Table 1.
Network estimation accuracy | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
TPR | FPR | F1 | MCC | AUC | TPR | FPR | F1 | MCC | AUC | |
Random | Hub | |||||||||
mSSL-DPE | 0.000 | 0.015 | 0.000 | −0.019 | 0.499 | 0.001 | 0.024 | 0.001 | −0.021 | 0.450 |
SpiecEasi | 0.013 | 0.009 | 0.018 | 0.005 | 0.563 | 0.011 | 0.009 | 0.015 | 0.003 | 0.528 |
mLDM | 0.277 | 0.181 | 0.067 | 0.039 | 0.560 | 0.440 | 0.248 | 0.080 | 0.069 | 0.602 |
SINC (B = 0) | 0.276 | 0.225 | 0.056 | 0.020 | 0.542 | 0.253 | 0.241 | 0.038 | 0.004 | 0.507 |
SINC (τ = 1) | 0.420 | 0.093 | 0.167 | 0.169 | 0.750 | 0.175 | 0.096 | 0.059 | 0.037 | 0.613 |
SINC (τ learned) | 0.598 | 0.091 | 0.237 | 0.263 | 0.838 | 0.294 | 0.094 | 0.098 | 0.094 | 0.689 |
Cluster | Band | |||||||||
mSSL-DPE | 0.005 | 0.0181 | 0.008 | −0.0230 | 0.446 | 0.003 | 0.022 | 0.004 | −0.032 | 0.468 |
SpiecEasi | 0.013 | 0.010 | 0.0182 | 0.005 | 0.563 | 0.012 | 0.009 | 0.020 | 0.007 | 0.544 |
mLDM | 0.232 | 0.155 | 0.126 | 0.051 | 0.544 | 0.440 | 0.248 | 0.080 | 0.069 | 0.602 |
SINC (B = 0) | 0.272 | 0.229 | 0.110 | 0.024 | 0.534 | 0.294 | 0.242 | 0.114 | 0.028 | 0.533 |
SINC (τ = 1) | 0.294 | 0.084 | 0.223 | 0.169 | 0.678 | 0.311 | 0.088 | 0.230 | 0.175 | 0.685 |
SINC (τ learned) | 0.411 | 0.080 | 0.306 | 0.261 | 0.741 | 0.446 | 0.089 | 0.312 | 0.269 | 0.737 |
NOTE: mSSL-DPE refers to the method of Deshpande, Ročková, and George (2019), SpiecEasi to the method of Kurtz et al. (2015), mLDM to Yang, Chen, and Chen (2017), SINC (B = 0) to the modified version of the proposed model with the covariate estimates fixed, and SINC to the proposed model. Random, Hub, Cluster, and Band refer to the underlying shape of the network, as illustrated in Figure 1. Bold values reflect top performing methods.