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Abstract

Network estimation and variable selection have been extensively studied in the statistical 

literature, but only recently have those two challenges been addressed simultaneously. In this 

article, we seek to develop a novel method to simultaneously estimate network interactions and 

associations to relevant covariates for count data, and specifically for compositional data, which 

have a fixed sum constraint. We use a hierarchical Bayesian model with latent layers and employ 

spike-and-slab priors for both edge and covariate selection. For posterior inference, we develop 

a novel variational inference scheme with an expectation–maximization step, to enable efficient 

estimation. Through simulation studies, we demonstrate that the proposed model outperforms 

existing methods in its accuracy of network recovery. We show the practical utility of our model 

via an application to microbiome data. The human microbiome has been shown to contribute too 

many of the functions of the human body, and also to be linked with a number of diseases. In our 

application, we seek to better understand the interaction between microbes and relevant covariates, 

as well as the interaction of microbes with each other. We call our algorithm simultaneous 

inference for networks and covariates and provide a Python implementation, which is available 

online.
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1. Introduction

Variable selection, also known as feature selection, is a well-studied subject in the 

statistical literature, particularly in the context of regression models, where many approaches 

have been proposed. Feature selection offers an opportunity to both improve model 

predictions, by avoiding the inclusion of noisy or irrelevant predictors, and to identify 

interpretable parsimonious models. Frequentist approaches often use a penalized likelihood 

to obtain sparse estimates of the regression coefficients, and include methods such as 
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LASSO (Tibshirani 1996), adaptive LASSO (Zou 2006), and SCAD (Fan and Li 2001). 

Alternatively, Bayesian approaches employ carefully constructed priors on the regression 

coefficients to identify the relevant variables. Spike-and-slab priors, first proposed by 

Mitchell and Beauchamp (1988), are a popular class of priors that use a latent indicator 

to represent variable inclusion. Conditional on the indicators, the regression coefficients 

are assumed to come from a mixture prior representing important vs. negligible effects 

(George and McCulloch 1997; Brown, Vannucci, and Fearn 1998). In addition to sparse 

estimation of the coefficients, these priors produce posterior probabilities of inclusion (PPIs) 

for each covariate that capture the uncertainty in the selection. Spike-and-slab priors have 

been extended to regression models for non-Gaussian data, including binary, multinomial, 

and count responses (Raftery 1996; Ntzoufras, Dellaportas, and Forster 2003; Sha et al. 

2004; Wadsworth et al. 2017; Koslovsky and Vannucci 2020).

A parallel development has happened in the graphical model literature: in this framework, 

nodes correspond to variables, and edges connecting these nodes represent conditional 

dependence relations. In the Gaussian setting, the problem of selecting edges in the graph 

reduces to the estimation of a sparse inverse covariance matrix, since exact zeros in this 

matrix, which is also known as the precision matrix, correspond to conditional independence 

relations (Dempster 1972). In frequentist settings, penalized likelihood methods, such as 

neighborhood selection (Meinshausen and Bühlmann 2006) and the graphical LASSO (Yuan 

and Lin 2007; Friedman, Hastie, and Tibshirani 2008), have been proposed. These methods 

have been extended to count data by using data transformations (Kurtz et al. 2015) or 

penalized log-likelihood methods (Fang et al. 2017). In Bayesian inference, the G-Wishart 

prior (Roverato 2002), which is the conjugate prior that imposes exact zeros in the precision 

matrix, has been explored by several authors for inference in Gaussian graphical models, 

but poses significant computational challenges (Lenkoski and Dobra 2011). As a result, 

this prior is not easily scalable. Alternative shrinkage constructions that employ continuous 

priors on the off-diagonal elements of the precision matrix have been proposed, such as 

the Bayesian graphical lasso (Wang 2012), which relies on double exponential priors, 

and mixture priors (Wang 2015), inspired by the spike-and-slab priors in the regression 

framework discussed above. To enable estimation of the spike-and-slab model of Wang 

(2015) in high-dimensional settings, Li and McCormick (2019) recently proposed an 

efficient expectation conditional maximization method, which offers an attractive alternative 

to stochastic search approaches.

In this article, we propose a novel Bayesian hierarchical model for count data that allows 

for simultaneous estimation of covariate dependence and network interactions. Methods 

for simultaneous estimation are gaining popularity, with approaches including penalized 

likelihood methods (Rothman, Levina, and Zhu 2010; Yang, Chen, and Chen 2017), 

and, most recently, spike-and-slab lasso prior models (Deshpande, Ročková, and George 

2019). By accounting for covariate selection, simultaneous estimation methods are able to 

control for those variables, which ultimately leads to more accurate network estimation. 

Moreover, simultaneous estimation can improve the detection of covariate effects, as noted 

by Deshpande, Ročková, and George (2019). However, with the exception of Yang, Chen, 

and Chen (2017), these methods are not suitable for count data. In our approach, we 

consider multivariate count data, and specifically compositional data that have a fixed sum 
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constraint. We model the data using a Dirichlet-multinomial likelihood and then introduce 

a latent layer by modeling the log concentration parameters via a Gaussian distribution. We 

account for covariates through the mean function of the latent layer and employ multivariate 

variable selection spike-and-slab priors that allow each covariate to be relevant for individual 

response variables (Richardson, Bottolo, and Rosenthal 2010; Stingo et al. 2010). We also 

capture a network of latent dependence relationships by estimating the inverse covariance 

matrix via the mixture prior of Wang (2015). For posterior inference, we implement a 

novel variational Bayes approach that includes an expectation–minimization (EM) step to 

estimate the model. This allows us to gain flexibility by using a Bayesian model, while 

still remaining computationally efficient. Additionally, the algorithm is developed so that 

multiple steps can be run in parallel, achieving larger computational gains. We show through 

simulations that our method outperforms the LASSO-based approach of Yang, Chen, and 

Chen (2017). We refer to our model as simultaneous inference of networks and covariates 

(SINC).

