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Abstract

Longitudinal clonal tracking studies based on high-throughput sequencing technologies supported safety and long-term efficacy
and unraveled hematopoietic reconstitution in many gene therapy applications with unprecedented resolution. However, monitoring
patients over a decade-long follow-up entails a constant increase of large data volume with the emergence of critical computational
challenges, unfortunately not addressed by currently available tools. Here we present ISAnalytics, a new R package for comprehensive
and high-throughput clonal tracking studies using vector integration sites as markers of cellular identity. Once identified the clones
externally from ISAnalytics and imported in the package, a wide range of implemented functionalities are available to users for assessing
the safety and long-term efficacy of the treatment, here described in a clinical trial use case for Hurler disease, and for supporting
hematopoietic stem cell biology in vivo with longitudinal analysis of clones over time, proliferation and differentiation. ISAnalytics
is conceived to be metadata-driven, enabling users to focus on biological questions and hypotheses rather than on computational
aspects. ISAnalytics can be fully integrated within laboratory workflows and standard procedures. Moreover, ISAnalytics is designed
with efficient and scalable data structures, benchmarked with previous methods, and grants reproducibility and full analytical control
through interactive web-reports and a module with Shiny interface. The implemented functionalities are flexible for all viral vector-
based clonal tracking applications as well as genetic barcoding or cancer immunotherapies.
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Background
Clonal tracking studies are emerging approaches to ana-
lyze hematopoietic stem cells (HSC) in vivo and characterize
hematopoiesis. In HSC gene therapy (GT), clonal tracking studies
have been extensively used to assess the safety and efficacy of
the treatment [1–10] and dissect stem cell fate and activity [11].
Upon autologous transplantation of corrected cells, the engrafted
cells become the new HSC clones that will reconstitute the
hematopoietic system of the patient. Each clone is univocally
identified by the vector integration site (IS), used as a genetic
label, which is stably inherited by all stem cell progeny. For this
reason, vector ISs represent the ideal molecular tool for in vivo
clonal tracking and for uncovering HSC biology [12, 13]. Several
molecular technologies are able to retrieve vector IS using custom
PCR methods and deep-sequencing approaches of the vector-host
genome junctions [14–17]. Each sequencing file is derived from

a library of PCRs containing several multiplexed samples, and
is then processed by specific bioinformatics tools to identify
and quantify IS [18–21] generating a large, sparse matrix for
each library. The IS matrix contains all samples in columns, all
identified IS in rows, and the value of each IS corresponds to the
number of cells or reads retrieved in that sample. In many clinical
applications, regulatory authorities require long-term follow-
up monitoring, even over decade-long periods, with IS analysis
for the assessment of the safety and efficacy of the treatment
and for the approval and commercialization of the therapy.
Sequencing data volume will thus increase exponentially over the
observational time, sustained by the speed-up of technological
improvements. Since a comprehensive analysis of all patients
with a full clonal tracking matrix requires the integration of all
clinical trial data and data scale-up is seldomly approached by
a corresponding computational improvement, we rapidly face
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Figure 1. Data accumulation in decade-long clinical trial monitoring. The cumulative number of integration sites retrieved over time for three major
clinical trials, BTHAL (in red), MLD (in green) and WAS (in blue). On top, the number of cumulative raw reads retrieved produced after sequencing, and
on the bottom the number of cumulative IS retrieved. Each dot is a new sequenced library and the curve is a spline connecting all points (0.8 CI).

computational bottlenecks, hardware limitations and analytical
stack/overflow (Figure 1). For example, our recent clinical studies
for the treatment of metachromatic leukodystrophy (MLD) [2,
22], Wiskott-Aldrich syndrome (WAS) [12] and β-Thalassemia
(BTHAL) [23] exploited the most advanced high-throughput
sequencing technologies (such as Illumina Nova-seq platforms),
which generated up to 500 million reads per single library
composed of 150 samples and potentially resulting in ∼500
000 IS. Current bioinformatics solutions are unfortunately
suffering from computational limitations and new software is
required for efficient, scalable and reproducible longitudinal
clonal tracking enabling the integration of several clinical
studies, thus following several millions of clones in thousands
of observations/samplings.

Furthermore, clonal tracking analysts, dealing with large vol-
ume data and involved in high-dimensional longitudinal studies,
should be focused on biological questions and their readouts.
Indeed, the ideal software solution should support the design of a
high-level process of data analysis tailored by the biological ques-
tions, simplifying data handling and returning easy-to-use reports
on both final results and on all intermediate steps throughout
the overall analytical workflow/process, granting full control and
reproducibility. Despite only few of the available software for IS
tracking provide specific functions for ad hoc analyses [19, 24],
none of them is designed to support end users on a flexible
design of their high-level analytical process to answer custom
biological questions leveraging on a portfolio of ready-to-use
functionalities/tools for data integration, harmonization, filtering
and normalization. Moreover, none of the current bioinformatics
resources can be fully integrated with a software for IS identifi-
cation and quantification [18–21] nor with any laboratory infor-
mation management software (LIMS) [25] to enable a complete

workflow management system and support setting up standard
operative procedures.

