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Abstract

Genome-wide association studies (GWAS) provide a powerful means to identify loci and genes 

contributing to disease, but in many cases the related cell types/states through which genes 

confer disease risk remain unknown. Deciphering such relationships is important for identifying 

pathogenic processes and developing therapeutics. Here, we introduce sc-linker, a framework for 

integrating single-cell RNA-seq (scRNA-seq), epigenomic maps and GWAS summary statistics 

to infer the underlying cell types and processes by which genetic variants influence disease. The 

inferred disease enrichments recapitulated known biology and highlighted notable cell-disease 

relationships, including GABAergic neurons in major depressive disorder, a disease-dependent 

M cell program in ulcerative colitis, and a disease-specific complement cascade process in 

multiple sclerosis. In autoimmune disease, both healthy and disease-dependent immune cell 

type programs were associated, whereas only disease-dependent epithelial cell programs were 
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prominent, suggesting a role in disease response over initiation. Our framework provides a 

powerful approach for identifying the cell types and cellular processes by which genetic variants 

influence disease.

INTRODUCTION

Genome wide association studies (GWAS) have successfully identified thousands of disease-

associated variants1–3, but the cellular mechanisms through which these variants drive 

complex diseases and traits remain largely unknown. This is due to several challenges, 

including the difficulty of relating the approximately 95% of risk variants that reside in 

non-coding regulatory regions to the genes they regulate4–7, and our limited knowledge 

of the specific cells and functional programs in which these genes are active8. Previous 

studies have linked traits to functional elements9–15 and to cell types from bulk RNA-seq 

profiles16–18. Considerable work remains to analyze cell types and states at finer resolutions 

across a breadth of tissues, incorporate disease tissue-specific gene expression patterns, 

model cellular processes within and across cell types, and leverage enhancer-gene links19–23 

to improve power.

ScRNA-seq data provide a unique opportunity to tackle these challenges24. Single-cell 

profiles allow the construction of multiple gene programs to more finely relate GWAS 

variants to function, including programs that reflect cell-type-specific signatures25–28, 

disease-dependent signatures within cell types29,30, and key cellular processes that vary 

within and/or across cell types31. Initial studies have related single-cell profiles with human 

genetics in post hoc analyses by mapping candidate genes from disease-associated genomic 

regions to cell types by their expression relative to other cell types32–34. More recent 

studies have begun to leverage genome-wide polygenic signals to map traits to cell types 

from single cells within the context of a single tissue35–37. However, focusing on a single 

tissue could in principle result in misleading conclusions, because disease mechanisms 

span tissue types across the human body. For example, in the context of the colon, a 

neural gene associated with psychiatric disorders would appear highly specific to enteric 

neurons, but this cell population may no longer be strongly implicated when the analysis 

also includes cells from the human central nervous system (CNS)38. Thus, there is a need for 

a principled method that combines human genetics and comprehensive scRNA-seq applied 

across multiple tissues and organs.

Here, we develop and apply sc-linker, an integrated framework to relate human disease 

and complex traits to cell types and cellular processes by integrating GWAS summary 

statistics, epigenomics and scRNA-seq data from multiple tissue types, diseases, individuals 

and cells. Unlike previous studies, we analyze gene programs that represent different facets 

of cells, including discrete types, processes activated specifically in a cell type in disease, 

and gene programs that vary across cells irrespective of cell type definitions (recovered 

by latent factor models). We transform gene programs to SNP annotations using tissue-

specific enhancer-gene links19–23 in preference to standard gene window-based linking 

strategies used in existing gene-set enrichment methods such as MAGMA39, RSS-E13 and 

LDSC-SEG18. We then link SNP annotations to diseases by applying stratified LD score 
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regression11 (S-LDSC) with the baseline-LD model40,41 to the resulting SNP annotations. 

We further integrate cellular expression and GWAS to prioritize specific genes in the context 

of disease-critical gene programs, thus shedding light on underlying disease mechanisms.

RESULTS

Overview of sc-linker

We developed a framework to link gene programs derived from scRNA-seq with diseases 

and complex traits (Figure 1a). First, we use scRNA-seq to construct gene programs, 

defined as continuous-valued gene sets, that characterize (1) individual cell types, (2) 

disease-dependent (disease vs. healthy cells of the same type), or (3) cellular processes. 

(The continuous values are on the probabilistic 0–1 scale, but do not formally represent 

probabilities (Methods).) Then, we link the genes underlying these programs to SNPs 

that regulate them by incorporating two tissue-specific enhancer-gene linking strategies: 

Roadmap Enhancer-Gene Linking19–21 and the Activity-by-Contact (ABC) model22,23. 

Finally, we evaluate the disease informativeness of the resulting SNP annotations by 

applying S-LDSC11 conditional on a broad set of coding, conserved, regulatory and LD-

related annotations from the baseline-LD model40,41. Altogether, our approach links diseases 

and traits with gene programs recapitulating cell types and cellular processes. We have 

released open-source software implementing the approach (sc-linker; Code Availability), a 

web interface for visualizing the results (Data Availability), postprocessed scRNA-seq data, 

gene programs, enhancer-gene linking strategies, and SNP annotations analyzed in this study 

(Data Availability). A more comprehensive overview is provided in the Supplemental Note.

We analyzed a broad range of human scRNA-seq data, spanning 17 data sets from 11 tissues 

and 6 disease conditions. The 11 non-disease tissues include immune (peripheral blood 

mononuclear cells (PBMCs)26,42, cord blood27, and bone marrow27), brain28, kidney43, 

liver44, heart25, lung29, colon34, skin45 and adipose44. The 6 disease conditions include 

multiple sclerosis (MS) brain46, Alzheimer’s disease brain30, ulcerative colitis (UC) colon34, 

asthma lung47, idiopathic pulmonary fibrosis (IPF) lung29 and COVID-19 bronchoalveolar 

lavage fluid48 (Extended Data Fig. 1). In total, the scRNA-seq data includes 209 individuals, 

1,602,614 cells and 256 annotated cell subsets (Methods, Supplementary Table 1). We also 

compiled publicly available GWAS summary statistics for 60 unique diseases and complex 

traits (genetic correlation < 0.9; average N=297K) (Methods, Supplementary Table 2). We 

analyzed gene programs from each scRNA-seq dataset in conjunction with each of 60 

diseases and complex traits, but we primarily report those that are most pertinent for each 

program.

Benchmarking sc-linker

As a proof of principle, we benchmarked sc-linker by analyzing 5 blood cell traits that 

biologically correspond to specific immune cell types (Supplementary Table 2) using 

immune cell type programs constructed from scRNA-seq data (Figure 2a,b, Extended Data 

Fig. 1). We constructed 6 immune cell type programs that were identified across 4 data 

sets – two from PBMCs (k=4,640 cells; n=2 individuals26; k=68,551; n=8 individuals42), 

and one each of cord blood27 (k=263,828; n=8) and bone marrow27 (k=283,894; n=8). We 
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identified enrichment of erythroid cells for red blood cell count, megakaryocytes for platelet 

count, monocytes for monocyte count, and of B cells and T cells for lymphocyte percentage 

(Figure 2d, Extended Data Fig. 2a); these enrichments reflect biological correspondences 

and have been reported in previous studies49,50, such that we refer to them as expected 
enrichments.

We defined a sensitivity/specificity index quantifying the presence of expected enrichments 

and absence of other enrichments (Methods). A limitation of this index is that other 

enrichments may be biologically real in some cases; thus, we also consider sensitivity 

to detect expected enrichments (Methods). Sc-linker outperformed the MAGMA39 gene 
set-level association method in terms of the sensitivity/specificity index (Figure 2c). 

Benchmarks on the sc-linker method, the choice of enhancer gene linking strategies and 

cell type programs are included in the Supplementary Note.