Compositional data are often collected in chemistry, geology, and biology applications. In 

biomedicine, modern genomic sequencing technologies have allowed investigators to collect 

samples on the human microbiome. Microbes associated with the human body include 

eukaryotes, archaea, bacteria, and viruses, which have been shown to contribute to important 

bodily functions including food digestion and energy supply. The human microbiome has 

also been implicated in many diseases including colorectal cancer, inflammatory bowel 

disease, and immunologically mediated skin diseases. The observed data from a microbiome 

study are typically short reads of DNA sequences, which are clustered to create operational 

taxonomic units (OTUs). The abundances across samples of these OTUs, which represent 

genetically close groups of microbes assumed to have similar functions, are taken as 

input to downstream analysis. A challenge to modeling these data is that the number 

of counts for a particular OTU depends on the number of sequences collected for that 

sample, meaning that the observed counts are dependent on each other, as they constitute 

proportions of a whole. This results in data that are compositional. For these reasons, 

Dirichlet-multinomial distributions are particularly appropriate to model microbiome data, 

as demonstrated by several authors (Chen and Li 2013; Wadsworth et al. 2017; Tang, 

Ma, and Nicolae 2018). In the application of this article, we focus on two questions of 

interest in the understanding of the microbiome: which variables influence the microbial 

abundances, and what are the dependence relationships among microbes. The abundance 

of microbes or groups of microbes is dependent on many factors. Microbial abundance 

may be related to external covariates, such as diet, cytokines, or use of medication. These 

factors influence the microbiome by introducing new organisms, changing the abundance 

of metabolites, or altering the pH of their environment. For example, consumption of an 

animal-based diet high in meat has been shown to increase production of bile acid, which 

inhibits growth of bacteria belonging to the Bacteroidetes and Firmicutes phyla (David et 

al. 2014). Antibiotics can alter the microbiome substantially, by killing off components of 

the microbiome in addition to the bacteria triggering the infection (Edwards et al. 2019). 

As we understand more about the importance of the microbiome, it is also critical to 

understand what factors lead to the prevalence of different microbes. Here, we apply the 

proposed method to real data from the Multi-Omic Microbiome Study: Pregnancy Initiative 
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(MOMS-PI) study, to estimate the interaction between microbes in the vagina, as well as 

the interplay between vaginal cytokines and microbial abundances, providing insight into 

mechanisms of host-microbial interaction during pregnancy.

The article is outlined as follows: in Section 2, we describe the proposed hierarchical model, 

followed by the variational EM estimation method in Section 3. We provide a simulation 

study in Section 4, and then showcase the proposed model in an application to multi-omic 

data from a study on the role of the microbiome in pregnancy in Section 5. Finally, we 

discuss the advantages of the proposed model in Section 6.

2. Proposed Model

Suppose we have observed multivariate counts arranged in an n × p matrix, X, where p is 

the number of observed variables measured across n samples. We then let the p-vector Xi 

correspond to the measurements for observation i, and the matrix entry xi,j correspond to the 

jth variable measurement for the ith observation. We also observe q covariates for each of 

the n observations, with these q additional factors possibly influencing the measured counts 

for each observation. We arrange the covariate data in an n × q matrix, M.

We are interested in understanding the conditional dependence relationships among the p 
variables while simultaneously selecting the relevant covariates. We adopt a hierarchical 

model formulation with a latent Gaussian layer, similarly to Yang, Chen, and Chen (2017), 

as

Zi ∣ B0, Mi, B, Ω MVNorm B0 + MiB, Ω−1

αi = exp Zi
hi ∣ αi Dirichlet αi
Xi ∣ hi Multinomial hi, Ni .

(1)

In this hierarchical formulation, we introduce a latent normal variable Zi, which is a direct 

transformation of the concentration parameter αi and therefore controls the observed counts 

Xi. This model has several important features: the Dirichlet-multinomial likelihood for the 

count data, Xi, allows us to account for overdispersion as well as the compositional nature of 

the data. The dependence on covariates is incorporated through the mean of the multivariate 

normal, where the observed covariates Mi have effects B. The dependence among the Zi is 

captured by the inverse covariance matrix, also known as the precision matrix, Ω. The 1 × 

p vector B0 accounts for the mean of each column of the latent matrix Z. In our modeling 

approach, careful consideration of the priors on the covariate effects B, the intercepts B0 and 

the precision matrix Ω allows us to construct a directed graph between covariates M and 

latent variables Z, as well as an undirected graph between the columns of Z.

For microbiome studies, Gloor et al. (2017) noted that the observed compositional data 

have a different correlation structure than the true underlying abundances. More specifically, 

due to the fixed-sum constraint, compositional data tend to exhibit negative correlations. In 

model formulation (1), we interpret the latent layer hi to be the relative abundances, and 

αi to be the absolute abundances (Yang, Chen, and Chen 2017). By estimating a network 

on the latent Z, we capture the network of the underlying, absolute abundances through 
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the precision matrix Ω. Therefore, even though the latent Gaussian layer does not allow 

us to recover relationships directly among the observed counts, the inferred dependences 

do provide some insights into the relationships among the underlying processes. Latent 

graphical models for Poisson-distributed count data that use Gaussian layers were used by 

Vinci et al. (2018), for spike-count data. See also Talhouk, Doucet, and Murphy (2012) and 

Li, McComick, and Clark (2020) for latent graphical model constructions for binary data.

