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Abstract

Three-dimensional convolutional neural networks (3D CNNs) have been widely applied to analyze 

Alzheimer’s disease (AD) brain images for a better understanding of the disease progress or 

predicting the conversion from cognitively impaired (CU) or mild cognitive impairment status. 

It is well-known that training 3D-CNN is computationally expensive and with the potential of 

overfitting due to the small sample size available in the medical imaging field. Here we proposed 

a novel 3D-2D approach by converting a 3D brain image to a 2D fused image using a Learnable 

Weighted Pooling (LWP) method to improve efficient training and maintain comparable model 

performance. By the 3D-to-2D conversion, the proposed model can easily forward the fused 2D 

image through a pre-trained 2D model while achieving better performance over different 3D 
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and 2D baselines. In the implementation, we chose to use ResNet34 for feature extraction as 

it outperformed other 2D CNN backbones. We further showed that the weights of the slices 

are location-dependent and the model performance relies on the 3D-to-2D fusion view, with the 

best outcomes from the coronal view. With the new approach, we were able to reduce 75% of 

the training time and increase the accuracy to 0.88, compared with conventional 3D CNNs, for 

classifying amyloid-beta PET imaging from the AD patients from the CU participants using the 

publicly available Alzheimer’s Disease Neuroimaging Initiative dataset. The novel 3D-2D model 

may have profound implications for timely AD diagnosis in clinical settings in the future.
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1. Introduction

Alzheimer’s disease (AD) is the most common form of dementia and the sixth leading cause 

of death in the U.S. [1]. The major pathological hallmarks of AD are amyloid-beta (Aβ) 

plaques (A), hyperphosphorylated neurofibrillary tau (T) tangles, and neurodegeneration 

(N), known as the A/T/N framework, a descriptive classification scheme for AD biomarkers 

[2–4]. Non-invasive neuroimaging has been used for the early detection of A/T/N changes. 

In particular, positron emission tomography (PET) has been used to image Aβ for detecting 

AD pathology progression [5–8].

Recent works on AD classification are mainly based on 3D CNN models. Based on Ref. 

[9], the current 3D model methods are divided into three categories: (1) the 3D regions 

of interest (ROI) based CNN models, (2) the 3D patch-level CNN models, and (3) the 3D 

subject-level CNN models. The 3D regions of interest (ROI) based CNN models take ROIs 

of the 3D brain image as the input to train the 3D CNN model [10,11]. This approach is 

time-consuming because it requires manually drawn ROIs. The 3D patch-level CNN models 

may include Refs. [12,13], which extract the 27 patches of 3D image and independently 

train 27 3D CNNs for ensemble prediction. It is still a complex model since 27 individual 

3D CNN models are trained together. The 3D subject-level CNN models the whole 3D 

brain images as input of the 3D CNN architectures. For instance, some works [14,15] have 

proposed to forward the whole 3D brain image as input of the 3D CNN architectures, 

which shows high accuracy classification without the need for manual feature extraction. 

While these 3D CNN models achieve excellent performance, these methods have shown 

two limitations. First, compared to 2D-CNN, training the 3D-CNN model is computationally 

expensive. Second, directly training a deep learning model with a relatively small size of 

the medical image dataset could lead to overfitting. When working with 2D medical images, 

this can be addressed by using transfer learning, such as adopting widely used ImageNet 

pre-trained CNN models [16]. Unfortunately, such models are not readily available for 3D 

datasets. These two limitations impede the applications for AD diagnosis and predicting AD 

progression using 3D imaging data.
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Other than the 3D CNN method, researchers also explore using 3D images with 2D CNNs. 

The initial method is to pick the slice of 3D volumes as the input of the model. Ozsahin 

et al. [17] proposed selecting and converting a 2D PET slice into a vector as the input of 

a multilayer perceptron. Ghaffari et al. [18] applied the transfer learning approach for MRI 

image classification. Odusami et al. [19,20] proposed a hybrid CNN model by parallelly 

combining the ResNet18 and DenseNet121 together as feature extractors and concatenating 

the extracted features for prediction. Another common approach is to use temporal pooling 

to convert a video clip into a 2D image. The idea is to distill a video into a 2D motion 

representation that summarizes the whole video clip. Dynamic Image [21,22] is one of the 

most famous methods along this line of research. Ref. [21] proposed to use an approximate 

rank pooling (ARP) operation to convert the video frames into a 2D dynamic image. In 3D 

medical image applications, Liang et al. [23] combined 2D breast mammography and 3D 

breast tomosynthesis by using ARP on the 3D volumes. Xing et al. [24] applied ARP on 

the 3D brain MRI images for Alzheimer’s disease classification. In general, ARP achieves 

good performance on various tasks. However, as a fixed function, the weight of each frame 

in APR is deterministic and is calculated using only the frame index and the total number of 

frames.