To overcome all the above-mentioned issues, we here present
ISAnalytics, a novel R package developed for a comprehensive,
reproducible and scalable clonal tracking, designed to leverage on
metadata for structuring a full analytical process from sequenc-
ing reads to biological questions. The key novelty features of our
work are as follows: (1) in terms of computer science, we designed
and developed a new metadata-driven approach through which a
user can focus only on metadata to run the analyses rather than
directly handling data, thus easily supporting scientists to focus
on their questions rather than on computational or programmatic
aspects; (2) ISAnalytics realizes a full data integration with pre-
processing tools and it is generalized to support every integration
in custom laboratory workflows, thus helping on standardizing
laboratory procedures; (3) on the computational side, we used
efficient data structures avoiding sparse data and developing
all functions with parallel processing; (4) on the biological side,
ISAnalytics allows full implementation of clonal tracking fea-
tures supporting reproducible data analysis and full control with
web reports and a Shiny interface.

Results
In this section, we will describe the package design and devel-
opment with benchmarks on the performances. Relevant func-
tions for clonal tracking studies are described with examples
and detailed in methods. To provide a real case application, we
will present all results applied to the recently published study
related to the lentiviral vector (LV) HSC-GT clinical trial for Hurler
syndrome (mucopolysaccharidosis type I, Hurler variant—MPSIH)
[8] as well to simulated data.
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Metadata-driven approach and software
integration
ISAnalytics is designed with a metadata-driven approach, in
which data descriptors are the key entry for all analytical
processes (Figure 2), and clonal data are linked to metadata by a
key field. Samples are usually recorded with specific information
related to their origin (e.g. patient ID or mouse ID, tissue, time
point, cell marker, etc.) and the experimental procedures in place
to retrieve clones (PCR method, DNA amount, etc.), and patient’s
data (disease, treatment age, conditioning, etc.). These data can
be summarized with minimum information standards following
the FAIR approach (https://www.go-fair.org/fair-principles/) and
archived in digital lab-books or LIMS, such as adLIMS [25]. In
particular, ISAnalytics acquires a metadata file in simple text with
arbitrary data fields summarizing the input samples to analyze
(import details in Methods section) with the unique mandatory
field related to sample identifiers that must be identical to the
clonal data column headers. Most of the LIMS is provided with
exporting procedures to extract sample metadata; indeed, the
metadata file can be easily generated by LIMS solutions, or by
custom procedures if data are stored in other formats (from
relational databases to simple spreadsheets or flat files) (see
Supplementary Material for details). Clonal data are usually
returned as sparse data matrix by many current bioinformatics
tools, as previously mentioned, and each sample is referenced
by a column of the data matrix. Storing in the header of the
column of the data matrix the same ID reported in the metadata
key field allows a direct connection between data and metadata.
VISPA2 [18], for example, as well as INSPIIRED [19] or GENE-IS
[21], generates a single large and sparse data matrix for each
single sequencing library that multiplexed hundreds of samples.
We designed ISAnalytics to manage, process, analyze and query
clonal data driven by metadata such that end users would
need only to customize their analytical processes focusing on
metadata and not on large (clonal) data and their computational
complexity of management. Our tool acquires a general sparse
matrix of clonal data returned by IS identification software and
can be fully embedded downstream a laboratory workflow of IS
analysis in which samples are managed and tracked by an LIMS
(Supplementary Figure S1).

Clonal tracking features and available
functionalities
Clonal tracking studies require both standard analyses and new
custom features. ISAnalytics implemented many useful features
that allow end users to design their own analytical processes
(Figure 3A). Here we present the most useful functions for the
analysis of IS in clinical trials that supported safety, long-term
efficacy and basic biology research. Additional features, functions
and software design details are available in the online documen-
tation and in Supplementary Material (Supplementary Figures S2
and S3).

Data import, filtering and pre-processing
When integrated with VISPA2, IS matrices can be imported guided
by the metadata file: only the samples in the metadata file will
be imported, allowing full control of the analyses. ISAnalytics
acquires the paths of data files listed in the appropriate metadata
field and imports them, summarizing all resulting steps with an
interactive plot. The interactive plot supports users in finding

potential problems during the operation of import of each pool
and allows a graphical inspection of all the imported data.

Despite a relatively short follow-up of 18 months after
GT of MPSIH patients, a large amount of clonal tracking
data was collected: 11 sequencing libraries (pools) generated
and sequenced with the latest Illumina Nova-seq technology
(Supplementary Figure S3A and B). The number of raw reads was
>2 billion corresponding to an overall number of >1.6 million
clones tracked across 1406 samples (composed by time and
lineages). Due to the large volume of data for each pool, the
MPSIH dataset presented critical computational issues due to
data accumulation. We tested and benchmarked ISAnalytics by
importing all data at the same time and performing incremental
data import based on the time of collection, thus replicating the
scenario of updating all clonal tracking data every 6 months.
To perform analyses of incremental size, we used groups of
sequencing libraries composed by 3, 7 and 11 datasets. We then
parsed the logs to summarize the computational costs (memory
peak and running time). Moreover, the import function has
been tested using ISAnalytics, with parallel import configured
with four processes, and compared with the canonical data
frame import of sparse matrix, configured with one process
(Supplementary Figure S3C). Our results showed that ISAnalytics
import resulted more efficiently (10 to >103 times) in terms of
computation time with a clear improvement using larger datasets
composed by 11 sequencing libraries (Supplementary Figure S3D).
Even better performance has been observed in terms of memory
peak (Supplementary Figure S3E) with a minimum improvement
of 107 (range 107.31, 108.99) (Supplementary Figure S3F). In terms
of data exploration, we used interactive plots to identify any
potential issues (Supplementary Figure S4A and B).