2.1. Prior on Covariate Effects B

Here, we describe the prior on the covariate effects, which enables selection of the important 

associations between X and other potentially related factors M. We consider the effects of 

the covariates M on each column of Z separately, which means that we will be able to 

update the columns of B independently of each other. Here B is a q × p matrix, where each 

column of B represents the vector of regression coefficients for the q covariates of M on 

the jth column of Z. We use a spike-and-slab prior on each element of the matrix B, which 

shrinks the effects of features that do not influence Z to zero. Remember that we are looking 

at the columns of Z one at a time, and can thus say that any entry from the jth column, Zi,j, 

comes from a Normal B0j + MiBj, σj* , where σj* is the standard deviation of the jth column of 

Z, found by using the properties of the multivariate normal distribution shown in Equation 

(1). The prior on B is as follows:

Bk, j ∣ γk, j, vB
2 γk, jNormal 0, vB

2 + 1 − γk, j δ0,
γk, j ∣ θγj Bernoulli θγj ,
θγj ∣ aγ, bγ Beta aγ, bγ ,

(2)

for j = 1, …, p and k = 1, …, q, and with δ0 a point mass at 0, indicating that when 

γk,j is 0, Bk,j is exactly 0. Here, θγj is the probability of a variable being relevant in Bj. 

Notice that the mixture prior (2) allows each variable to be relevant for individual responses 

(Richardson, Bottolo, and Rosenthal 2010; Stingo et al. 2010), as opposed to spike-and-slab 

constructions that select variables as relevant to either all or none of the responses (Brown, 

Vannucci, and Fearn 1998). We also put a non-informative prior on each element of B0, that 

is, B0j ∝ 1.

2.2. Prior on Precision Matrix Ω

Next we introduce the prior on the precision matrix Ω, which allows us to learn a sparse 

association network. We consider the prior of Wang (2015) in the formulation proposed by 

Li and McCormick (2019)

π Ω ∣ δ, v1, v0, λ, τ ∝ ∏
i < j

1 − δi, j Normal ωi, j ∣ 0,
v0

2

τ

+δi, jNormal ωi, j ∣ 0,
v1

2

τ × ∏
i

Exp ωi, i ∣ λ/2 1Ω ∈ M+,
(3)

where ν0 and ν1 are fixed standard deviations, that assume small and large values, 

respectively, δi,j is a latent variable indicating whether or not an edge is present between 
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nodes i and j, and τ is a scaling parameter, with a hyperprior Gamma(aτ, bτ) that allows 

us to adaptively learn the standard deviations. The original prior of Wang (2015) is 

obtained by setting τ = 1. Additional complexity can be added to the prior on τ to include 

existing knowledge about variable associations, as shown in Li and McCormick (2019). 

The mixture of normals on the off-diagonal precision matrix entries enables the selection 

of interactions, represented by edges in a network, since nonzero precision matrix entries 

reflect conditional dependence relationships (Dempster 1972). Here, entries reflecting 

conditional independence relations do not equal exactly zero, but get shrunk to close to 

zero. The diagonal entries are drawn from a common exponential prior. The final term in 

Equation (3) expresses a constraint to the space of positive definite matrices M+. This prior 

is particularly advantageous in our model, as it allows for efficient estimation via the EM 

algorithm and leads to less bias in estimation of the off-diagonal precision matrix elements 

than the graphical LASSO, as shown by Li and McCormick (2019).

We complete the modeling of the precision matrix Ω by setting the prior on the graph 

structure, assuming independent Bernoulli distributions on the inclusion of each edge as 

follows:

δi, j ∣ π Bernoulli(π),
π ∣ aπ, bπ Beta aπ, bπ . (4)

3. Posterior Inference

We now discuss how to obtain posterior estimates of the parameters in the model outlined in 

Section 2. Instead of a traditional Markov chain Monte Carlo (MCMC) sampler, which can 

be computationally quite expensive, we rely on a variational inference (VI) approach, which 

aims to find an approximation of the posterior using optimization methods. VI works by 

specifying a family of approximate distributions , which are densities over latent variables 

W that are dependent on free parameters ξ, and then seeking to find the values of ξ that 

minimize the Kullback–Leibler (KL) divergence between the approximate distribution and 

the true posterior. As discussed in Blei, Kucukelbir, and McAuliffe (2017), minimizing the 

KL divergence is equivalent to maximizing the evidence lower bound (ELBO), which is 

defined as follows:

ELBO = Eξ[log p(X, W )] − Eξ[log q(W )], (5)

with p(X, W) as the joint distribution of the observed data and the latent variables, and q(W) 

the variational distributions of the latent variables.

The most common approach to obtain an approximating distribution when applying 

a variational Bayes approach is mean field approximation, where the approximating 

distribution is assumed to factorize over some partition of the parameters. This is the 

approach that we adopt for the coefficient vector B. However, a mean field approach for 

the elements of the precision matrix Ω is not appropriate, due to the dependence among the 

parameters induced by the fact that this matrix is constrained to be symmetric and positive 

semidefinite. For this reason, the choice of an appropriate approximating distribution for the 
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precision matrix is an open research question. To circumvent this issue, similar to Miao et al. 

(2020), we adopt a hybrid VI algorithm, with an EM step to estimate Ω and δ.

Specifically, for B we use the mean field variational distributions 

q(B, γ) = ∏j = 1
p ∏k = 1

q q Bk, j, γk, j ∣ ϕk, j, μk, j, σk, j , where

q Bk, j, γk, j ∣ ϕk, j, μk, j, σk, j =
ϕk, jNormal Bk, j ∣ μk, j, σk, j if γk, j = 1,

1 − ϕk, j δ0 Bk, j otherwise

with free parameters ξ = {ϕk,j, μk,j, σk,j}. We then define the ELBO as

ELBO = Eξ log ∏
j = 1

p
p Xi ∣ Zi p Zi ∣ B0, Mi, B, Ω × ∏

k = 1

q
p Bk, j ∣ γk, j, vB

2 p γk, j ∣ θγj p θγj ∣ aγ, bγ

× p Ω ∣ δ, v1, v0, λ, τ p δi, j ∣ π p π ∣ aπ, bπ − Eξ log ∏
i = 1

p
∏

k = 1

q
q Bk, j, γk, j ∣ ϕk, j, μk, j, σk, j ,

where the first expectation is equivalent to Eξ[log p(X, W )] and the second expectation is 

Eξ[log q(W )] of [Equation (5),] for W = {Z, B0, B, Ω, δ, π, γ, θγ}.