To overcome the limitations, we propose to convert 3D volumes into 2D images with a 

Learnable Weighted Pooling (LWP) method. The advantage of LWP is that it computes 

the weighted values of each slide of the 3D image, and provides an overall weighted slice 

as a fusion image. By converting to a 2D image, we were able to dramatically shorten 

the training time and apply multiple pre-trained 2D models that are currently not available 

for 3D CNN, such as VGGNet [25], ResNet [26], DenseNet [27], MobileNet [28], and 

EfficientNet [29]. The benefits of using these pre-trained models will allow us to optimize 

the choice of the feature extractor for different datasets.

In this study, we applied and compared the results between these widely used and pre-

trained 2D-CNN models. We further incorporated an attention module for the classifier, 

strengthening discriminative feature learning and enhancing the deep learning model 

performance. We hypothesized that by converting 3D PET-Aβ imagery to 2D, we were 

able to reduce the training time while enhancing the performance for AD prediction. We 

consider our main contributions as follows:

• We proposed a novel learnable weighted pooling module for 3D-to-2D image 

projection and end-to-end network architecture;

• We employed a new dual-attention mechanism module on the top of 2D CNNs to 

boost the model performance;

• Compared with 3D CNNs models, the proposed model gained comparable 

performance with less training computation cost;

• We conducted an intensive evaluation with multiple imaging modalities among 

different 3D-to-2D modules.
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2. Materials and Methods

2.1. Data

We obtained the PET-Aβ (AV45) imaging from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database [30]. Participants were required to have baseline Aβ imaging 

biomarkers (from Florbetapir AV45 PET). Each subject in ADNI may have multiple 

neuroimaging scans at different time points. We used the first-time scan of each subject 

for the early diagnosis task. The collected PET images are pre-processed from the “Coreg, 

Avg, Std Img and VoxSiz, Uniform Resolution” category. The PET image size is 96 × 

160 × 160. Table 1 shows the demographics of the CU and AD participants. The dataset 

in total includes 381 subjects, with 214 CU subjects and 167 AD subjects. The two study 

groups were balanced in gender, race, and age (CU: 73.6 ± 6.0, AD: 74.7 ± 8.4, p-value = 

0.1511), but not education. CU overall had longer education (in years) than AD participants. 

Notably, the groups differed in terms of the expression of the ε4 allele of apolipoprotein E 

(APOE ε4), the largest genetic risk factor for Alzheimer’s disease, with the AD group being 

significantly more likely to carry APOE ε4 than CU subjects [31–33].

2.2. Architecture

Figure 1 shows the overall workflow of the proposed model. First, each slice of the 3D 

medical image was passed to the slice network that converts 3D images to a 2D fused 

image by fusing all the slices using a pooling method. Then, we forwarded the 2D fused 

image through a pre-trained feature extractor. Afterward, we passed the extracted feature 

to a dual-attention mechanism to boost our model performance. Finally, the output of the 

attention module was forwarded to a shallow classifier built by fully connected layers for 

diagnosis prediction.

2.3. Learnable Weighted Pooling (LWP)

Given a 3D image V = I1, I2, …, IT ∈ ℝT × H × W , where Ix is a 2D slice ∈ ℝH × W  and T is 

equal to the number of slices. A 3D-to-2D projection aims to fuse all slices of the 3D image 

to get a 2D image ∈ ℝH × W . Inspired by the ARP [21], we proposed the LWP method. For 

the LWP operation on a 3D image V with T slices I1, …, IT, the CNN built slice network 

ψ outputs for the corresponding weight of each slice Ix as Qx = ψ(Ix). We use the softmax 

function σ, to normalize the slice weight αt between 0 and 1 as Equation (1). The fused 2D 

image FI1, …, It is the sum of all weighted slices over a certain view dimension:

σ Qx = eQx

∑x = 1
T eQx (1)

FI1, …, It = ∑
x = 1

T
Ix ⋅ σ Qx (2)
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Figure 2 depicts the LWP structure. The value Qx of a single input slice Ix ∈ RH×W is a 

scalar, Qx ∈ R, which means that the temporal rank pooling is on an image level operation. 

