Skip to main content
. 2023 Jan 25;25:e34474. doi: 10.2196/34474

Table 3.

Comparisons of the performance of machine learning classifiers for Mel-frequency cepstral coefficients (MFCCs), extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS), and Interspeech Computational Paralinguistics Challenge (COMPARE) feature sets of vowel task (N=318).

Feature and classifier Test set

ACCa (%), mean (SD) PRECb (%), mean (SD) RECc (%), mean (SD) F1-scored (%), mean (SD)
MFCCs

SVMe 56.56 (3.81) 56.22 (4.01) 55.82 (3.84) 55.43 (3.91)

LDAf 54.69 (2.88) 54.25 (2.99) 53.98 (2.80) 53.65 (2.75)

kNNg 57.19 (5.60) 56.84 (5.85) 56.65 (5.58) 56.47 (5.80)

RFh 60.63 (1.53) 61.24 (2.07) 59.41 (1.44) 58.40 (1.31)
eGeMAPS

SVM 59.38 (5.93) 59.27 (6.37) 58.59 (6.16) 57.90 (6.58)

LDA 59.69 (2.60) 59.44 (2.66) 59.16 (2.66) 59.05 (2.71)

kNN 59.37 (3.13) 59.30 (3.17) 59.29 (3.18) 59.23 (3.18)

RF 61.25 (2.86) 61.67 (3.20) 60.16 (2.99) 59.32 (3.39)
COMPARE

SVM 48.75 (3.48) 48.57 (3.62) 48.67 (3.44) 48.26 (3.70)

LDA 51.25 (3.19) 51.37 (3.46) 51.37 (3.40) 51.07 (3.38)

kNN 59.38 (5.23) 59.12 (5.42) 58.78 (5.32) 58.61 (5.40)

RF 72.80 (2.44) 73.70 (2.19) 72.14 (2.64) 72.04 (2.77)

aACC: accuracy.

bPREC: precision.

cREC: recall.

dF1-score: the weighted average of precision and recall.

eSVM: support vector machine.

fLDA: linear discriminate analysis.

gkNN: k-nearest neighbor.

hRF: random forest.