The hybrid scheme we use to maximize the ELBO, where the first part is a VI step and 

the second part is an EM step, is described in detail in the following subsections. In the VI 

step, we update the free parameters, ξ, by setting the partial derivative of the ELBO with 

respect to the desired parameters equal to zero. This maximizes the ELBO with respect to 

ξ. We then further maximize the ELBO by finding the optimal values for the remainder of 

the latent parameters. For this, we rely on an EM step, by treating δ as latent parameters and 

taking the expectation of the ELBO with respect to δ, or equivalently setting

Q θ ∣ θ(t), ξ(t) = Eδ[ELBO], 

at iteration t, and optimizing Q(θ | θ(t), ξ(t)) by finding the maximum a posteriori (MAP) 

estimate of the remaining parameters θ = {Z, B0, Ω, π, θγ}. The resulting algorithm, 

which we call SINC, is described in Algorithm 1. As with traditional EM and VI schemes, 

parameter updates at each iteration are made with the most current estimates of all other 

parameters. The algorithm results in MAP estimates for the parameters in θ. Additionally, 

since no uncertainty about these parameters is used in the updates of the other parameters, 

the proposed algorithm is only suitable for point estimation.
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Our proposed hybrid algorithm builds upon the similarities between the VI and EM 

algorithms. As noted in Blei, Kucukelbir, and McAuliffe (2017), the first term of Equation 

(5) is the expected complete log-likelihood, which is optimized by the EM algorithm. Since 

no variational distributions are proposed for the parameters in θ, updating those parameters 

is achieved by optimizing log p(W, Y) in Equation (5). As an alternative perspective to 

highlight the similarity, we could say that we have assigned a point mass as our variational 

distribution for these latent parameters. Optimizing the ELBO would then lead to the same 

result, since taking the partial derivative of the ELBO with respect to the variables with 

point mass variational distributions would result in optimizing Eξlog[p(W , Y )]. By stating the 

algorithm in this way, we can interpret our approach as a proper VI scheme, solved via an 

EM step similar to Titsias and Lázaro-Gredilla (2011), which affords us the confidence of VI 

guarantees of previous literature (Blei, Kucukelbir, and McAuliffe 2017).

3.1. VI Step

Here, we use a VI step to estimate the regression coefficients B by updating the free 

parameters μk,j, σk,j, and ϕk,j, where μk,j and σk,j are the mean and variance, respectively, of 

Bk,j when γk,j 1, and ϕ = k,j is interpreted as the probability of γk,j = 1, resulting in Bk,j ≠ 

0. Following the work of Titsias and Lázaro-Gredilla (2011) and Carbonetto and Stephens 

(2012) the free parameters can then be updated as
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μk, j = σk, j
σj*

MT Zj − B0j k − ∑
l ≠ k

MTM lkϕl, kμl, k , (6)

σk, j =
σj*

MTM k, k + 1/νB
, (7)

ϕk, j = Logit−1 log
θγj

1 − θγj
− 1

2log σj, k
vBσj*

+
μi, j2

2σj, k
2 . (8)

Updating each column of B can then be done independently and, when resources are 

available, these updates can be done in parallel. While updating a column of Bj, each 

component of μj, σj, ϕj is updated given all other components. This component-wise update 

of μj, σj, ϕj is repeated until ELBO(μj, σj, ϕj) has converged. Once all μ and ϕ have 

been updated, the individual elements of B are assigned E Bk, j = μk, jϕk, j. Once the SINC 

algorithm has converged, as common in variational spike-and-slab literature (Huang, Wang, 

and Liang 2016; Miao et al. 2020), we set Bk,j = μk,j if ϕk,j > 0.5 and Bk,j = 0 if ϕk,j ≤ 0.5. 

The threshold of 0.5 equivalent to selecting the median model of Barbieri and Berger (2004) 

and can be adjusted to include or exclude more covariates, but the threshold of 0.5 is the 

most commonly used.

3.2. E Step

In this step, we focus on updates to the edge inclusion parameter δi,j. For the first step we 

take the expectation of the posterior distribution, treating δ as the latent variable. We define 

Q(Θ| Θ(t), ξ(t)) as Eδ ∣ Ω(t), π, X log p Z, Ω, B, B0, π ∣ X, M ∣ Ω(t), π, X . Following the results 

shown in Li and McCormick (2019), the E step can be broken into two steps:

Eδ ∣ Ω(t), π, X δi, j = pi, j* ≡ ai, j
ai, j + bi, j

, (9)

Eδ ∣ Ω(t), π, X
1

v0
2τ−1 1 − δi, j + v1

2τ−1δi, j
= di, j* ≡

1 − pi, j*
v0

2 +
pi, j*
v1

2 τ−1, (10)

where ai,j = p(ωi,j | δi,j = 1)π and bi,j = p(ωi,j | δi,j = 0)(1 − π), and (i, j) is the (i, j)th entry of 

the precision matrix, where i and j ∈ {1, …, P}.

3.3. M Step

The remainder of the unknown parameters can be found by maximizing the posterior 

distribution with regards to each of the parameters we are interested in. Here, we first update 

the column-wise centering parameters B0j independently as
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B0j =
∑i = 1

n Zi, j − MiBj
n . (11)

Next, we update the precision matrix, Ω. Following Li and McCormick (2019) and Wang 

(2015) the conditional distribution of each column of Ω can be found in closed form. For 

this, let

Ω =
Ω11 ω12

ω21
T ω22

,

Z − MB + B0
T Z − MB + B0 =

S11 s12
s21 s22

.