Distinguishing the cells involved in immune-related diseases

We next analyzed 11 autoimmune diseases (Supplementary Table 2) using the 6 immune 

cell type programs above (Figure 2a,b, Extended Data Fig. 1) and 10 (intra-cell type and 

inter-cell type) immune cellular process programs (Figure 2f). (Enrichment results for the 

remaining 49 diseases and traits with immune cell type programs are reported in Extended 

Data Fig. 3; we did not construct disease-dependent programs, as these datasets included 

healthy samples only). We identified cell type-disease enrichments that conform to known 

disease biology (Figure 2e, Extended Data Fig. 2b), including T cells for eczema51,52, 

B and T cells for primary biliary cirrhosis (PBC)18, and dendritic cells and monocytes 

for Alzheimer’s disease53. Additionally, the highly significant enrichments for MS across 

all 6 immune cell type programs analyzed are consistent with previous analyses18,54,55,56, 

supporting the validity of our approach.

Several of the significant cell type-disease enrichments are not as widely established and 

may implicate previously unexplored biological mechanisms (Figure 2e, Table 1, Extended 

Data Fig. 2b). For example, we detected significant enrichment in B cells for UC; B cells 

have been detected in basal lymphoid aggregates in the ulcerative colitis (UC) colon, but 

their pathogenic significance remains unknown57. In addition, T cells were highly enriched 

for celiac disease; the top driving genes including ETS1 (ranked 1), associated with T 

cell development and IL2 signaling58, and CD28 (ranked 3), critical for T cell activation. 

This suggests that aberrant T cell maintenance and activation may impact inflammation 

in celiac disease. Recent reports of a permanent loss of resident gamma delta T cells 

in the celiac bowel and the subsequent recruitment of inflammatory T cells may further 

support this hypothesis59. These results were recapitulated across an independent immune 

cell scRNA-seq dataset, both in the gene programs (average correlation: 0.78 for the same 

cell type) and disease enrichments (0.86 correlation of the E-score over all cell type and trait 

pairs). A cross-trait analysis of the patterns of cell type enrichments suggests that Celiac 

disease and rheumatoid arthritis involves cell-mediated adaptive immune response, UC and 

primary biliary cirrhosis involve antibody-mediated adaptive immune response, Alzheimer’s 

disease has a strong signal of innate immune, and MS and IBD involve contributions from a 

wide range of immune cell types (Extended Data Fig. 4).
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Analyzing the 10 immune cellular process programs (Figure 2f) across the 11 immune-

related diseases and 5 blood cell traits, we identified both disease-specific enrichments 

and others shared across diseases (Figure 2g, Table 1). For example, while T cells have 

been previously linked to eczema, we pinpointed higher enrichment in CD4+ T cells 

compared to CD8+ T cells. The IL2 signaling cellular process program in T and B cells 

was significantly enriched for both eczema and celiac disease, though the genes driving the 

enrichment were not significantly overlapping (p-value: 0.21). Additionally, the complement 

cascade cellular process program in plasma, B, and hematopoietic stem cells (HSCs) was 

most highly enriched among all inter cellular programs for celiac disease. For Alzheimer’s 

disease, there was a strong enrichment in both classical and non-classical monocyte intra-

cell type cellular programs, and in MHC class II antigen presentation (inter cell type; 

dendritic cells (DCs) and B cells) and prostaglandin biosynthesis (inter cell type; monocytes, 

DCs, B cells and T cells) programs. Among the notable driver genes were: IL7R (ranked 

1) and NDFIP1 (ranked 3) for CD4+ T cells in eczema, which respectively play key 

roles in Th2 cell differentiation60,61 and in mediating peripheral CD4 T cell tolerance 

and allergic reactions62,63; and CD33 (ranked 1) in MHC class II antigen processing 

in Alzheimer’s disease, a microglial receptor strongly associated with increased risk in 

previous GWAS64,65.

Linking GABA and gluta neurons to psychiatric disease

We next focused on brain cells and psychiatric disease, by analyzing 9 cell type 

programs (Figure 3a) and 12 cell process programs (Figure 3e, 10 intra- and 2 

inter-cell type programs) from scRNA-seq data of brain prefrontal cortex (k=73,191, 

n=10)28 (Supplementary Table 1) with 11 psychiatric or neurological diseases and traits 

(Supplementary Table 2).

Notably, we observed enrichments of major depressive disorder (MDD) and body mass 

index (BMI) specifically in GABAergic neurons, while insomnia, schizophrenia (SCZ), and 

intelligence were highly enriched specifically in glutamatergic neurons, and neuroticism 

was highly enriched in both. GABAergic neurons regulate the brain’s ability to control 

stress levels, which is the most prominent vulnerability factor in MDD66 (Figure 3b,c, 

Table 1, Extended Data Fig. 2c). Among the top genes driving this enrichment were 

TCF4 (ranked 1), a critical component for neuronal differentiation that affects neuronal 

migration patterns67,68, and PCLO (ranked 4), which is important for synaptic vesicle 

trafficking and neurotransmitter release69. Although predominant therapies for MDD target 

monoamine neurotransmitters, especially serotonin, the enrichment for GABAergic neurons 

is independent of serotonin pathways, suggesting that they might include other therapeutic 

targets for MDD. These results were robustly detected in an independent brain scRNA-seq 

dataset, both in the gene programs (average correlation: 0.77 for the same cell type and 

−0.21 otherwise) and disease enrichments (0.77 correlation of the E-score over all cell type 

and trait pairs), including GABAergic neurons in MDD and BMI as well as glutamatergic 

neurons in insomnia and SCZ. Enrichment results for the remaining 49 diseases and traits in 

conjunction with brain cell type programs are reported in Extended Data Fig. 3.
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Tissue specificity of both the cell type program and enhancer-gene strategy was important 

for successful linking, which we found by comparing the enrichment of all four possible 

combinations of immune or brain cell type programs with immune- or brain-specific 

enhancer-gene linking strategies, meta-analyzed across 11 immune-related diseases or 11 

psychiatric/neurological diseases and traits (Figure 3d). This highlights the importance of 

leveraging the tissue specificity of enhancer-gene strategies.

The 12 brain cellular process programs showed that the significant enrichment of brain-

related diseases in neuronal cell types above is primarily driven by finer programs reflecting 

neuron subtypes (Figure 3f, Table 1, Supplemental Note). For example, the enrichment of 

GABAergic neurons for BMI was driven by programs reflecting LAMP5+ and VIP+ subsets. 

Furthermore, the enrichment of GABAergic neurons for MDD reflects SST+ and PVALB+ 

subsets. We also observed enrichment in more specific cell subsets within glutamatergic 

neurons (e.g. IT neurons were enriched for neuroticism).

Linking cell types from diverse human tissues to disease

Analysis of kidney, liver, heart, skin and adipose cell types (Supplementary Table 1) 

and corresponding relevant traits (Supplementary Table 2) revealed the role of particular 

immune, stromal and epithelial cellular compartments across different diseases/traits. For 

example, kidney and liver cell type programs (Extended Data Fig. 1) highlighted relations 

with urine biomarker traits (Figure 4a, Extended Data Fig. 3 and 5a,b), such as enrichment 

for creatinine level in kidney proximal and connecting tubule cell types, but not in liver 

cell types, as expected70,71, or a significant enrichment for bilirubin level only in liver 

hepatocytes (driven by ANGPTL3; ranked 4)72,73. In heart (Figure 4B, Extended Data Fig. 3 

and 5c, Table 1), atrial cardiomyocytes were enriched for atrial fibrillation, and pericyte and 

smooth muscle cells for blood pressure, consistent with their respective roles in determining 

heart rhythm through activity74 of ion channels (top genes included the ion channel genes 

PKD2L2 (ranked 2), CASQ2 (ranked 7) and KCNN2 (ranked 18)) and blood pressure 

regulation through vascular tone75 (top genes driving included adrenergic pathway genes 

PLCE1 (ranked 1), CACNA1C (ranked 21), and PDE8A (ranked 23)). In skin (Figure 4c, 

Extended Data Fig. 3, Table 1), both BDNF signaling and Langerhans cells were enriched 

for eczema. Langerhans cells have been implicated in inflammatory skin processes related 

to eczema76 (top driving genes included IL-2 signaling pathway genes (FCER1G (ranked 

3), NR4A2 (ranked 26), and CD52 (ranked 43), which modulate eczema pathogenesis77). In 

adipose (Figure 4d, Extended Data Fig. 3 and 5e), adipocytes were enriched for BMI, driven 

by adipogenesis pathway genes78 (STAT5A (ranked 15), EBF1 (ranked 29), LIPE (ranked 

45) and triglyceride biosynthesis genes78 (GPAM (ranked 14), LIPE (ranked 45), both of 

which contribute to the increase in adipose tissue mass in obesity79).