Once IS data are imported, users can perform raw data quality
analysis and filtering (see Methods section for details). We imple-
mented three main functionalities: (1) IS recalibration, to avoid
wobbling of up to three base pairs around the IS that could impact
in missing IS tracking in different sequencing pools; (2) collision
removal, to remove any potential cross-contaminations among
samples that may eventually lead to assign the same IS to distinct
independent patients; and (3) filtering of low-quality samples,
to remove low-quality PCR samples (potentially only one of the
sample replicates) in terms of the expected number of sequencing
reads. Further implementation details are described in Supple-
mentary Material, accompanied by Supplementary Figures S5–S7.
In the MPSIH clinical trial, we obtained 1 692 420 IS by VISPA2 with
a total number of 648 687 652 mapped reads including all samples
and pools, considering that the recalibration step combined 2.5%
of the neighboring IS within ±3 bp. The total number of IS identi-
fied as collisions was 131 545, corresponding to 7.77% of the over-
all IS. With the method of collision identification and removal, we
have been able to reassign 121 415 IS (>92% of the collisions) to the
source patient, thus drastically reducing the number of discarded
IS by contaminations to only 10 130 (0.6% of the total IS). The
final number of IS was then 1 682 290 clones, with a total number
of 593 095 964 reads of IS (Figure 3B). We then filtered MPSIH
PCR samples by the number of sequencing reads (see Supple-
mentary Material) and we obtained that 17 elements out of 1406
samples resulted undersequenced and needed to be filtered out.
ISAnalytics provides a Shiny web application, ‘NGSdataExplorer’
(Supplementary Figure S8, Supplementary Material), to explore
descriptive statistics data of raw sequencing data with a visual
and intuitive interface, useful for changing the default parameters
of data filtering.
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Figure 2. ISAnalytics design principle and real case application example. The design principle of ISAnalytics is based on a full integration of data with
their descriptors (metadata). Users access metadata to configure their analyses (in orange) based on data (in light yellow) and use pre-configured sets of
functions or custom functions (in light green). Then the process is run, and the users access results of the analyses both with graphical objects (graphs,
etc.) and interactive reports. On the right, an example of application of a typical workflow: sample metadata and IS data, in the form of sparse matrices,
are imported exploiting parallel computing approaches to reduce processing time and memory footprint. After reshaping data in a more computationally
efficient format, the workflow can proceed with data aggregation, which allows the union of PCR replicates referring to the same biological sample,
and users can then decide in autonomy which biological questions they wish to answer through the wide range of analyses functions provided by the
package, which not only provide the actual data but also a convenient and fast way to visualize result with appropriate plotting functions and interactive
dashboards.

Data aggregation
Data aggregation is a pivotal function in ISAnalytics since it allows
to combine IS data of different samples in a new aggregated
column exploiting the metadata file. For example, a single sample
may present several technical replicates, as many recent studies
generate [8, 15, 16], that users need to collate in a single data
as the union of the replicates with the quantification reported
as the sum of the observed values. Indeed, even if a clone has
been observed in only one of the replicates, the aggregated repre-
sentation will present that clone and hide the source PCR, and
the assigned value will be derived only by the single replicate.
Moreover, clonal tracking studies may need to aggregate IS data
at different levels of granularity, from single samples at a specific
time point, to the level of tissues combining all time points, or at
the patient level. Based on these requirements, we designed the
aggregation function using the metadata file, since metadata is
able to describe the dependencies and relationships among the
samples at a single PCR resolution. Indeed, we developed a lambda
function that acquires IS data, metadata and an aggregation
function(s) (default is the sum of values), even user-defined func-
tions (see Methods, Supplementary Material). Data aggregation
has been essential for MPISH patients since we used this function
(1) to combine all replicates together, thus obtaining a unique

sample clonal dataset; (2) to analyze the clonal repertoire over
time and lineages (aggregating by time and lineage) in terms of
clonal population diversity and abundance assessment; and (3)
to perform patient aggregation for genomic distribution profiles
and analyses.