Then, the conditional distributions are

ω12 Normal −Cs12, C ,
ω22 − Ω12Ω11Ω12 Gamma 1 + n

2, λ + s22
2 , C = s22 + λ Ω−1 + diag νδ12

−1 . (12)

We can then do a column-by-column update as

ω12 = − s22 + λ (Ω)−1 + diag dij*
−1 s12,

ω22 = ω12Ω11ω12 + n
λ + s22

.
(13)

The point estimates of θγ and π are also updated as follows:

θγ = ∑ϕi, j + aγ − 1
p + aγ + bγ − 2 , (14)

π = aπ + ∑
i < j

δij − 1 / aπ + bπ + p × (p − 1)
2 − 2 . (15)

If using the adaptive scale parameter, τ, then an additional update is done by setting

τ = aτ − 1 + 0.5(p × (p − 1))
bτ − 2 + 0.5∑i < jωi, j2 di, j* (16)

Finally, the matrix of latent variables can be estimated by finding a point estimate for each 

entry of the matrix. This is done by updating each row of the matrix independent of the 

others. As shown in Yang, Chen, and Chen (2017), the objective function to optimize with 

respect to Z is
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log P Z ∣ X, M, B0, B, Ω = − 1
n ∑

i = 1

n
∑
j = 1

p
Γ αi, j + xi, j − Γ s αi + s Xi

− ∑
j = 1

p
Γ αi, j + Γ s αi − 1

2log |Ω | + 1
2n ∑

i = 1

n
Zi − B0 + MiB Ω

Zi − B0 + MiB ,

(17)

where Γ  is the log-gamma function, and s xi = ∑j = 1
p xi, j. To accomplish optimization 

of each Zi we use the limited-memory quasi-Newton (L-BFGS) algorithm, which is a 

quasi-newton gradient descent method that makes use of the inverse gradient to direct where 

to search through the variable space.

For posterior inference, we iterate through the VI step, which iterates between updating 

ϕk,j, μk,j, and σk,j, and the E and M steps, which update Ω one column at a time, until 

the algorithm has converged. For both the VI and the M steps, we run each of those steps 

until the respective parameter estimates have converged. We determine the algorithm to have 

converged if the ELBO changes by less than a predefined tolerance from one iteration to the 

next. To obtain a selected network and set of covariates based on these posterior estimates, 

we select edges i, j with pi, j*  in Equation (9) ≥ 0.50, and covariate associations with ϕk, j*

in Equation (8) ≥ 0.50. In practice, both the pi, j*  and ϕk,j values, which reflect the posterior 

probabilities for the selection of edges and covariates, tend to converge to values close to 0 

or close to 1. A similar trend has been noted by Kook et al. (2021), who reported that the 

variational parameters for the marginal posterior probabilities of inclusion tended to become 

more widely separated as the algorithm converges.

4. Simulation Study

We now compare the performance of our method to existing approaches in a simulation 

setting designed to mimic the application to microbiome data described later in the article.

4.1. Simulation Setup

Simulated data were generated with the following steps. First, the covariates, M, were 

generated from a normal distribution MVNorm(0, Ip), and subsequently scaled. The values 

of the regression coefficients B, related to M, were then sampled. Each element of B, Bk,j, 

was assigned either a random value between [−1, −0.5] with probability 0.1, a value in [0.5, 

1] with probability 0.1, or else 0. Each B0j was then sampled from the interval [6, 8] with 

probability 0.2, and from [2, 4] with probability 0.8. This allowed for some variables to have 

larger counts and others to be sparser, as common in microbiome data. Simulated counts 

were then sampled by first drawing Z from MVNorm(MB + B0, Ω), with Ω as described 

below, and then assigning α as exp(Z). Finally, hi was sampled as a random draw from 

Dirichlet(αi), and Xi drawn from a Multinomial(hi, nint(Ni)), with Ni generated from a 

Normal(3000, 250), allowing for samples to have different numbers of total counts, where 

nint() represents the nearest integer function. We set p = 100, q = 50 and n = 300.
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To explore performance for a range of possible network structures, we simulated a variety 

of configurations. These networks were created using the R package huge (Jiang et al. 

2019). For this simulation, we used a band, cluster, hub, and random graph structure. 

An example of what these networks look like can be seen in Figure 1. Band graphs and 

random graphs are common test cases for network learning, while the hub and cluster 

graphs capture some aspects of biological networks, such as highly connected nodes and 

community structure (Girvan and Newman 2002). The probability of an edge in the network 

was set to 0.025 for the random graph and 0.30 for each cluster in the cluster graph. The 

bandwidth in the graph was set to 3 and the number of hubs in the hub graph was set to 

3. The precision matrix Ω used to generate the simulated data was also constructed using 

the function huge.generate of the R package huge Jiang et al. (2019). Parameters v and 

u of huge.generate, which control the off-diagonal elements of the precision matrix and 

magnitude of the partial correlations, were set to 1 and 0.0001, respectively.

The results we report below for our proposed model were obtained with the following 

hyperparameter settings. Fairly non-informative priors were set by choosing aγ = bγ = 2 

in the prior probability of inclusion (2) of each covariate. The same setting was used for 

the hyperparameters aπ and bπ in Equation (4), which determines the prior probability 

of an edge being included. The standard deviation of the prior on the selected regression 

coefficients, νB in Equation (2), was set to 1. Following guidelines given by Wang (2015) 

and Li and McCormick (2019), we set ν1 = 10, the standard deviation in prior (3) on the 

off-diagonal precision matrix entries corresponding to selected edges, and fit the model 

across a grid of values, ranging from 0.0001 to 0.1, of ν0, the prior standard deviation of 

off-diagonal elements of the precision matrix corresponding to nonselected edges. We then 

chose the final model by using the ν0 value that gave sparsity closest to 0.10. This sparsity 

level was selected arbitrarily, and did not result in any specific advantage for our method, 

as none of the simulation networks had sparsity equal to 0.10. Finally, the rate parameter 

λ of Equation (3), which appears in the prior on diagonal elements of the precision matrix, 

was set to 150. We also compare the model when the scaling parameter, τ, is learned, and 

use a Gamma(2,2) prior to do so. We comment on the sensitivity of the results to parameter 

choices in Section 4.3.