We forward a single slice through a shallow CNN model, which includes four convolutional 

layers and a global average pooling layer to get a single scalar per slice. The parameters 

of the slice network were initialized by kaiming initialization and are fine-tuned during the 

training.

The whole idea is a 3D-to-2D image-level projection by sum fusion of the weighted slices. 

There are several significant differences between LWP and ARP. First, the ARP slice weight 

αt of each slice is only related to the total slice number T and current slice index αt = 2t − T 
− 1, which is fixed and not learnable. Second, ARP applies an average of slices up to slice t 

on each slice θ It = 1
t ∑x = 1

T Iτ. To address the limitations of ARP, we propose a flexible and 

trainable fusion module, LWP.

2.4. Attention Module and Classifier

We deploy the attention module to simultaneously refine our extracted feature spatial-wise 

and channel-wise, so we adopt a dual-attention mechanism architecture. To simplify our 

model architecture, we employ the dual-attention module on the top of the CNN feature 

extractor. Figure 3 depicts the structure of the attention mechanism. The dual-attention 

module structure is similar to Ref. [34]. It contains two sub-modules: the self-attention (SA) 

module [35] as the position-wise correlation computation and the channel-attention (CA) 

module [36] to calculate the channel-wise correlation. The CA module of Ref. [34] needs 

quadratic computation cost, but the channel-wise attention of our module is calculated by 

a Conv1d operation, which is more cost-efficient. We forward the input feature Input ∈ 
ℛ ×ℋ×  through the two sub-modules respectively and use sum fusion to merge as the 

final output feature Output ∈ ℛ ×ℋ× .

Our classifier contains three fully connected (FC) layers. The output dimensions of the three 

FC layers are 512, 64, and 2. Batch normalization and dropout layers are attached after the 

first two layers. The dropout probability is 0.5.

2.5. Loss Function

In previous AD classification studies, work was mainly concentrated on binary 

classification. In our work, we did the same for ease of comparison. The overall loss 

function is weighted binary cross-entropy. For a 3D image V with label l and probability 

prediction p(l|V), the loss function is:

loss(l, V ) = wpl log(p(l ∣ V )) + wn(1 − l) log(1 − p(l ∣ V )) (3)

where the label l = 0 indicates a negative sample and l = 1 indicates a positive sample and wp 

and wn are loss weights for the positive and negative samples, respectively.

3. Results

To evaluate the proposed method, we carried out several experiments on 3D PET images. 

The experimental results demonstrated that LWP achieves better performance than the 
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baselines. In the following subsections, we first introduce the implementation details and 

evaluation metrics, then we report our results on the PET image dataset. Finally, we perform 

a series of ablation experiments on our dual-attention mechanism.

3.1. Implementation and Metrics

We implemented the CNN models using PyTorch. We trained and tested the models using 

the 5-fold cross-validation. The feature extractors were pre-trained on ImageNet [37]. The 

weights of the classifier were randomly initialized. Both the feature extractor and classifier 

were fine-tuned during the training. For the 2D models, we set the batch size to 16. Adam 

optimizer with beta1 = 0.9, beta2 = 0.999, and learning rate of 1 ×10−4 was used during 

the training. For the 3D CNN models, we followed the parameters setting of Ref. [14,15]. 

We trained all the models for 150 epochs. We computed loss weights for positive (wp) and 

negative (wn) classes based on the dataset distribution, by using wp = 1.28, wn = 1.

A 3D brain image may be viewed from three directions: axial, coronal, and sagittal. In the 

implementation, we took the LWP operation on a coronal view for the PET image. More 

details can be found in Section 3.2.2.

To evaluate the performance of our model, we used accuracy (Acc), area under the curve 

of Receiver Operating Characteristics (AUC), F1 score (F1), Precision, Recall, and Average 

Precision (AP) as our evaluation metrics. We evaluated the training computation cost by 

the average epoch training time (e-Time). The accuracy is calculated with the following 

Equation (4):

Accuracy  = TP + TN
TP + TN + FP + FN (4)

where TP is the True Positive, TN is the True Negative, FP is the False Positive, and FN is 

the False Negative.