Genomic distribution of IS
To observe the targeted regions by the vector, ISAnalytics provides
a function to plot the genomic distribution of IS represented as
circos plot (Figure 4A). Since the genomic representation is purely
qualitative, we also developed and released a function to compare
two genomic tracks gene by gene and report gene-based P-values
(performing the Fisher exact test between the two samples with
the contingency table reporting the number of IS observed anno-
tated for each gene). This function could be useful to compare two
independent patients to inspect for patient-specific integration
bias or between two distinct vectors to compare the genomic
preference of vector integration (Figure 4B). As expected, no sta-
tistical differences were observed when comparing two lentiviral
integration profiles, since vector integration is mainly driven by
biological factors (such as the recombinant human protein LEDGF
[26, 27]) rather than patient properties.
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Figure 3. Summary functionalities and sample reports. (A) Mind map illustrating the main functionalities of the package divided in five thematic areas.
Data import: group of functions dedicated to the import of tabular files containing data and metadata from disk; data cleaning: contains all functions
dedicated to data cleaning and pre-processing; utilities: general purpose functions, useful for common operations but not specific for any analytical
workflow; data analysis: core of the package, contains the actual analysis functions that produce results for answering biological questions; plotting:
easy to use functions to plot results of analyses functions. (B) and (C) show examples of interactive reports obtained from the workflow on MPSIH data.
(B) Report of the collision removal step with the post-processing summary tab. The interactive reports visualize a summary of the entire procedure
with the total number of distinct IS after processing, the total amount of the quantifications after collisions removal both in absolute numbers and in
percentages relative to the pre-processed matrix in input, followed by a series of descriptive statistics for each pool. (C) Report of the outlier filtering
procedure showing the actual number of flagged samples with the associated details and all calculations performed.
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Figure 4. Clonal tracking in MPSIH patients. (A) Plotted results of the analysis workflow for MPSIH clinical trial data. (A) Circos plot representation of
genomic distribution IS for the first three patients MPSIH001 (in red), MPSIH002 (in green) and MPSIH003 (in blue). (B) Scatter plot of the comparison
between genomic tracks between patients 1 and 2. Each data point represents a gene that has coordinate the gene frequency of patient 1 (on x axis) and
the gene frequency of patient 2 (on y axis). Points are colored according to their P-value for the Fisher’s exact test and are eventually highlighted and
labeled in red if the P-value is lower than the set significance threshold for the test (by default 0.05); here no genes resulted significantly different. (C)
Clonal population evenness (Pielu’s index, y-axis) over time (x-axis) retrieved in whole bone marrow (BM) and peripheral blood (PB). (D) Volcano plot of
the results for CIS-Grubbs test, representing on x-axis the gene integration frequency (expressed in log2) and on y-axis the average P-value resulted by
the Grubbs test (−log P-value) among the first three patients.

Clonal population complexity and descriptive statistics
We developed a lambda function to process descriptive statistics,
both with common functions (e.g. variance, mean, standard error,
etc.) and custom/user-defined functions. In the latter case, we
embedded several indexes of population diversity such as the
Shannon-Weaver index, Simpson, inverse Simpson, Rènyi index
and evenness indexes (for equitability) such as Pielou. Population
diversity and evenness indexes are widely used in GT applications
to assess the safety and long-term efficacy of the treatment.
In particular, in a highly diverse cell population, the Shannon
index will return high values. On the contrary, in the cases of
clonal expansions or treatment exhaustion the Shannon index
will return lower values. When analyzing Pielou index ranging
from 0 to 1, the highest is the score, the more polyclonal is

the population. Indeed, by analyzing the results of the Shannon
diversity index over time, users quantify the clonal complexity in
all cell populations and understand globally the dynamics of cell
composition; similarly if analyzing the Pielou evenness index, as
in the case of MPSIH (Figure 4C). Given that the clonal population
complexity in the MPSIH patients was observed >0.95 of the Pielu
index (measuring the evenness of the clones), we could confirm
that no oligoclonal patterns were detected.

Common insertion sites
Common insertion sites (CIS) genes are genomic regions signifi-
cantly targeted by vectors compared to other genes, and CIS are
often used to highlight events of genotoxicity [28]. For this reason,
CIS genes are always required when analyzing the biosafety of
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the treatment, both in preclinical and in clinical applications [6].
Several analytical methods have been developed to quantify CIS
genes [28–30]. We developed in ISAnalytics the approach based on
Grubbs test for outliers [28] and released the results as volcano
plot. Combining the results of MPSIH patients (Figure 4D), we
observed that no genes resulted significantly overtargeted by LV
integration (alpha error at 0.5).

Clonal abundance over time
Clonal abundance is an important criterion for quantifying poten-
tial clonal expansion events in the assessment of safety. The
size of a clone is proportional to the number of observed cells
harboring the same IS. If the imported data matrix contained the
quantification of each IS reported as the number of observed or
estimated genomes, as computed by the R package SonicLenght
[31], the abundance of each IS can be calculated as the relative
fraction of cells of that IS on the total number of cells (sum over
all IS) for each sample. Tracking the abundance of each clone over
time and samples is important to quantify any expansion. For
this reason, in ISAnalytics we implemented a function to compute
the clonal abundance and to plot the results in stream graphs
(Figure 5A and B) in which each time point shows a stacked bar
plot with clones that are colored by a unique color if their abun-
dance overcomes a threshold (1% in the example) in at least one
time point and connected by a ribbon if recaptured in adjacent
time points. The abundance plots of MPSIH patients were already
presented [8]; indeed, here we show a general case of a simulated
dataset.