4.2. Simulation Results

We compare the performance of our method to several existing alternative approaches 

in terms of accuracy in network estimation and covariate selection. For comparison, 

we used mLDM (Yang, Chen, and Chen 2017), which is specifically designed for 

estimating networks of compositional data while controlling for covariates, and mSSL-DPE 

(Deshpande, Ročková, and George 2019), which we applied to the centered log ratio 

(CLR) transformed version of the simulated count data, a common method to account 

for the compositionality (Fang et al. 2017; Kurtz et al. 2015). For network estimation, we 

also considered SpiecEasi (Kurtz et al. 2015), which applies graphical LASSO to the CLR-

transformed data. These methods were applied by using the default selection criteria in their 

respective R packages. To more precisely characterize factors contributing to the network 

estimation performance of the SINC method, we apply a version of SINC with the covariate 

effects B constrained to be 0. A comparison of the results from this constrained version of 
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SINC to those of SpiecEasi reflects the performance advantages arising from differences in 

the network estimation procedure, while comparison to the full unconstrained SINC method 

provides quantitative insight on the benefit of simultaneous estimation of covariate effects on 

network recovery. Similarly, for the comparison of variable selection accuracy, we apply a 

constrained version of SINC with Ω fixed to the identity matrix. Comparison of the results 

from this approach to those of the full unconstrained SINC method illustrates the added 

value of accounting for the residual covariance in estimation of B.

We report results in terms of true positive rate (TPR), false positive rate (FPR), F1 score, and 

Matthew’s correlation coefficient (MCC). For edge selection, we also report the area under 

the curve (AUC). This was calculated, for the SINC method, over a grid of ν0 values, and 

for the mLDM and mSSL-DPE methods by using the LASSO penalization parameter for the 

coefficients associated with the best selected graph, and then varying the graph penalization 

parameter over a grid of values. The AUC for SpiecEasi was calculated by varying the 

penalization parameter. Tables 1 and 2 show the results for network estimation and variable 

selection, respectively. From Table 1, we can see that mSSL-DPE and SpiecEasi are 

generally not competitive in terms of their performance, with low F1, MCC, and AUC 

values. This is likely because mSSL-DPE was not designed for compositional data, and 

SpiecEasi is not able to account for the effects of the covariates on the counts. We also 

see that mLDM performs better than the other two methods but is still outperformed by 

the proposed model, which does better in all F1, MCC, and AUC scores across all of the 

network structures except the hub structure. Finally, we see that when the proposed model 

does not control for additional covariates, the network estimation scores decrease and are 

comparable to the other methods. Across all methods, SINC while learning τ performed best 

in all network structures in terms of F1, MCC, and AUC. The performance metrics for SINC 

are pretty similar across all network types, though the best performance is achieved on the 

random graph, while the hub and cluster settings are more challenging. From Table 2, we 

can see that mSSL-DPE performs quite well in selecting the covariates of interest. In fact, 

its performance is very close to the proposed model, SINC, on all metrics. Similarly, the 

proposed model, while holding the estimated network and precision matrix fixed performs 

well for coefficient estimation, but does not do as well as mSSL-DPE and the full version of 

the proposed model. Additionally, we did not see any significant difference in performance 

in the full SINC models when τ is fixed or learned. SpiecEasi is not included in Table 2, as it 

is not able to select or adjust for relevant covariates, which is a limitation of the method.

We did not compare our model to MCMC approaches because of the computational 

complexity resulting from a lack of conjugacy. We did, however, experiment by using a 

Monte Carlo draw to update Ω at each iteration of SINC, and found that the point estimates 

of SINC without a Monte Carlo step were very close to the mean of the Monte Carlo draws.

4.3. Influence of Parameters

An advantage of using spike-and-slab priors for covariate and network edge selection, over 

penalized methods, is given by the flexible level of sparsity induced on the regression 

coefficients and the precision matrix entries. For example, Li and McCormick (2019) 

showed that di, j*  from Equation (10) is comparable to the penalty parameter, λ, in the 
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graphical LASSO (Dempster 1972). However, di, j*  is unique to each edge and is adaptively 

learned from the data. In Figure 2, we show this advantage over penalized methods by 

plotting the estimated coefficients and precision matrix values, for a smaller simulation 

scenario with p = 10, q = 15, and n = 5000, using SINC (with τ fixed at 1) and the 

penalization based method mLDM, while varying the sparsity-inducing parameters. The 

top-left plot shows the estimated B coefficients by the proposed model when increasing the 

variance parameter νB of the spike-and-slab prior in Equation (2). The top-right plot shows 

the estimated B coefficients via mLDM when increasing the LASSO penalty parameter. 

The bottom-left plot shows the estimated off-diagonal values of the precision matrix Ω 
when increasing the variance parameter ν0 in Equation (3) and the bottom-right plot 

shows the estimated off-diagonal estimates of the precision matrix when increasing the 

graphical LASSO penalty parameter. In all plots, red lines correspond to true associations 

in the simulated data, and black lines correspond to coefficients representing no underlying 

association. The flat trend in the red lines of the plots related to SINC shows that the 

estimated covariate effects and precision matrix entries corresponding to true associations 

are stable, while for mLDM, depicted at bottom, they get shrunk to zero as the penalty 

parameters increase.

We conclude this section by providing some comments on the sensitivity of the results to 

the choice of the hyperparameters. As shown in Figure 2, with sufficient data, the estimates 

of Ω and B are stable for increasing values of ν0, in the prior of Equation (3), and νB, in 

the prior of Equation (2), respectively. These parameters, however, affect the sparsity of the 

selection. In particular, as ν0 increases, holding all other parameters constant, the selected 

network becomes sparser. Similarly, as ν1, which appears in the prior of Equation (3), 

increases, holding ν0 constant, the network sparsity increases. In recent work using this type 

of mixture prior, Li and McCormick (2019) and Ročková and George (2014) have suggested 

holding ν1 constant while varying ν0. It should be apparent, then, that increasing νB while 

holding all other parameters constant decreases the number of selected coefficients, as 

increasing νB is analogous to increasing ν1. The remainder of the hyperparameters influence 

sparsity as well, but to a lesser extent. For example, changing aπ and bπ in the prior given in 

