Skip to main content
. 2023 Jan 25;25:e34474. doi: 10.2196/34474

Table 5.

Comparisons of the performance of machine learning classifiers for Mel-frequency cepstral coefficients (MFCCs), extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS), and Interspeech Computational Paralinguistics Challenge (COMPARE) feature sets of passage task (N=318).

Feature and classifier Test set

ACCa (%), mean (SD) PRECb (%), mean (SD) RECc (%), mean (SD) F1-scored (%), mean (SD)
MFCCs

SVMe 70.73 (5.93) 70.00 (6.29) 68.18 (6.19) 68.63 (6.63)

LDAf 69.95 (8.38) 70.57 (8.23) 69.79 (8.34) 69.49 (8.60)

kNNg 63.45 (7.76) 63.55 (8.05) 63.25 (7.91) 63.13 (7.87)

RFh 68.54 (7.75) 66.45 (7.40) 67.98 (8.09) 67.27 (8.74)
eGeMAPS

SVM 59.38 (2.08) 59.35 (2.15) 58.89 (2.15) 58.58 (2.34)

LDA 58.14 (2.99) 57.96 (3.34) 57.21 (2.96) 56.62 (2.99)

kNN 61.88 (4.37) 62.11 (4.85) 64.05 (4.71) 60.66 (4.37)

RF 57.81 (2.21) 57.33 (2.91) 56.74 (2.17) 56.10 (2.36)
COMPARE

SVM 63.44 (2.44) 63.44 (2.53) 62.96 (2.58) 62.80 (2.71)

LDA 62.19 (4.93) 62.17 (4.94) 62.10 (4.87) 62.03 (4.90)

kNN 65.63 (3.13) 65.61 (3.19) 65.49 (3.07) 65.44 (3.06)

RF 68.75 (1.40) 69.69 (1.27) 67.84 (1.49) 67.60 (1.63)

aACC: accuracy.

bPREC: precision.

cREC: recall.

dF1-score: the weighted average of precision and recall.

eSVM: support vector machine.

fLDA: linear discriminate analysis.

gkNN: k-nearest neighbor.

hRF: random forest.