Clonal tracking by IS sharing among samples
In many biological analyses, clonal tracking methods require
following IS across samples, time points and lineages. Tracking IS
among samples is usually approached by set operations, typically
based on the number of shared IS between pairs of samples and
then returning the relative percentage on the union of the two
sets or on each of the two independent sets. For this reason, we
implemented in ISAnalytics a function to calculate the number
of shared IS among input samples and to return both absolute
numbers of shared IS and relative percentages. From these results,
ISAnalytics can support generating heatmaps and saving sharing
results for other analyses. To report examples of the functionality,
we used a sample dataset embedded with ISAnalytics reporting
two patients for which MNC samples were collected and IS tracked
over time and tissues. Computing the sharing analysis by patient
with ISAnalytics, we obtained a squared data matrix containing
the number of IS observed between pairs of samples (or the
relative percentage) and plotted as a heatmap (Figure 5C and D,
Supplementary Figure S9, Supplementary Material). This func-
tion is useful to calculate the output of CD34 BM cells towards
mature cell lineages, as reported in several studies [1, 2, 12, 13].

Population size estimate
Capture and recapture statistics have been widely used in ecology
to estimate the size of a population in an ecosystem [32]. Several
GT studies reused the same statistical models developed in the
field of ecology to study the transplanted clonal populations [33],
in particular to estimate the size of engrafted and active HSCs
that are reconstituting the hematopoietic system of patients [1,
2, 9]. ISAnalytics provides a function to compute the HSC clonal
size estimate, both overall, thus including all time points, and
over time, thus evaluating triplets of neighboring time points and
computing the index as sliding window from the first time point
to the last one thus highlighting how the pool size of HSPCs is

changing over time. Initial contractions followed by a stabilization
have been usually reported as evidence of the exhaustion of
short-live committed progenitors leaving the homeostasis to the
more primitive HSC. On the other hand, a contraction in the size
of HSPC long term may be a mirror of the loss of engraftment
and reduced efficacy. We included an example derived from our
simulated dataset (Supplementary Figure S10), reported without
any claims on the biological interpretation but rather used for
software testing.

Comparative analysis of the tools
Here we reported the comparative analysis of the features with
barcodeTrackR, the other publicly available tool for clonal track-
ing (Table 1, Supplementary Material, Extended Data 1). While
barcodeTrackR offers similar functionalities for clonal tracking
studies with respect to ISAnalytics, it does not provide full support
for the analytical workflow including data import and data pre-
processing phases, which are therefore delegated to the user.
Moreover, barcodeTrackR uses standard sparse-like data struc-
tures (SummarizedExperiment) while ISAnalytics relies on tidy
data structures (tibble and data.table). Functionality-wise bar-
codeTrackR allows the production of plots for samples correlation
and a unique set of functions dedicated to clonal bias analyses
and distance/similarity between samples, which are not included
in ISAnalytics; it also provides a Shiny web interface while ISAn-
alytics relies on static interactive dashboards for reproducibility
purposes.

Discussion
Translational science in GT is increasingly demanding for clonal
tracking tools, requiring open-source, scalable and maintained
software. Here we presented our new software, ISAnalytics, a new
open-source tool for clonal tracking with large volume genomics
data, such as whole clinical studies with millions of clones to track
over time and lineages as shown for the LV HSC GT trial for MPSIH.
Our solution is particularly useful in the case of incremental data
acquired to monitor the clones of all patients over decades-long
periods of time since technological advances in high-throughput
deep-sequencing platforms require significant amounts of com-
putational resources, both hardware and software. To overcome
this issue, ISAnalytics specifically relies on parallel processing
(divide et impera approach) and uses optimized data structures
for efficient data science methods in R (tidy). Indeed, ISAnalytics
showed highly scalable and versatile in analyzing large volumes of
clonal tracking data of several patients in different clinical trials,
already used in recent GT applications for molecular monitoring
of MPSIH patients [8] and in analyzing results of a new experi-
mental technology [15] called LiBIS-seq (liquid biopsy integration
site sequencing). Several alternative approaches could have been
used for the basic data structure beyond tidy, such as sparseMa-
trix (R package Matrix), compressed sparse row or compressed
row storage matrix (implemented in various R packages such as
MatrixExtra or nalgebra_sparse). We decided to leverage on tidy
data because of its improved implementation in data science
and machine learning modeling, one of the next direction of
clonal tracking studies approaching personalized and predictive
medicine. Other promising solutions may be related to graph rep-
resentation of clonal data, in line with the most recent approaches
in bioinformatics for considering personal genomic variability.

ISAnalytics provides many functions commonly used for
GT applications which are flexible to customizations on user
needs. Nevertheless, ISAnalytics is an open-source tool under

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac551#supplementary-data
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Figure 5. Streamgraphs for clonal abundance and IS sharing. (A, B) Streamgraphs of the clonal abundance calculated from the package included sample
data, both refer to MNC cell populations in patient 1 (Pt1) in two different tissues (bone marrow—BM in A, peripheral blood—PB in B). Colored ribbons
indicate a relative clonal abundance >1% in at least one time point, all IS below this threshold are grouped together in the gray strata. (C) Absolute
number of distinct IS shared between samples visualized as colored heatmap (square matrix). In the example, each row identifies a sample (named
with patient id, cell marker, tissue and time point in days). Within each cell is reported the number of shared IS expressed as absolute number (C) or
relative percentage (D).

continuous development, in particular regarding the implemen-
tation of new features for basic and translational research, such
as statistical analyses of lineage tracking, lineage skewing and
clonal dynamics, currently in progress.