Equation (4) to put more weight on larger values of π results in sparser networks. Similarly, 

selecting aγ and bγ in the prior of Equation (2) to reflect a stronger prior belief in larger 

θγ values results in an increase in the number of selected coefficients. Since π and θγ are 

both updated at each iteration of the SINC algorithm, selecting relatively non-informative 

priors, such as the ones used in the simulations of aγ = bγ = 2, allows the sparsity levels 

to be primarily controlled by ν0 and νB. Alternative choices that would also be appropriate 

include aγ = bγ = 1, a more non-informative setting corresponding to a uniform prior on the 

unit interval, or aγ = 1 and bγ = p, which would more strongly favor sparsity, as discussed 

in Ročková and George (2014). We found that our variable selection results were not overly 

sensitive to the choice of these parameters. Increasing λ also increases the network sparsity 

because it changes the scale of the estimated Ω values by making them smaller. Appropriate 

λ values need to be selected based on the scale of the data that is being used.
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5. Application to a Study of the Vaginal Microbiome in Pregnancy

In this section, we apply our proposed method to data from the Multi-Omic Microbiome 

Study: Pregnancy Initiative (MOMS-PI), an NIH-funded study aimed at characterizing 

the microbiome and its role in shaping maternal and infant health. Previous research 

has demonstrated that immune and metabolic changes during pregnancy reshape the 

microbiome, which undergoes large shifts during the course of pregnancy. The vaginal 

microbiome in particular has been shown to change early in pregnancy (Serrano et al. 2019) 

and be predictive of pregnancy outcomes such as preterm birth (Fettweis et al. 2019).

The MOMS-PI study involved following pregnant women throughout pregnancy and for 

a short term after childbirth. Participants in the MOMS-PI study were asked to provide 

samples from the mouth, skin, vagina and rectum. Multiple omic technologies were 

used to process the collected samples including microbiome profiling, metabolomics, and 

quantification of cytokine abundances via immunoproteomics. Cytokines, in particular, are 

one mechanism by which the host regulates the composition of the vaginal microbiome. 

The data were obtained from the R package HMP2Data and consists of 596 subjects that 

were sampled across multiple visits. For our analysis, we focus on samples collected at the 

first baseline visit. Of the 596 subjects, 225 subjects had both the microbiome and cytokine 

profiling of the vagina available at this time point. We consider these 225 subjects in the 

analysis. To avoid the inclusion of very rare taxa, the OTUs were filtered for inclusion in the 

analysis using the following rule: the absolute abundance of an OTU had to be greater than 1 

for at least 10 percent of the subjects, resulting in 90 OTUs. All 29 cytokines profiled were 

included as covariates. For the analysis, the cytokine data was transformed to the log scale 

and centered.

We applied the SINC method to estimate the interaction between vaginal microbes, as well 

as the interplay between vaginal cytokines and microbial abundances. We used the same 

hyperparameter settings as in the simulation: νB = 1, aγ = 2, bγ = 2, ν1 = 10, λ = 150, aπ 
= 2, bπ = 2, and set ν0 = 0.01, a value that, in the simulations, achieved a sparsity level 

of 0.10, and fixed τ to 1. Since we are controlling for cytokine counts when estimating the 

microbiome network, we are more confident in the selection as we do not expect to select 

an edge between two microbes that may be related only via their common dependence on a 

cytokine.

5.1. MOMS-PI Results

Figure 3(a) shows the adjacency matrix of the microbial network inferred from the MOMS-

PI data, with filled boxes representing selected edges, together with a plot of the number 

of edges for each OTU in 3(b). A network diagram of the inferred microbial network 

is shown in in Figure 3(c), with node sizes representing the degree of the nodes, so the 

larger a node, the more edges that node has with other nodes. In these plots, OTUs are 

grouped based on their phylum (Firmicutes, Actinobacteria, Bacteroidetes, Proteobacteria, 

Fusobacteria, and TM7). Looking at the adjacency matrix and network representation, we 

notice that Actinobacteria have few shared edges with Bacteroidetes, Proteobacteria and 

Fusobacteria, instead sharing the majority of their inter-phylum edges with Firmicutes, while 

the other phyla (Firmicutes, Bacteroidetes, Proteobacteria and Fusobacteria) show no trend 
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in inter-phylum edges. We also notice that within the Firmicutes subnetwork, OTUs of the 

genus Lactobacillus (OTU 1 through 26 in the adjacency matrix) form their own subnetwork 

with very few inter-genus connections. Also, from the node degrees plot we can see that 

many Firmicutes have large numbers of edges. Indeed, when looking at the most connected 

nodes of the inferred microbial network, we found that 5 of the 6 most connected OTUs 

belong to the Firmicutes phylum.

Next, we show the inference on the microbe-cytokine association network. Figure 4 shows 

the adjacency matrix of the selected microbe-cytokine associations, with microbes colored 

based on phylum. We observe clear patterns of association, with both cytokines that show 

relationships to many OTUs, and OTUs that show relationships with several cytokines. In 

particular, we see that the cytokines IP-10, IL-1b, IL-17A, FGF basic, and IL-8 have the 

most associations with OTU abundances. When looking at which OTUs have the most 

associations with cytokines, we found that 6 of the 10 most connected are Lactobacillus. 

This is also seen in Figure 4, where many of the first 26 microbes (columns) have several 

cytokine associations. Lactobacillus has previously been shown to be largely influenced by 

cytokines (Valenti et al. 2018).

We also compare the results from SINC to those from SpiecEasi (Kurtz et al. 2015) and 

the B-constrained version of SINC, and found that the two methods that do not control for 

covariates shared 22 edges that were not selected by the proposed model. Two of these 

edges can be seen in Figure 5, which shows the network of a subset of three microbes and 

three cytokines estimated by SINC, as well as the network of the same subset of microbes 

estimated by SpiecEasi and a variant of SINC with the B coefficients not estimated. We 

hypothesize that SINC did not select the same edges as the other two methods, that is, 

the edge between OTUs 14 and 19 and the edge between OTUs 19 and 20, because edges 

selected by methods that do not control for cytokines may incorrectly determine an edge 

when microbe pairs have a mutual association with a cytokine. This can be seen in Figure 5, 

where OTUs 14,19, and 20 all have an association with IP-10. This illustrates the ability of 

our model to discover covariate effects and a sparse network accounting for these effects.