We expanded our analysis to evaluate all cell type programs for all diseases, irrespective of 

the tissue locus of disease aiming to identify cell type enrichments involving “mismatched” 

cell type -disease/trait pairs (Supplementary Figure 5). As expected, in most cases 

“mismatched” cell type programs and disease/trait pairs do not yield significant association. 

Notable exceptions included enrichments of skin Langerhans cells for Alzheimer’s disease 

(AD) (E-score: 15.2, p=10−4), M cells (in colon) for asthma (E-score: 2.2, p=10−4), and 
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heart smooth muscle cells for lung capacity (E-score: 5.6, p=3*10−4). In some cases, the 

association may indicate a direct relationship, whereas in other cases the associated cell 

type may only “tag” the causal cell type in the disease tissue, as cell type programs derived 

from cells of the same type across tissues were found to be highly correlated (Figure 4e) 

with consistent enrichment in these correlated cell type programs (Extended Data Fig. 3, 

Supplementary Note).

Linking neuronal cells to MS and AD progression

We next turned to cases where both healthy and disease tissue have been profiled, allowing 

us to identify heritability in programs associated with disease-specific biology. Such 

understanding is especially important for identifying therapeutic targets associated with 

disease progression rather than disease onset mechanisms.

We first examined disease-dependent programs in multiple sclerosis (MS) and Alzheimer’s 

disease (AD) , where aberrant interactions between neurons and immune cells are thought 

to play an important role. We analyzed MS and AD GWAS data (Supplementary Table 2) 

along with cell type, disease-dependent, and cellular process programs from scRNA-seq of 

healthy and MS46 or AD30 brain (Figure 5a,e, Supplementary Table 1). We considered brain 

enhancer-gene links (since MS and AD are neurological diseases), immune enhancer-gene 

links (since MS and AD are immune-related diseases) and non-tissue-specific enhancer-gene 

links (Extended Data Fig. 6) and detected strongest enrichment results for the immune 

enhancer-gene links. In both MS and AD, disease-dependent programs in each cell type 

differed substantially from cell type programs constructed from cells from healthy (r=0.16) 

or disease (r=0.29) samples alone (Extended Data Fig. 7). Furthermore, we confirmed that 

disease GWAS matched to the corresponding disease-dependent programs produced the 

strongest enrichments, although there was substantial cross-disease enrichment (Extended 

Data Fig. 8).

In MS, there was enrichment in disease-dependent programs in GABAergic neurons and 

microglia (Figure 5b, Extended Data Fig. 9), as well as in Layer 2,3 glutamatergic neurons 

and the complement cascade (in multiple cell types) (Figure 5d). The specific enrichment of 

the GABAergic neuron disease-dependent program (but not the healthy cell type program) 

for MS is consistent with the observation that inflammation inhibits GABA transmission 

in MS81. The GABAergic disease-dependent program was enriched with hydrogen ion 

transmembrane transporter activity genes, while the GABAergic cell type program was 

enriched in genes with general neuronal functions (Supplementary Data 10). The enrichment 

of the microglia disease-dependent program for MS is consistent with the role of microglia 

in inflammation and demyelination in MS lesions82,83 and highlights a contribution of 

microglia in both disease onset and response. The top driving genes for the microglia 

disease-dependent program enrichment included MERTK (ranked 2) and TREM2 (ranked 

4), both having roles in myelin destruction in MS patients84,85. Supporting this finding, there 

is a significant increase in the number of microglia (p-value: 2×10−4, Fisher’s exact test) and 

a significant decrease in number of glutamatergic neurons (p-value: 8×10−5) in MS lesions 

(Figure 5c, Supplementary Data 11).
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In AD, all associations highlighted the central role of microglia, suggesting that different 

processes may be at play at microglia or microglia subsets in healthy brain and after disease 

initiation: only the microglia disease-dependent program was enriched out of 8 disease-

dependent programs tested (Figure 5e,f, Extended Data Fig. 10), along with the healthy 

microglia program, and the apelin signaling pathway disease-specific cellular process 

program (inter cell type; GABAergic neurons and microglia). The microglia program 

enrichments are consistent with the contribution of microglia-mediated inflammation to 

AD progression86. Supporting this finding, there is a significant increase in the number of 

microglia in AD brain (Figure 5g, Supplementary Data 11).

Thus, in both MS and AD, heritability was enriched in distinct ways in microglia cell type, 

disease-dependent and cellular process programs, suggesting therapeutic opportunities to 

combat the role of microglia in varying contexts for disease risk.

Linking enterocytes and M cells to ulcerative colitis

We next examined the role of cell type, disease-dependent and cellular process programs 

in ulcerative colitis (UC), where failure to maintain the colon’s epithelial barrier results 

in chronic inflammation. We analyzed UC and IBD GWAS data (Supplementary Table 2) 

with healthy cell type, UC disease-dependent and UC cellular process programs constructed 

from scRNA-seq from healthy colon, and from matched uninflamed and inflamed colon 

of UC patients (Figure 6a, Supplementary Table 1). We compared colon enhancer-gene 

links (Figure 6) and non-tissue-specific enhancer-gene links (Extended Data Fig. 6) and 

detected strongest enrichment results for the colon enhancer-gene links. As in MS and AD, 

UC disease-dependent programs in each cell type differed substantially from corresponding 

healthy or disease colon cell type programs (average Pearson r=0.24; Extended Data Fig. 7, 

Supplementary Data 12).

In addition to previously observed enrichments in healthy immune cell type programs, our 

analysis highlighted healthy cell type programs of enteroendocrine and endothelial cells, 

disease-dependent programs of enterocytes and M cells, as well as the complement cascade 

(in plasma, B cells, enterocytes and fibroblasts), MHC-II antigen presentation (macrophages, 

monocytes and dendritic cells), and EGFR1 signaling (macrophages and enterocytes) in both 

healthy and disease cells (Figure 6, Extended Data Fig. 3, Supplementary Data 1). The 

strong enrichment in endothelial cells, which comprise the gut vascular barrier, is consistent 

with their rapid changes in UC87; the top driving genes included members of the TNF-α 
signaling pathway (EFNA1, NFKBIA, CD40, ranked 18, 26, 29), a key pathway in UC88.