We developed ISAnalytics in R and within Bioconductor to be
fully compliant with the bio-oriented scientific community and to
follow standard software engineering procedures for implementa-
tion and maintenance. Despite ISAnalytics is not yet integrating
annotation features thus bridging the genomics universe present
in R for comprehensive data analysis, we already tested the
iRange conversion of the genomic coordinates to fully connect
ISAnalytics with the vast majority of the genomic packages and
allow users to extend their analyses. On the other hand, other
tools may integrate or use ISAnalytics and its features.

To our knowledge, ISAnalytics is the first data science software
in biomedical research entirely designed to be metadata-driven.
This key feature opens new opportunities to end users to design
their own analytical workflows. For example, in a clinical trial
ISAnalytics allows aggregating data by different levels of granular-
ity (at sample level, at tissue level, up to patient level), and project-
ing results over time, supporting hypothesis-driven analyses.

Since ISAnalytics is dedicated to clonal tracking analyses with-
out performing sequencing reads alignments nor IS identification,
in terms of data integrations and operations ISAnalytics can
be used standalone or embedded in an integrated laboratory
workflow, downstream to a LIMS, that supports users in tracking
experimental samples and IS retrieval, and to a software for IS
identification. We designed ISAnalytics to be fully ready to use
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Table 1. Comparison of the functionalities among ISAnalytics and state of the art methods. The comparison highlights pros and cons
of every package, divided by macro-areas (leftmost column) and specific functionality (second column on the left)

Functionality ISAnalytics barcodetrackR

Software Release R package published on Bioconductor R package published on Bioconductor
Metadata and association files Yes (extensive use, plus hypothesis driven

approach)
Yes (embedded in SummarizedExperiment data
structure)

Maintenance Yes (last commit 2022) Yes (last commit 2021)
Data import and
pre-processing

Data import Reads files, converts to tidy, additional
operations. Supports automatic import of
multiple files in parallel.

File reading external to package (base R), then
conversion to SummarizedExperiment (sparse).
No parallelization (one file at time).

Sequencing data filtering Yes (by pool with stat) No
Data recalibration Yes (with report) No
Collision detection and removal Yes (with report) No
Abundance filtering Yes Yes
Purity filtering Yes No

Data Manipulation Data aggregation Yes (customizable and metadata driven) No

Statistics Descriptive statistics Yes (plus custom with lambda functions) Yes (only specific stats: diversity indexes included
are the same as ISAnalytics)

Clonal Tracking Abundance Yes Yes
Samples correlations and
similarity

No Yes

Tracking of top n clones in time Yes Yes (plus heatmaps)
Clonal distribution over time Yes (alluvial plots - not restricted to plot

over time)
Yes (area plots - restricted to use time points)

Barcode presence in heatmap No Yes
Lineage bias analysis Yes (using sharing functions) Yes
Tracking unique clones with
heatmap
(either barcodes or ISs)

No (data available, to plot with simple
heatmap call)

Yes

Choord diagram No Yes
CIS statistics Yes (and with plots) No
Clonal sharing and waves of
clones over time

Yes No

HSPC population size estimate Yes No
Circos genomic density Yes No

Reproducibility
and human
interaction

Interactive reports Yes No

Shiny interface Yes Yes

combined with VISPA2, supporting a direct analysis of IS data
with automated reporting. Moreover, ISAnalytics supports inter-
active reports for full control of the analytical process and data,
granting reproducibility and transparent science. ISAnalytics can
be applied in a wide range of clonal tracking applications, from GT
with integrating vectors to recombinant adeno-associated vectors
GT in liver [34, 35] or other organs, to cancer immunotherapies
(i.e., chimeric antigen receptor T cells—CAR-T studies [36]) or
barcoding in gene editing [37, 38] (Extended Data 2).

The philosophy behind the package is to provide a complete
tool with a good balance between generalization and standard-
ization. Metadata has a central role in the concretization of these
concepts, as it allows for differentiated and generalized workflows
depending on the content of specific fields, thus making ISAnalyt-
ics a suitable primer or template for other analyses/studies that
may find their application in biological research and nonbiological
fields (such as economics or data science).

Methods
Package included functions
Data import and file format
ISanalytics imports IS data (IS matrix) with the following file
format: in rows, the ISs annotated with genomics labels such as

chromosome, integration locus and strand; in columns, besides
the first columns reserved to the IS genomic annotations, the
different observations (samples) with the column names as iden-
tifiers of each sample (no repetitions allowed). Each data cell con-
tains the quantification of the specific IS observed at the specific
sample, such as the number of sequencing reads or fragment
estimate.

The metadata file contains data and details of the observed
samples. The list and content of the columns are free except for
the one column containing the identifier of the samples that must
correspond to the identifier reported as the column header in the
IS matrix file. Additional details and examples of the file format
are present in Supplementary Material, Extended Data 2.

Data cleaning and pre-processing
Recalibration

We define an integration event as a triple:

integration event = (
chr, integration locus, strand

)

Thus, we define the concept of distance between two integra-
tion events with the same ‘chr’ and ‘strand’ components as:

D :
(
x, y

) ∈ N
2 → ∣∣x − y

∣∣ ∈ N
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where x and y represent the corresponding values of the compo-
nent ‘integration locus’ for the two events.