6. Discussion

In this article, we have introduced a novel Bayesian hierarchical model for count data 

that allows for simultaneous estimation of covariate dependence and network interactions. 

By accounting for covariate selection, simultaneous estimation methods are able to control 

for those variables, which ultimately leads to more accurate network estimation. We have 

considered multivariate count data, and specifically compositional data that have a fixed 

sum constraint, and have modeled the data using a Dirichlet-multinomial likelihood. We 

have accounted for covariates by modeling the log concentration parameters via a Gaussian 

distribution, and achieved simultaneous covariate and edge selection via spike-and-slab 

priors. For posterior inference, we have implemented a variational Bayes approach that 

includes an EM step to enable efficient estimation. We have shown through simulations 

that the proposed model outperforms existing methods in its accuracy of network recovery. 

This is due, in part, to the flexibility of the hierarchical model, as discussed in Section 

4.3, which avoids some of the over-shrinkage typical of penalized approaches, as well 

Osborne et al. Page 16

J Comput Graph Stat. Author manuscript; available in PMC 2023 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as the added accuracy from doing simultaneous covariate and network selection. Finally, 

we have applied the proposed method to data from the MOMS-PI study, to estimate the 

microbial interactions in the vagina, as well as the interplay between vaginal cytokines 

and microbial abundances, providing insight into mechanisms of host-microbial interaction 

during pregnancy.

Although other estimation methods, such as EM, could potentially be applied, we found that 

our unique hybrid algorithm offers several advantages. As we noted in Section 3, the VI 

and EM approaches are similar in many ways. VI, however, can enable additional insight 

on the uncertainty of the parameter estimates, as one can think of the EM as a special 

case of the VI algorithm when the variational distributions are point estimates. Although 

this is one potential advantage of the VI estimation of B, we primarily prefer the VI 

approach for pragmatic reasons regarding performance, since we found in practice that the 

VI algorithm for variable selection is less sensitive to the choice of the hyperparameters 

(specifically, the standard deviations of the spike and slab distributions) than alternative 

approaches for variable selection in the EM framework. This makes the application of our 

approach simpler, since we can focus on tuning the parameters for the EMGS portion of the 

algorithm. Moreover, Ray and Szabo (2021) recently demonstrated that the VI algorithm of 

Carbonetto and Stephens (2012) generally outperformed the EMVS algorithm of Ročková 

and George (2014) across various simulation settings, suggesting we may be able to obtain 

more accurate estimates of B under this approach. Finally, VI methods can be used with 

discrete spike-and-slab priors, whereas continuous spike-and-slab priors are used with EM 

methods.

Although our VI scheme is more computationally efficient than MCMC sampling, 

estimating the latent variable matrix Z is still computationally expensive and a bottleneck 

to this problem. For the case study of this article, the model ran on a cluster using 25 cores 

and took 16 min (approximately 6.2 CPU hr). Using the case study data and the default 

R package settings, mSSL-DPE took 49.4 min, and SpiecEasi took 57 sec. Even though 

spiecEasi and mSSL-DPE were much faster, they resulted in less accurate predictions. 

Finally, mLDM was much slower and took over 120 hr per simulation. The dramatic 

difference in time between mLDM and SINC is due, in part, to SINC being calibrated for 

parallel computing. Not only does the computational complexity of our model scale in p, but 

because there are p × n latent variables in Z, the speed of our algorithm also scales with 

n. Avoiding estimation of these latent variables, or finding computationally more efficient 

estimates, would allow for further scalability of the implementation.

Python code implementing the SINC method is available at https://github.com/Nathan-

Osborne/SINC/.
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Figure 1. 
Simulation study: Example networks used in the simulation studies. Black boxes represent 

true edges, and light gray boxes correspond to no edge. For the cluster and random graphs, 

the actual networks that generated the data were different for each simulated dataset, but 

each simulation kept the blocked shape or random network, respectively.
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Figure 2. 
Simulation study: The top-left plot shows the estimated B coefficients by the proposed 

model when increasing the variance parameter νB of the spike-and-slab prior (2). The 

top-right plot shows the estimated B coefficients via mLDM when increasing the LASSO 

penalty parameter. The bottom-left plot shows the estimated off-diagonal values of the 

precision matrix when increasing the variance parameter ν0 in Equation (3) and the 

bottom-right plot shows the estimated off-diagonal estimates of the precision matrix when 

increasing the graphical LASSO penalty parameter. In all plots, -o- lines correspond to true 

associations in the simulated data, and -x- lines correspond to coefficients representing no 

underlying association.
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Figure 3. 
Case study: Plot a): Adjacency matrix of the microbial network inferred from the MOMS-PI 

data, with filled boxes representing selected edges. Plot (b): Number of edges for each OTU, 

listed in the same order as in the adjacency matrix. Plot (c): Network diagram of the inferred 

microbial network, with node sizes representing the degree of the nodes.
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Figure 4. 
Case study: Adjacency matrix of the cytokine and microbial associations inferred from the 

MOMS-PI data. Filled boxes indicate that there is an association between a cytokine (plotted 

on the y axis) and an OTU (plotted on the x-axis).
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Figure 5. 
Case study: Plot (a) Subnetwork of selected edges in a microbe-microbe network and 

selected associations between microbes and cytokines, found when using SINC. Plot (b) 

Subnetwork of selected edges in a microbe-microbe network, found when using both 

SpeicEasi and a variation of SINC with B fixed to 0. Cytokines are not included in the 

subnetwork of plot (b), as neither model accounts for cytokines.
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