The disease-dependent programs (Figure 6c, Table 1, Extended Data Fig. 9 and 10) 

highlighted M cells, a rare cell type in healthy colon that increases in UC34 (Figure 6d, 

Supplementary Data 11). M cells surveil the lumen for pathogens and play a key role in 

immune–microbiome homeostasis89. Supporting this finding, mutations in FERMT1, a top 

driving gene in the M cell disease-dependent program (ranked 3), cause Kindler syndrome, 

a monogenic form of IBD with UC-like symptoms90. Notably, there was no enrichment 

in M cell healthy cell type programs (Figure 6b), emphasizing that M cells are activated 

specifically in UC disease, as their proportions increase (p=0.008) (Figure 6d).
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Immune and connective tissue cell types linked to asthma

We analyzed GWAS data for asthma, IPF, COVID-19 (both general COVID-19 and severe 

COVID-19), and lung capacity (Supplementary Table 2) with healthy cell type, disease-

dependent and cellular process programs from asthma, IPF, COVID-19 and healthy29 

(lower lung lobes) tissue scRNA-seq (Figure 7a,c,f, Supplementary Figure 13d-f and 
15, Supplementary Data 12), using either lung enhancer or immune enhancer gene 

links. For asthma, there was significant enrichment for healthy cell type and disease-

dependent programs in T cells (see Supplemental Note). For lung capacity (height-adjusted 

FEV1adjRVC), there was significant enrichment for healthy cell type and disease-dependent 

programs in fibroblasts (Figure 7b, Supplementary Data 1) and the MAPK cellular process 

program (in basal, club, fibroblast and endothelial cells) (Figure 7f, g, Table 1). Genes 

driving these enrichments and enrichment results for IPF and COVID-19 are detailed in the 

Supplemental Note.

DISCUSSION

Prior work on identifying disease-critical tissues and cell types by combining expression 

profiles and human genetics signals has largely focused on the direct mapping of the 

expression of individual genes34 and genome-wide polygenic signals18,36 to discrete cell 

categories. Our study demonstrates that there is much to be gained by linking inferred 

representations of the underlying biological processes beyond cell types in different cell 

and tissue contexts with genome-wide polygenic disease signals, by integrating scRNA-seq, 

epigenomic and GWAS data sets.

Our work introduces three main conceptual advances. First, by integrating scRNA-seq data 

and GWAS summary statistics using tissue-specific enhancer-gene linking strategies, we 

detect subtle differences in SNP to gene mapping between tissues which upon aggregation 

over the full GWAS signal produce strong differences in disease heritability across cell 

types. Second, by constructing disease-dependent programs comparing cells of the same 

type in disease vs. healthy tissue, we project GWAS signals across disease-specific cell 

states. Third, by using NMF to construct cellular process programs that do not rely on 

known cell type categories, we identify cellular mechanisms that vary across a continuum of 

cells of one type or are shared between cells of different types such as the MAPK signaling 

pathway identified in the lung.

Leveraging these advances, we identified notable enrichments (Table 1) that have not 

previously been identified using GWAS data and are biologically plausible but not clearly 

expected, thus providing important knowledge. We also observed patterns across datasets 

that offer additional insights. For example, we observed that disease-dependent programs, 

but not healthy cell type programs, of epithelial cells (M cells and basal cells) tend to be 

enriched in autoimmune diseases (UC and asthma). In contrast, for immune cells healthy 

and disease-dependent programs tended to be similarly enriched. We posit that this suggests 

a role for epithelial cells in disease-dependent over initiation. Future studies are required to 

experimentally validate these hypotheses.
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Our work has several limitations that highlight directions for future research. First, the cell 

types and states covered in this work are not exhaustive and there will continue to be other 

cell types and more granular cell states uncovered as the scale of sequencing continues to 

grow. Second, the enhancer-gene linking strategies can continue to be improved beyond the 

Roadmap and Activity-By-Contact (ABC) models incorporated here. Finally, we focus on 

genome-wide disease heritability (rather than a particular locus); however, our approach can 

be used to implicate specific genes and gene programs. Additional limitations are discussed 

in the Supplementary Note.

Looking forward, the gene program-disease links identified by our analyses can be used to 

guide downstream studies, including designing systematic perturbation experiments91 in cell 

and animal models for functional follow up. In the long term, with the increasing success 

of PheWAS and the integration of multi modal single cell resolution epigenomics, this 

framework will continue to be useful in identifying biological mechanisms driving a broad 

range of diseases.

METHODS

This research complies with all relevant ethical regulations and the research protocols are 

approved by the Harvard School of Public Health.

scRNA-seq data pre-processing

All scRNA-seq datasets in this study1–14 are publicly available cell by gene expression 

matrices that are aligned to the hg38 human transcriptome (Supplementary Table 1). Each 

dataset included metadata information for each cell describing the total number of reads in 

the cell and which sample the cell corresponds to and, if applicable, its disease status. We 

transformed each expression matrix to a count matrix by reversing any log normalization 

processing (because each downloaded dataset contained either (i) raw counts, (ii) normalized 

log2 TP10K, or (iii) normalized log10 TP10K), and standardized the normalization approach 

across all datasets to account for differences in sequencing depth across cells by normalizing 

by the total number of UMIs per cell, converting to transcripts-per-10,000 (TP10K) and 

taking the log of the result to obtain log(10,000*UMIs/total UMIs + 1) “log2(TP10K+1)” as 

the final expression unit.

Dimensionality reduction, batch correction, clustering and annotation of scRNA-seq

The log2(TP10K+1) expression matrix for each dataset was used for the following 

downstream analyses. For each dataset, we identified the top 2,000 highly variable genes 

across the entire dataset using Scanpy’s15 highly_variable_genes function with the sample 

ID as input for the batch. We then performed a Principal Component Analysis (PCA) with 

the top 2,000 highly variable genes and identified the top 40 principal components (PCs), 

beyond which negligible additional variance was explained in the data (the analysis was 

performed with 30, 40, and 50 PCs and was robust to this choice). We used Harmony16 

for batch correction, where each sample was considered its own batch. Subsequently, we 

built a k-nearest neighbors graph of cell profiles (k = 10) based on the top 40 batch 

corrected components computed by Harmony and performed community detection on this 
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neighborhood graph using the Leiden graph clustering method17 with resolution 1. For 

each dataset, individual single-cell profiles were visualized using the Uniform Manifold 

Approximation and Projection (UMAP)18. If prior annotations were available they are used 

as a reference to annotate each cell in each dataset. If prior annotations were not available, 

we used established cell type-specific expression signatures and gene markers described in 

the data source to annotate cells at the resolution of Leiden clusters.

Cell type gene programs

We constructed cell type programs for every cell type in a given tissue by applying a 

non-parametric Wilcoxon rank sum test for differential expression (DE) between each cell 

type vs. other cell types and computed a p value for each gene. Using a previously published 

strategy19, we transform these p-values to X = −2 log (p), which follow a χ2
2 distribution, 

and these transformed values to a grade between 0 and 1 using the min max normalization 

g = (X – min (X))/(max(X) – min(X)) resulting in a relative weighting of genes in each 

program. We note that these scores do not formally represent probabilities. In brief, cell 

type programs constructed from healthy cells were termed as healthy cell type programs and 

similarly cell type programs constructed from disease cells were termed as disease cell type 

programs.

Disease-dependent gene programs

We constructed disease-dependent programs for each cell type observed in both healthy 

and matching disease tissue. For each cell type, we computed a gene-level non-parametric 

Wilcoxon rank sum DE test between cells from healthy and disease tissues of the same 

cell type. The p-values for each gene were transformed to a grade between 0 and 1 using 

the same strategy as in the cell type program to form a relative weighting of genes in 

each program. In the COVID-19 BAL scRNA-seq, we also constructed viral progression 

programs based on differential expression between viral infected and uninfected cells of 

the same cell type in COVID-19 disease individuals. We observed low correlation between 

healthy cell type gene programs and disease-dependent gene programs (see Supplementary 
Figure 13 and Supplementary Data 12).