We label two integration events as ‘near’ if their distance is less
than a threshold value, which by default is set to 4 bp.

x is near to y ⇐⇒ D
(
x, y

)
< threshold

An integration matrix is a set of distinct integrations, the PCR
replicate id and the value of the quantification(s): distinct values
for these fields map to different rows in the table.

The matrix is scanned with a sliding window approach
using a dynamic window size, and integration events that are
sufficiently near to each other are condensed into a single
event: such event has as a value for the quantification(s) that
is the sum of the quantification(s) of the original integration
events (Supplementary Figure S5). For reproducibility purposes,
the function supports the production of a recalibration map,
in the form of a tabular file, which simply contains a mapping
between every old integration event and the new corresponding
event. Moreover, the function offers more flexibility in considering
an integration event strand-specific or not: by default, two
integration events with the same value for the fields ‘chr’ and
‘integration locus’ are considered distinct if they have a different
value for the ‘strand’ field. Changing this parameter allows
processing IS in which the strand information is not available or
not relevant. Further details are given in Supplementary Material.

Collision removal

A collision event is a clone retrieved in more than one indepen-
dent sample, such as distinct patients. We consider this event
very unlikely given the probability of two independent vectors to
integrate in the same genomic position (in base pairs) from 3 × 108

possibilities (the size of the human genome is ∼3 × 109, and viral
vectors tend to integrate in less than 10% of the genome). Detailed
description of the algorithm is reported in Supplementary Method
and Supplementary Figure S6. This procedure generates an inter-
active report on user request, which allows a first quick glance at
data before proceeding with further analyses.

Identification and removal of sample outliers

Next-generation sequencing (NGS) sequencing of a sample library
could return unbalanced numbers of reads per sample. To
remove samples with under-represented number of reads that
may reflect in an altered number of clones and abundances,
ISAnalytics provides a specific function called” outlier_filter”.
Since ISAnalytics is downstream of the tools for IS retrieval (that
manage raw data, FastQ files), users need to provide ISAnalytics
with a file containing the number of raw reads per sample,
as returned by VISPA2 statistics. The statistical test used to
identify outliers is based on a lambda function (default function
is ‘outliers_by_pool_fragments’), and ISAnalytics returns to users
the same input data with a flag column showing if the sample
resulted as an outlier by any of the tests. For reproducibility
purposes, the operation produces an interactive report in the
form of a dashboard if the user requests it. The pseudocode of the
function with the algorithm design is described in Supplementary
Method and Supplementary Figure S7.

Purity filter

To exclude potential contaminations within dependent samples
(e.g. samples extracted from the same patient) and to consider
only reliable clones in specific analyses, we need to filter IS with

very low abundance in single samples, as reported in previous
studies [1, 2], using lineage information.

As a preliminary step, a filtering operation on the quantifica-
tion is performed: only rows with a quantification value greater
or equal to the minimum input specified value will be kept.
After that, ISs to process are identified: only integration events
belonging to groups of interest that are shared in at least two
groups are flagged to process, while other IS events that do not
match these conditions are kept as they are. Subsequently, the
real filtering process takes place: for each flagged integration
event, the maximum quantification value is identified and used
to calculate the ratio max value

valuei
for each group of interest i – if this

ratio is greater than a user defined threshold (by default 10), the
clone is discarded.

Data aggregation
The package provides a general tool for aggregating (1) clonal data
and (2) metadata by grouping data by specific fields. In the clonal
matrix, data aggregation combines samples by their common
metadata, for example by grouping (union) the PCR replicates of
a single sample. Indeed, data aggregation is deeply important in
the context of clonal tracking since it enables zooming in and out
crossing the different levels of details related to a sample that may
change according to each different analysis, from the single PCR to
tissue level up to whole patient, or simply removing the temporal
dimension and flattening data as a whole. Data aggregation is
conceived as the ‘group by’ operation in SQL which then reshapes
numeric values with user-defined functions (lambda). The logic
is here summarized by the following SQL query with the sum
operation as minimal example:

SELECT chr, integration_locus, strand, GeneName, GeneS-
trand, sample_key, SUM(seqCount), SUM(fragmentEstimate)

FROM (SELECT ∗
FROM IS_matrix
LEFT JOIN metadata
ON PCR_identifier)
GROUP BY sample_key

Where ‘sample_key’ corresponds to one or more fields that
annotate each sample and ‘PCR_identifier’ is the identifier of
the single PCR replicates (usually the header name of each
observation reported in the clonal matrix in column with its
unique key identifier, as described in the import section); seq-
Count and fragmentEstimate are two available quantifications,
by number of reads or estimated fragments, respectively. Our
implementation allows high flexibility in terms of input fields
and operations (sum, mean, etc.). ISAnalytics implemented
data aggregation in the clonal tracking data matrix with the
function ‘aggregate_values_by_key’ where the key is a list of
fields to be used as superkey in the aggregation to identify unique
output groups, and one or more functions to aggregate values
(the sum operation is the default selection). The corresponding
metadata counterpart, ‘aggregate_metadata,’ solely takes in
input the metadata file, the aggregation key and a list of
aggregating functions to be applied (defaults are provided in
‘default_meta_agg’).

