVT1 expression
would promote cell proliferation and inhibit cell apoptosis [143]. In
addition, the expression of PVT1 was found to be upregulated in
glomerular mesangial cells under high glucose conditions. Mean-
while, PVT1 regulates the expression of the main components of
ECM and its main regulator PAI-1 in a manner independent of the
TGF-β1 pathway. Compared with the effect of inhibiting TGF-β1,
knockout of PVT1 was proved to be a more effective approach in
reducing the levels of FN1, COL4A1, and PAI-1 [144]. Moreover, it
has been shown that under high glucose environment both PVT1
and its derivative miR-1207-5p can enhance the expressions of FN1,
TGF-β1, and PAI-1 in glomerular mesangial cells independently of
each other, thereby increasing ECM accumulation and accelerating
the process of renal fibrosis of DN [145]. In addition, PVT1 also
activates the pathway of PI3K/Akt/mTOR via up-regulating miR-93-
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5p [146], which promotes the progress of cell proliferation, migra-
tion and invasion. Apart from PVT1, H19 is also expressed in the
nucleus and is significantly increased in some diseased conditions
[147,148], which has been reported to participate in renal diseases
[149]. It has been reported that H19 is increased in TGF-β2-induced
fibrosis in proximal tubular cells [150], implying that inhibition of
H19 alleviates fibrosis and reconstructs normal tissue of the kidney.
Meanwhile, it is interesting to note that inhibition of H19 also
changes miR-29a level and inhibits endothelial-to-mesenchymal
transition (EndMT) through attenuating the TGF-β/Smad signaling
pathway, leading to the block of fibrosis in DN [151].
Hyperglycemia can promote inflammation, oxidative stress, and

fibrosis of the kidneys and it is an important cause of the occurrence
and development of DN. Among these three adverse consequences,
chronic inflammation plays a particularly important role in the early
stage of DN. It was reported that knockout of lncRNA Gm4419 can
improve NF-κB/NLRP3 inflammatory complex-mediated cell in-
flammation, fibrosis, and proliferation [152]. Similarly, increased
expression of lncRNA GM6135 promotes inflammatory reaction by
augmenting TLR4 expression in diabetic mice. As a member of TLR-
mediated signaling, TLR4 secrets pro-inflammatory cytokines by
sponging related miRNAs [153]. In addition, lncRNA Tug1 not only
participates in regulating ECM accumulation, but also regulates the
process of DN via modulating mitochondrial damage. Meanwhile, it
has been proven that PGC-1α plays an important role in cell energy
and mitochondrial homeostasis, while the expression levels of PGC-
1α and lncRNA Tug1 were decreased in diabetic environment [154].
Similarly, Long et al. [155] denoted that overexpression of lncRNA
Tug1 can augment the expression of PGC-1α and repair mitochon-
drial damage. Moreover, Tug1 can promote PGC-1α expression and
improve mitochondrial energy balance, thus delaying the progres-
sion of DN [155]. In addition, Tug1 antagonizs the effect of miR-377
on downregulating PPARγ, and inhibits high glucose-mediated ECM
accumulation. Meanwhile, lncRNA TUG1, as a response of miR-
377, can reduce miR-377 expression, thereby inhibiting its target
gene PPARγ and alleviating the accumulation of ECM in renal me-
sangial cells [156]. Apart from that, the level of lncRNA MIAT is
increased in retinal endothelial cells under a high glucose en-
vironment, while knockout of MIAT can significantly improve dia-
betic retinal microangiopathy and inhibit the proliferation,
migration, and blood vessel formation of retinal endothelial cells. As
a competitive endogenous RNA, MIAT can regulate endothelial cell
function by forming a regulatory pathway together with VEGF and
miRNA-150-5p, thus participating in diabetic microangiopathy
[157]. Simultaneously, the level of lncRNA MIAT in the kidney
tissue of diabetic mice is also decreased, and it is negatively corre-
lated with the creatinine and urea nitrogen levels. In the meantime,
overexpression of MIAT can reverse the inhibitory effect of high
glucose on Nrf2 expression, confirming that MIAT can regulate the
viability of HK-2 cells by stabilizing Nrf2 expression and improving
the prognosis of DN obviously [158].

Conclusions
Epigenetics is very important for the pathogenesis and the devel-
opment of DN. In the past decades, with the development of med-
ical technologies, great progresses have been made in the diagnosis
and treatment of DN. Among these new technologies and concepts,
the epigenetic mechanisms have pioneered novel horizons for the
cause of diseases and made great contributions to the development

of more meaningful and effective treatments. However, the current
knowledge of epigenetics is still quite limited, which means that
there are still many unknowns in this field worth further research,
especially the novel functions of histone lactylation in DN. In short,
actively exploring the unknown aspects of epigenetics is particu-
larly important for reducing the severity and related risks of DN and
improving the prognosis of diabetic patients.
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