Cellular process gene programs

Using latent factors derived from non-negative matrix factorization (NMF)20 (see below), 

we define a cellular process program based on genes with high correlation (across cells) 

between their expression in each cell and the contribution of the factor to each cell 

(collapsing latent factors with high correlation). The correlations were transformed to a 

continuous-valued scale (between 0 and 1) by scaling their values (negative correlations are 

assigned to 0). We then annotated each factor (program) by the pathway most enriched in 

the top driving genes for the factor and labeled each as an ‘intra-cell type’ or ‘inter-cell 

type’ latent factor if the pathway was highly correlated with only one or multiple cell type 

programs, respectively.
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We constructed cellular process programs using an unsupervised approach, by applying non-

negative matrix factorization (NMF)20 to the scRNA-seq cells-by-genes matrix. The solution 

to this formulation can be identified by solving the following minimization problem:

argmin 1
2 Xn, m − ∑

p
W n, p × Hp, m

F

2 + 1 − α 1
2‖W n, p‖ + 1

2 1 − α Hp, m

+ α vec(W n, p) 1 + α vec(Hp, m) 1

(1)

where Xn,m represents the log-normalized expression of gene m in sample n, Wn,p denotes 

the grade of membership of latent factor p in sample n, and Hp,m represents the factor weight 

of factor p in gene m. NMF identifies cellular processes as latent factors with a grade of 

contribution to each cell. For each dataset, we specified the number of latent factors p to be 

the number of annotated cell types in the dataset plus 10. For each latent factor, we define 

a cellular process gene program by identifying genes with high correlation (across cells) 

between expression in a cell and the contribution of each factor to each cell. Latent factors 

with correlation above 0.8 are collapsed to only consider a single latent factor. We annotated 

each cellular process program by the pathway most enriched in the genes with highest 

correlation (across cells) between expression levels and factor weights (H) underlying the 

cellular process program (not necessarily the most highly expressed genes, Supplementary 
Fig. 17) and labeled it as an ‘intra-cell type’ or ‘inter-cell type’ cellular process program if 

highly correlated with only one or multiple cell type programs, respectively.

Cellular process gene programs constructed from healthy and disease tissues

For scRNA-seq from healthy and disease tissue contexts, we propose a modified NMF 

approach to construct gene programs that are either shared across both tissues, specific to 

healthy tissue or specific to disease tissue. Let HP * N1 be the observed gene expression data 

for a tissue T from a healthy individual and DP * N2 be the observed gene expression data for 

the corresponding tissue from a disease individual. P is the number of features (genes) and 

N1 and N2 denote the number of samples from the healthy and disease tissues, respectively.

We assume a non-negative matrix factorization for H and D as follows

HPXN1 ≈ LPXKC
CH LPXKH

UH F(KC + KH)XN1
H wℎereLCH, LUH, FH > 0 (2)

DPXN2 ≈ LPXKC
CD LPXKD

UD F(KC + KD)XN2
D wℎereLCD, LUD, FD > 0 (3)

where KC is the number of shared programs between the healthy and the disease samples, 

KH is the number of healthy specific programs and KD is the number of disease-specific 

programs. LCH and LCD are used to denote the shared programs between healthy and disease 

states. Therefore, we assume that LCH is very close to LCD but not exact to account for 

other factors like experimental conditions perturbing the estimates slightly. On the other 

hand, LUH and LUD are used to denote the healthy-specific and disease-specific programs 
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respectively. FH and FD denote the program weights in the healthy and disease samples 

respectively. frame this in the form of the following optimization problem

argmin
LH, LD, FH, FD

1
2 H − LHFH

F
2 + 1

2 D − LDFD
F

2 + μ
2 LH

F
2 + LD

F
2

+ γ
2 LCH − LCD

F
2

(4)

Where LH = LPXKC
CH LPXKH

UH  and LD = LPXKC
CD LPXKD

UD  and γ is a tuning parameter that 

controls how close LCH is to LCD. μ represents a tuning parameter that controls for the size 

of the loadings and the factors.

To determine the multiplicative updates of the NMF optimization problem in Equation 4 

we compute the derivatives of the optimization criterion with respect to each parameter of 

interest. We call the optimization criterion as Q:

∇Q LH = − HFHT
+ LHFHFHT

+ μLH − γ LCD0 (5)

∇Q LD = − DFDT
+ LDFDFDT

+ μLD − γ LCH0 (6)

∇Q FH = − LHT
H + LHT

LHFH (7)

∇Q FD = − LDT
D + LDT

LDFD (8)

Following the multiplicative update rules of NMF as per Lee and Seung (NIPS 2001), we 

get the following iterative updates and assume convergence has been achieved after 100 

iterations or when the reconstruction error is below a user-specified error threshold (here the 

threshold is taken to be 1e-04).

Lij
H Lij

H
HFHT

+ γ LCD0
ij

LHFHFHT
+ μLH

ij

(9)

Lij
D Lij

D
DFDT

+ γ LCH0
ij

LDFDFDT
+ μLD

ij

(10)
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Fij
H Fij

H
LHT

H
ij

LHT
LHFH

ij

(11)

Fij
D Fij

D
LDT

D
ij

LDT
LDFD

ij

(12)

Enhancer-gene linking strategies

We define an enhancer-gene linking strategy as an assignment of 0, 1 or more genes to 

each SNP with a minor allele count >5 in the 1000 Genomes Project European reference 

panel21. Here, we primarily considered an enhancer-gene linking strategy defined by the 

union of the Roadmap22,23 and Activity-By-Contact (ABC)24,25 strategies. Roadmap and 

ABC enhancer gene links are publicly available for a broad set of tissues and have been 

shown to outperform other enhancer-gene linking strategies in previous work26. We consider 

tissue-specific Roadmap and ABC enhancer-gene linking strategies for gene programs 

corresponding to any of the biosamples (cell types or tissues) associated with the relevant 

tissue. Based on analysis in immune cell types, 87% of genes expressed in the scRNA-seq 

were observed to have enhancer-gene links. We also consider non-tissue specific Roadmap 

and ABC strategies (Supplementary Fig. 12). Besides this enhancer-gene linking strategy, 

we also considered a standard 100kb window-based strategy27,28.

Genomic annotations and the baseline-LD models

We define an annotation as an assignment of a numeric value to each SNP in a 

predefined reference panel (e.g., 1000 Genomes Project21; see Data Availability). Binary 

annotations can have value 0 or 1 only; continuous-valued annotations can have any 

real value; our focus is on continuous-valued annotations with values between 0 and 1. 

Annotations that correspond to known or predicted functions are referred to as functional 

annotations. The baseline-LD model29,30 (v.2.1) contains 86 functional annotations (see 

Data Availability), including binary coding, conserved, and regulatory annotations (e.g., 

promoter, enhancer, histone marks, TFBS) and continuous-valued linkage disequilibrium 

(LD)-related annotations.

Stratified LD score regression

Stratified LD score regression (S-LDSC) assesses the contribution of a genomic annotation 

to disease and complex trait heritability31. S-LDSC assumes that the per-SNP heritability or 

variance of effect size (of standardized genotype on trait) of each SNP is equal to the linear 

contribution of each annotation.
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var ßj = ∑
c

C
ajctc (14)

where ajc is the value of annotation c at SNP j, with the annotation either continuous or 

binary (0/1), and tc is the contribution of annotation c to per SNP heritability conditional on 

the other annotations. S-LDSC estimates tc for each annotation using the following equation:

E Xj
2 = N∑c l j, c tc + 1 (15)

where l j, c = ∑kackrjk
2  is the stratified LD score of SNP j with respect to annotation c, rjk is 

the genotypic correlation between SNPs j and k computed using 1000 Genomes Project, and 

N is the GWAS sample size.

We assess the informativeness of an annotation c using two metrics. The first metric is 

Enrichment score (E-score), which relies on the enrichment of annotation c (EC), defined for 

binary annotations as follows (for binary and continuous-valued annotations only):

Ec =

ℎg2 c

ℎg2

∑jajc
M

(16)

where ℎg
2 c  is the heritability explained by the SNPs in annotation c, weighted by the 

annotation values where M is the total number of SNPs on which this heritability is 

computed (5,961,159 in our analyses). The Enrichment score (E-score) is defined as the 

difference between the enrichment for annotation c corresponding to a particular program 

against a SNP annotation for all protein coding genes with a predicted enhancer-gene link 

in the relevant tissue. The E-score metric generalizes to continuous-valued annotations with 

values between 0 and 132. We primarily focus on the p-value for nonzero enrichment score 

greater than 2. We chose the threshold of 2 because it is a round number that is roughly the 

geometric mean of the value of 1 (no enrichment) and the median value of 3.7 among the 

notable enrichments highlighted in Table 1.