Descriptive statistics
ISAnalytics provides a simple and flexible way to compute dif-
ferent kinds of descriptive statistics simultaneously on multiple

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac551#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac551#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac551#supplementary-data
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numeric columns: even though the user has complete freedom of
specifying which functions and statistics he would like to perform
by simply following directions in the documentation, defaults are
provided and include the count of values, sum of values, mean,
median, standard deviation, skew, kurtosis (and other statistics
as output of the describe function from the R package ‘psych’),
Shannon diversity index and the Simpson diversity index. If the
input contains genomic coordinates, it is also possible to request
a count of distinct integration sites (IS) for each group.

Common insertion sites and Grubbs test
Common insertion sites are computed and annotated following
the rationale proposed by Biffi et al. [28] using Grubbs test for
outliers.

Briefly, the function computes different calculations for each
gene, starting with the integration frequency normalized by the
gene length in base pairs. This value is then scaled and corrected,
and finally Grubbs test is performed to assign a P-value with false
discovery rate (FDR) correction. Genes significantly targeted (P-
value <0.05) are reported in the final output table and in the
volcano plot (the latter produced by the by using the function
CIS_volcano_plot).

Integration sites sharing
Given an integration matrix and one or more group identifiers,
that is a combination of metadata fields uniquely identifying
a group, we can compute the number of distinct IS that are
shared between the groups in terms of absolute number and in
percentages, more precisely the operation is the equivalent to the
intersection of two or more sets. Despite the concept behind it
being fairly simple, the function is implemented to offer great
flexibility: users can provide in input one or more integration
matrices, different group keys for each data frame in input, decide
to compute all possible permutations of the comparisons or just
distinct combinations for the sake of efficiency (internally done
with the support of the package ‘gtools’), keep or drop the actual
coordinates of the IS shared for each comparison and finally,
since each row can be plotted as a Venn or Euler plot, choose
to compute for each row a truth table, which can be used as
the input to the function sharing_venn, that internally uses the
functions provided by the package ‘eulerr’ to produce the plots.
Although the absence of a specific limitation for the number
of sets involved in each intersection, it is important to note
that Venn plots have a maximum limit of five sets. Heatmaps
offer an alternative visual representation of sharing data with
the function sharing_heatmap: for this kind of plot, it is nec-
essary to have only two sets in the comparison and a better
visualization is offered when all permutations are computed
(Figure 5C and D).

A further application of IS sharing is offered by the function
iss_source, which aims to track the single shared IS from its
first observed time point. Results can be easily plotted as
a stacked bar plot to better visualize the contribution of IS
events of previous time points on each point in time observed
(Supplementary Figure S9). The logic behind the function only
slightly differs from simple sharing: the reference table, given by
the user as input, is pre-processed in a way that IS events that
occur in more than one timepoint are retained and labeled only
with the first timepoint they were observed in. Only afterwards a
step of IS sharing through the function is_sharing is completed,
to provide the final output of the function.

Estimate of the HSCs population size
The function ‘HSC_population_size_estimate’ returns the esti-
mated number of the clonal population, for example the
estimated size of HSPCs, through capture-recapture models
(Chao1) using both closed population and open population
models. Estimates are computed by the package ‘Rcapture.’ The
user is free to specify the populations on which the models are
applied through the appropriate function arguments, along with
additional tuning parameters such as thresholds for preliminary
filtering on different quantifications, a mapping between cell
markers and cell lineages information and one or more stable
time points. Results can be plotted easily with the function
HSC_population_plot (Supplementary Figure S10).
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Description of the Organization
The mission of San Raffaele Telethon Institute for Gene Therapy (SR-

Tiget) is to perform cutting-edge research in gene and cell therapy
and to translate its results into therapeutic advances, focusing on
genetic diseases with the characterization of biological properties
and physiopathological processes, the design and optimization
of safety and efficacy of novel gene and cell therapy platforms,
and their development from preclinical models to first-in-human
testing.

Key Points

• ISAnalytics implements many useful functions for the
assessment of the safety and efficacy in gene therapy
applications (required by regulatory authorities) as well
as for basic scientific questions on clonal dynamics and
lineage tracking.

• ISAnalytics supports reproducible data analysis and full
control of results with web reports and through a Shiny
interface.

• ISAnalytics implements a metadata-driven approach
through which users focus only on data descriptors to
design and run their analyses rather than data handling,
such that scientists will be focused on their biological
questions rather than on computational or program-
matic aspects.

• ISAnalytics can be embedded within a laboratory work-
flow since it has been developed to be fully inte-
grated with laboratory information management sys-
tems (which usually manage sample metadata) and
bioinformatic tools for clonal identification, thus sup-
porting the standardization and automation of labora-
tory procedures.

• On the computational side, ISAnalytics is implemented
with efficient and optimized data structures and it

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac551#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac551#supplementary-data
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is fully parallelized; moreover, it is released as open-
source Bioconductor package, with Github integration
and under continuous testing using TravisCI and GitHub
actions that perform automated checks on all operating
systems.

Supplementary Data
Supplementary data are available online at https://academic.oup.
com/bib.
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