Skip to main content
. 2023 Jan 25;25:e34474. doi: 10.2196/34474

Table 4.

Comparisons of the performance of machine learning classifiers for Mel-frequency cepstral coefficients (MFCCs), extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS), and Interspeech Computational Paralinguistics Challenge (COMPARE) feature sets of digit task (N=318).

Feature and classifier Test set

ACCa (%), mean (SD) PRECb (%), mean (SD) RECc (%), mean (SD) F1-scored (%), mean (SD)
MFCCs

SVMe 53.75 (4.80) 53.82 (4.96) 53.76 (4.87) 53.62 (4.74)

LDAf 56.25 (5.76) 56.07 (5.84) 55.92 (5.66) 55.87 (5.64)

kNNg 51.25 (5.80) 50.80 (4.41) 50.82 (4.36) 50.61 (4.44)

RFh 52.81 (3.26) 51.66 (4.09) 51.63 (3.48) 50.24 (4.24)
eGeMAPS

SVM 51.84 (4.62) 51.32 (4.58) 51.30 (4.56) 51.17 (4.60)

LDA 48.01 (2.50) 47.95 (2.69) 48.04 (2.64) 47.92 (2.69)

kNN 45.36 (3.42) 45.60 (3.48) 45.52 (3.39) 45.13 (3.30)

RF 56.21 (3.56) 56.15 (4.89) 55.10 (3.68) 52.96 (4.25)
COMPARE

SVM 57.81 (5.09) 57.64 (5.69) 57.08 (5.78) 55.73 (6.77)

LDA 62.19 (4.30) 62.32 (4.49) 62.25 (4.41) 62.09 (4.31)

kNN 45.31 (4.01) 45.14 (4.03) 45.16 (4.03) 45.10 (4.03)

RF 73.44 (1.56) 73.84 (1.79) 72.96 (1.49) 72.99 (1.53)

aACC: accuracy.

bPREC: precision.

cREC: recall.

dF1-score: the weighted average of precision and recall.

eSVM: support vector machine.

fLDA: linear discriminate analysis.

gkNN: k-nearest neighbor.

hRF: random forest.