The second metric is standardized effect size (τ*), the proportionate change in per-SNP 

heritability associated with a one standard deviation increase in the value of the annotation, 

conditional on other annotations included in the model29.

τc* = τcsdc
ℎg

2/M (17)

where sdc is the standard error of annotation c, ℎg
2 is the total SNP heritability and M is as 

defined previously. τc* is the proportionate change in per-SNP heritability associated with an 

increase of one standard deviation in the value of a annotation.
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We assessed the statistical significance of the enrichment score and τ* via block-jackknife, 

as in previous work31, with significance thresholds determined via False Discovery Rate 

(FDR) correction (q-value < 0.05)33. FDR was calculated over all relevant relatively 

independent traits for a tissue and all programs of a particular type (cell type programs, 

disease-dependent programs, cellular process programs) derived from that tissue. We used 

the p-value for nonzero enrichment score as our primary metric, because τ* is often non-

significant for small cell-type-specific annotations when conditioned on the baseline-LD 

model34.

MAGMA gene-level and gene set-level enrichment analyses

MAGMA assesses the enrichment of genes and gene sets with disease. MAGMA version 

1.08 was run using a 0kb window around each gene to link SNPs to genes, using all default 

MAGMA parameters for running the gene-level analysis, and using the 1000 Genomes 

reference panel for the genotype LD reference. For the gene set level analysis, two types of 

analysis were performed: (1) a binary gene set analysis by thresholding the gene programs 

at different thresholds of program score (ranging from 0.2 to 0.95) (using the –set-annot 

flag in MAGMA) and (2) a continuous variable based analysis by treating the gene program 

probabilistic grade or negative log odds of the probabilistic grade as continuous gene-level 

variables (using the –gene-covar flag in MAGMA).

GWAS summary statistics

We analyzed publicly available GWAS summary statistics for 60 unique diseases and traits 

with genetic correlation less than 0.9. Each trait passed the filter of being well powered 

enough for heritability studies (z score for observed heritability > 5). We used the summary 

statistics for SNPs with minor allele count >5 in a 1000 Genomes Project European 

reference panel21. The lung FEV1FVC trait was corrected for height data. For COVID-19, 

we analyzed two phenotypes – general COVID-19 (covid vs. population, liability scale 

heritability h2 = 0.05, se. = 0.01), and severe COVID-19 (hospitalized covid vs population, 

liability scale heritability h2 = 0.03, se. = 0.01)35 (meta-analysis round 4, October 20, 2020, 

https://www.covid19hg.org/).

Computing a sensitivity/specificity index

We define a sensitivity/specificity index to benchmark (i) sc-linker vs. MAGMA gene-set 

enrichment analysis, and (ii) different versions of sc-linker corresponding to varying ways to 

define cell type programs and SNP-to-gene linking strategies

For the comparison of sc-linker with MAGMA, we define the sensitivity/specificity index 

as the difference of (i) the average of −log10(P-values) of enrichment score (association) 

using sc-linker (MAGMA) for “expected enrichments” (gene program, trait) combinations 

(sensitivity) and (ii) the average of −log10(P-values) of gene-set level enrichment score 

(association) using sc-linker (MAGMA) for “other enrichments” (gene program, trait) 

combinations (specificity). In Figure 4e, the expected enrichment combinations include 

immune programs for blood cell traits and immune diseases, and brain programs for 

brain related traits36,37; all other combinations are considered to be other enrichments. In 

Supplementary Fig. 8, the expected enrichment combinations include B and T cells for 
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lymphocyte percentage, monocytes for monocyte percentage, megakaryocytes for platelet 

count, erythroid for RBC count and RBC distribution width; all other combinations of 

cell types and traits are considered as other enrichments36,37. A limitation of the sensitivity/

specificity index is that other enrichments may be biologically real in some cases; thus, we 

also consider sensitivity to detect expected enrichments.

For the comparison of the different versions of the sc-linker approach using either varying 

definitions of cell type programs (Supplementary Fig. 6 and 7) or different ways to link 

SNPs to genes beyond Roadmap∪ABC enhancer-gene linking strategy (Figure 3d,e and 

Supplementary Fig. 3), we use a slightly different definition of sensitivity/specificity index. 

Instead of the −log P-value, we use the τ* metric from the S-LDSC method, which evaluates 

conditional information in the SNP annotation corresponding to a gene program, corrected 

for the annotation size. This metric is preferred when comparing across cell-type programs 

or enhancer-gene linking strategies that are widely different in their corresponding SNP 

annotation sizes, as is the case in these comparisons (we note that use of this metric is not 

possible in comparisons involving MAGMA, which does not estimate τ*).

Identifying genes driving heritability enrichment

For each gene program, we first subset the full gene list to only consider genes with greater 

than 80% probability grade of membership in the gene program. Subsequently, we ranked 

all remaining genes using MAGMA (v 1.08) gene level significance score and considered 

the top 50 ranked genes for further downstream analysis, which is different from the top 200 

genes used for a “baseline” method for scoring cell type enrichments for disease that we 

used as a benchmark for sc-linker.

Identifying statistically significant differences in cell type proportions

To identify changes in cell type proportions between healthy and disease tissue, we used a 

multinomial regression test to jointly test changes across all cell types simultaneously. This 

helps account for all cell type changes simultaneously, as an increase in the number of cells 

of one cell types implies fewer cells of the other cell type will be captured. This regression 

model and the associated p-values were calculated using the multinom function in the nnet R 

package.

STATISTICS & REPRODUCIBILITY

All data used in this study was generated and designed by the original studies in which 

they appear. No statistical method was used to predetermine sample size. No data were 

excluded from the analyses. The experiments were not randomized. The Investigators 

were not blinded to allocation during experiments and outcome assessment. All sc-linker 

heritability enrichment and significance p-values are computed using a one-sided stratified 

LD score regression test. Multiple hypothesis correction was performed at the level of each 

scRNA-seq dataset across all cell type and disease pairs.
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Extended Data

Extended Data Fig. 1. Single-cell RNA-seq datasets.
UMAP embedding of scRNA-seq profiles (dots) colored by cell type annotations from 12 

datasets (labels on top).
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Extended Data Fig. 2. Standardized effect sizes of immune and brain cell type programs.
Standardized effect size (τ*) (dot size) and significance (−log10(P-value), dot color) of 

the heritability enrichment of immune (a,b) or brain (c) cell type programs (columns) 

for blood cell traits (a), immune disease traits (b), or neurological/psychological related 

traits (c), based on SNP annotations generated with the Roadmap∪ABC-immune (a,b) or 

Roadmap∪ABC-brain (c) enhancer-gene linking strategy. Numerical results are reported in 

Supplementary Data 1. Details for all traits analyzed are in Supplementary Table 2.
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Extended Data Fig. 3. Linking cell type programs to diseases and traits across all analyzed 
tissues.
Magnitude (E-score, dot size) and significance (−log10(P-value), dot color) of the heritability 

enrichment of cell type programs (columns) from each of nine tissues (color code, 

legend) for GWAS summary statistics of diverse traits and diseases (rows), based on the 

Roadmap∪ABC enhancer-gene linking strategy for the corresponding tissue. Details for all 

traits analyzed are in Supplementary Table 2. See Data Availability for higher resolution 

version of this figure.
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Extended Data Fig. 4. Cross trait analysis of cell type enrichments.
Pearson correlation coefficient (colorbar) between the cell type enrichment profiles of each 

pair of traits (rows, columns), clustered (dashed lines) hierarchically. Trait clusters labeled 

by their overall cell type enrichments.
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Extended Data Fig. 5. Linking cellular process programs to relevant diseases and traits in each of 
six tissues.
Magnitude (E-score, dot size) and significance (−log10(P-value), dot color) of the heritability 

enrichment of cellular process programs (columns; obtained by NMF) in each of seven 

tissues (label on top) for traits relevant in that tissue (rows) using the Roadmap∪ABC 

strategy for the corresponding tissue. Details for all traits analyzed are in Supplementary 

Table 2.
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Extended Data Fig. 6. Analysis of cell type programs using a non-tissue-specific enhancer-gene 
linking strategy.
Magnitude (E-score, dot size) and significance (−log10(P-value), dot color) of the heritability 

enrichment of immune (a), brain (b), lung (c), heart (d), colon (e), adipose (f) and skin 

(g) cell type programs (columns) for traits relevant in that tissue (rows) using a non-tissue-

specific Roadmap∪ABC strategy. Details for all traits analyzed are in Supplementary Table 

2.
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Extended Data Fig. 7. Disease-dependent programs have low correlations with healthy and 
disease cell type programs.
Pearson correlation coefficient (color bar) of gene program membership vectors between 

healthy cell type, disease cell type and disease-dependent programs in scRNA-seq studies 

from a disease tissue (label on top) and the corresponding healthy tissue.
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Extended Data Fig. 8. Disease specificity of disease-dependent programs.
Proportion of disease-dependent programs with a −log10(P-value) of enrichment score 

(p.E-score) > 3 in IBD, MS and asthma GWAS summary statistics (column) for disease-

dependent programs from IBD, MS and asthma (columns), when combined with tissue-

specific Roadmap∪ABC (row).

Extended Data Fig. 9. Analysis of disease-dependent programs using alternative Roadmap∪ABC 
enhancer-gene linking strategies.
Magnitude (E-score, dot size) and significance (−log10(P-value), dot color) of the 

heritability enrichment of disease-dependent programs (columns) in UC (colon cells) using 

Roadmap∪ABC-immune (a), asthma (lung cells) using Roadmap∪ABC-immune (b), and 
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MS (brain cells) using Roadmap∪ABC-brain (c). Details for all traits analyzed are in 

Supplementary Table 2.

Extended Data Fig. 10. Analysis of disease-dependent programs across all tissues and traits.
Magnitude (E-score, dot size) and significance (−log10(P-value), dot color) of the heritability 

enrichment of disease-dependent programs (columns) from UC, MS, Alzheimer’s, asthma 

and pulmonary fibrosis (labels on top, color code, legend), for GWAS summary statistics 

of diverse traits and diseases (rows), based on the Roadmap∪ABC enhancer-gene linking 

strategy for the corresponding tissue. Details for all traits analyzed are in Supplementary 

Table 2. See Data Availability for higher resolution version of this figure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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data8 is available exclusively at https://www.radc.rush.edu/docs/omics.htm per its data 

usage terms. This work used summary statistics from the UK Biobank study (http://

www.ukbiobank.ac.uk/). The summary statistics for UK Biobank used in this paper are 

available at https://data.broadinstitute.org/alkesgroup/UKBB/. The 1000 Genomes Project 

Phase 3 data are available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/2013050. 

The baseline-LD annotations are available at https://data.broadinstitute.org/alkesgroup/

LDSCORE/. We provide a web interface to visualize the enrichment results for different 

programs used in our analysis at: https://share.streamlit.io/karthikj89/scgenetics/www/

scgwas.py.

CODE AVAILABILITY

This work uses the S-LDSC software (https://github.com/bulik/ldsc) to process GWAS 

summary statistics as well as S-LDSC software and MAGMA v1.08 (https://ctg.cncr.nl/

software/magma) for post-hoc analysis. Code for constructing cell type, disease-dependent 

and cellular process gene programs from scRNA-seq data and performing the healthy and 

disease shared NMF can be found at https://github.com/karthikj89/scgenetics (DOI 10.5281/

zenodo.6516048)38. Code for processing gene programs and combining with enhancer-gene 

links can be found at https://github.com/kkdey/GSSG (DOI 10.5281/zenodo.6513166)39.
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Figure 1. Approach for identifying disease-critical cell types and cellular processes by integration 
of single-cell profiles and human genetics.
a. sc-linker framework. Left: Input. scRNA-seq (top) and GWAS (bottom) data. Middle and 

right: Step 1: Deriving cell type, disease-dependent, and cellular process gene programs 

from scRNA-seq (top) and associating SNPs with traits from human GWAS (bottom). 

Step 2: Generation of SNP annotations. Gene programs are linked to SNPs by enhancer-

gene linking strategies to generate SNP annotations. Step 3: S-LDSC is applied to the 

resulting SNP annotations to evaluate heritability enrichment for a trait. b. Constructing 

gene programs. Top: Cell type programs of genes specifically expressed in one cell type 

vs. others. Middle: disease-dependent programs of genes specifically expressed in cells of 

the same type in disease vs. healthy samples. Bottom: cellular process programs of genes co-

varying either within or across cell subsets; these programs may be healthy-specific, disease-
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specific, or shared. c. Examples of disease-gene program-gene relationships recovered by 

our framework.
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Figure 2. Linking immune cell types and cellular processes to immune-related diseases and blood 
cell traits.
a,b. Immune cell types. Uniform Manifold Approximation and Projection (UMAP) 

embedding of peripheral blood mononuclear cell (PBMC) scRNA-seq profiles (dots) colored 

by cell type annotations (a) or expression of cell-type-specific genes (b). c. Benchmarking 

of sc-linker vs. MAGMA. Significance (average −log10(p-value)) of association between 

immune, brain and other tissue cell type programs (rows) and blood cell, immune-related, 

brain-related and other traits (columns) for sc-linker (left) and MAGMA gene set analysis 

(right). Other cell types × other diseases/traits are not included in the specificity calculation, 

due to the broad set of cell types and diseases/traits in this category. For the MAGMA 

analysis, the gene program is binarized using a threshold=0.95; numerical results for 

other binarization thresholds and continuous variable based approaches are reported in 
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Supplementary Data 7. d,e. Enrichments of immune cell type programs for blood cell traits 

and immune-related diseases. Magnitude (E-score, dot size) and significance (−log10(P-

value), dot color) of the heritability enrichment of immune cell type programs (columns) 

for blood cell traits (rows, d) or immune-related diseases (rows, e). f. Examples of inter- 

and intra-cell type cellular process programs. UMAP of PBMC (as in a), colored by each 

program weight (color bar) from non-negative matrix factorization (NMF). g. Enrichments 

of immune cellular process programs for immune-related diseases. Magnitude (E-score, dot 

size) and significance (−log10(p-value), dot color) of the heritability enrichment of cellular 

process programs (columns) for immune-related diseases (rows). In panels d,e,g, the size of 

each corresponding SNP annotation (% of SNPs) is reported in parentheses, and the dashed 

boxes denote results that are highlighted in the main text. Numerical results are reported 

in Supplementary Data 1,3. Further details of all diseases and traits analyzed are provided 

in Supplementary Table 2. **Erythroid cells were observed in only bone marrow and cord 

blood datasets.
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Figure 3. Linking neuron cell subsets and cellular processes to brain-related diseases and traits.
a,b. Major brain cell types. UMAP embedding of brain scRNA-seq profiles (dots) colored 

by cell type annotations (a) or expression of cell-type-specific genes (b). c. Enrichments 

of brain cell type programs for brain-related diseases and traits. Magnitude (E-score, dot 

size) and significance (−log10(P-value), dot color) of the heritability enrichment of brain 

cell type programs (columns) for brain-related diseases and traits (rows). d. Comparison of 

immune vs. brain cell type programs, enhancer-gene linking strategies, and diseases/traits. 

Magnitude (E-score and SE) of the heritability enrichment of immune vs. brain cell type 

programs (columns) constructed using immune vs. brain enhancer-gene linking strategies 

(left and right panels) for immune-related (n=11) vs. brain-related (n=11) diseases and traits 

(top and bottom panels). Data are presented as mean values +/− SEM. e. Examples of inter- 
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and intra-cell type cellular processes. UMAP (as in a), colored by each program weight 

(color bar) from non-negative matrix factorization (NMF). f. Enrichments of brain cellular 

process programs for brain-related diseases and traits. Each of the cellular process programs 

is constructed using NMF to decompose the cells by genes matrix into two matrices, cells by 

programs and programs by genes. Magnitude (E-score, dot size) and significance (−log10(P-

value), dot color) of the heritability enrichment of cellular process programs (columns) for 

brain-related diseases and traits (rows). In panels c and f, the size of each corresponding 

SNP annotation (% of SNPs) is reported in parentheses. Numerical results are reported in 

Supplementary Data 1,3. Further details of all diseases and traits analyzed are provided in 

Supplementary Table 2.
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Figure 4. Linking cell types from diverse human tissues to disease.
a-d. Enrichments of cell type programs for corresponding diseases and traits. Magnitude (E-

score, dot size) and significance (−log10(P-value), dot color) of the heritability enrichment of 

cell type programs (columns) for diseases and traits relevant to the corresponding tissue 

(rows) for kidney and liver (a), heart (b), skin (c) and adipose (d). The size of each 

corresponding SNP annotation (% of SNPs) is reported in parentheses. Numerical results 

are reported in Supplementary Data 1. Further details of all traits analyzed are provided in 

Supplementary Table 2. e. Correlation of immune cell type programs across tissues. Pearson 

correlation coefficients (color bar) of gene-level program memberships for immune cell type 

programs across different tissues (rows, columns), grouped by cell type (labels).
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Figure 5. Linking MS and AD disease-dependent and cellular process programs to MS and AD.
a. UMAP embedding of scRNA-seq profiles (dots) from MS and healthy brain tissue, 

colored by cell type annotations (top) or disease status (bottom). b. Enrichments of 

MS disease-dependent programs for MS. Magnitude (E-score, dot size) and significance 

(−log10(P-value), dot color) of the heritability enrichment of MS disease-dependent 

programs (columns), based on the Roadmap∪ABC-immune enhancer-gene linking strategy. 

c. Proportion (mean and SE) of the corresponding cell types (columns) in healthy (blue) and 

MS (red) n=21 biologically independent brain samples. P-value: one-sided Fisher’s exact 

test. d. Enrichments of MS cellular process programs for MS. Magnitude (E-score, dot 

size) and significance (−log10(P-value), dot color) of the heritability enrichment of intra-cell 

type (left) or inter-cell type (right) cellular processes (healthy-specific (H), MS-specific (D) 

or shared (H+D)) (columns), based on the Roadmap∪ABC-immune enhancer-gene linking 

strategy. e. UMAP embedding of scRNA-seq profiles (dots) from AD and healthy brain 

tissue, colored by cell type annotations (top) or disease status (bottom). f. Enrichments of 

AD disease-dependent programs for AD. Magnitude (E-score, dot size) and significance 

(−log10(P-value), dot color) of the heritability enrichment of AD disease-dependent 

programs (columns), based on the Roadmap∪ABC-immune enhancer-gene linking strategy. 

g. Proportion (mean and SE) of the corresponding cell types (columns) in healthy (blue) 

and AD (red) n=48 biologically independent brain samples. P-value: one-sided Fisher’s 
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exact test. h. Enrichments of AD cellular process programs for AD. Magnitude (E-score, 

dot size) and significance (−log10(P-value), dot color) of the heritability enrichment of 

inter-cell type cellular processes (AD-specific (D) or shared (H+D)) (columns), based on 

the Roadmap∪ABC-immune enhancer-gene linking strategy. In panels b,c,d,f,g,h, the size 

of each corresponding SNP annotation (% of SNPs) is reported in parentheses. Numerical 

results are reported in Supplementary Data 2,3. Further details of all traits analyzed are 

provided in Supplementary Table 2.
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Figure 6. Linking UC disease-dependent and cellular process programs to UC and IBD.
a. UMAP embedding of scRNA-seq profiles (dots) from UC and healthy colon tissue, 

colored by cell type annotations (top) or disease status (bottom). b. Enrichments of healthy 

colon cell types for disease. Magnitude (E-score, dot size) and significance (−log10(P-value), 

dot color) of the heritability enrichment of colon cell type programs (columns) for IBD 

or UC (rows). Results for additional cell types, including immune cell types in colon, are 

reported in Extended Data Fig. 3 and Supplementary Data 1. c. Enrichments of UC disease-

dependent programs for disease. Magnitude (E-score, dot size) and significance (−log10(P-

value), dot color) of the heritability enrichment of UC disease-dependent programs 

(columns) for IBD or UC (rows). d. Proportion (mean and SE) of the corresponding 

cell types (columns) in healthy (blue) and UC (red) n=36 biologically independent colon 

samples. P-value: one sided Fisher’s exact test. e. Examples of shared (healthy and disease), 

healthy-specific, and disease-specific cellular process programs. UMAP (as in a), colored by 

each program weight (color bar) from NMF. f. Enrichments of UC cellular process programs 

for disease. Magnitude (E-score, dot size) and significance (−log10(P-value), dot color) 

of the heritability enrichment of inter-cell type cellular processes (shared (H+D), healthy-

specific (H), or disease-specific (D)) (columns) for IBD or UC (rows). In panels b,c,d,f, 

the size of each corresponding SNP annotation (% of SNPs) is reported in parentheses. 

Numerical results are reported in Supplementary Data 1,2,3. Further details of all traits 

analyzed are provided in Supplementary Table 2.
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Figure 7. Linking asthma disease-dependent and cellular process programs to asthma and lung 
capacity.
a. UMAP embedding of healthy lung scRNA-seq profiles (dots) colored by cell type 

annotations. b. Enrichments of healthy lung cell types for disease. Magnitude (E-score, dot 

size) and significance (−log10(P-value), dot color) of the heritability enrichment of healthy 

lung cell type programs (columns) for lung capacity or asthma (rows). c. UMAP embedding 

of scRNA-seq profiles (dots) from asthma and healthy lung tissue, colored by cell type 

annotations (top) or disease status (bottom). d. Enrichments of asthma disease-dependent 

programs for disease. Magnitude (E-score, dot size) and significance (−log10(P-value), dot 

color) of the heritability enrichment of asthma disease-dependent programs (columns) for 

lung capacity or asthma (rows). e. Proportion (mean and SE) of the corresponding cell 

types (columns), in healthy (blue) and asthma (red) n=54 biologically independent lung 
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samples. P-value: one-sided Fisher’s exact test. f. Examples of shared (healthy and disease), 

healthy-specific, and disease-specific cellular process programs. UMAP (as in c), colored 

by each program weight (color bar) from NMF. g. Enrichments of asthma cellular process 

programs for disease. Magnitude (E-score, dot size) and significance (−log10(P-value), dot 

color) of the heritability enrichment of intra-cell type (left) and inter-cell type (right) cellular 

processes (shared (H+D), healthy-specific (H), or disease-specific (D)) (columns) for lung 

capacity and asthma GWAS summary statistics (rows). In panels b,d,e,g, the size of each 

corresponding SNP annotation (% of SNPs) is reported in parentheses. Numerical results are 

reported in Supplementary Data 1,2,3. Further details of all traits analyzed are provided in 

Supplementary Table 2.
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