The precision is calculated by the following Equation (5):

precision  = TP
TP + FP (5)

The recall is calculated by the following Equation (6):

recall = TP
TP + FN (6)

The F1 is calculated by the following Equation (7):

F1 = 2 ×  precision ⋅ recall 
 precision + recall  (7)
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The AUC curves compare the true positive rate and the false positive rate at different 

decision thresholds. AP summarizes a precision-recall curve as the weighted mean of 

precision achieved at each threshold.

3.2. Evaluation

3.2.1. Feature Extractor—High-quality feature extraction is crucial for the final 

prediction. Different pre-trained CNN models can output different features in terms of 

size and effective receptive field. Ke et al. [38] concluded that architecture improvements 

on ImageNet may not lead to improvement in medical imaging tasks. We conducted five 

different pre-trained CNNs on the medical dataset to determine which CNN models perform 

best for our task. To simplify the experiment, we set the PET-AV45 image as the input 

dataset using LWP and excluded the attention module from the whole experiment. Table 2 

shows different CNN models and the corresponding final metrics. Considering the accuracy 

and AUC, the ResNet34 delivers comparable performance. In the following experiment, we 

used ResNet34 as our feature extractor.

3.2.2. Axial vs. Coronal vs. Sagittal—There are three standard views of 3D imaging 

in medical imaging: sagittal, coronal, and axial. In the main paper, we selected the coronal 

view for PET empirically. The remainder of this section summarizes the experiment we 

conducted. Figure 4 illustrates the different views of the 3D PET images. Considering 

that the LWP performance may vary due to the different views fusion, we conducted 

experiments to specify the view influence on our model performance. Table 3 shows the 

model performance on the three views under the imaging modality. As a PET image, 

the coronal view fusion offers better performance than others. Therefore, our following 

experiments set the fusion views as the default of our LWP model without specific mention.

3.2.3. CU vs. AD—We conducted the binary classification on the CU and AD prediction. 

To compare the pooling operation, we set three pooling baselines, namely Max pooling 

(Max.), Average pooling (Avg.), and ARP. Table 4 presents the experiment results on 

different models, showing that the proposed 3D-to-2D model outperforms the other CNN 

models. Compared with the 3D CNN baseline model, the LWP method improves 4.6% in 

accuracy (from 0.84 to 0.88) and 3.3% in AUC (from 0.87 to 0.90), respectively. We used 

the Multiply-Add operations (MADs) and training epoch time (e-time) as the reference, 

considering the training computation cost. Table 5 shows the training computation cost of 

different CNN models. The e-time of the LWP is around 26.0% of the 3D baseline model, 

and the MADs of LWP is around 19.0% of the 3D baseline model. We further conducted the 

t-test on the e-time between LWP and the 3D CNN models, the p-value is <0.0001, proving 

the significant improvement of the efficient training. Furthermore, we showed the AUC 

graph as Figure 5 and the confusion matrix as Figure 6. In Figure 6, “Negative” indicates 

CU subjects, while “Positive” indicates AD subjects.

3.2.4. Attention Mechanism Ablation Study—We evaluated the ablation study to 

specify our dual-attention module. The baseline (BS) model structure is LWP + ResNet34 

without an attention mechanism. Since the dual-attention (DA) module contains two sub-
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attention modules: self-attention (SA) and channel-attention (CA), we conducted four 

models: BS, BS + SA, BS + CA, and BS + DA.

Table 6 shows the performance of the attention mechanism ablation study. The results show 

that the dual-attention module performs better than others.

3.2.5. Visualization—Figure 7 shows the results on the slice logits, slice ranking scores, 

and fused images. We found that central slices of the 3D brain outweighed the surrounding 

slices. It indicates that brain regions covered by the central slices may play a more important 

role in revealing AD pathology than those in the lateral slices.

4. Discussion

In this study, we have proposed a novel method for training the 3D image by 2D CNN and 

end-to-end network architecture. We showed that our newly developed model significantly 

reduced the processing time while achieving comparable performance compared with 

traditional 3D CNN models. We also demonstrated several other novel findings, as follows. 

First, we found that ResNet34 outperforms other 2D CNN backbones as a feature extractor. 

Second, we demonstrated that different views of 2D images may have different performing 

outcomes when converting 3D images into 2D. In the current study, we showed that the 

coronal view performed better than the other two. Third, we showed that the LWP model 

can effectively convert the 3D to 2D fused images with low training time and computation 

cost while maintaining high performance. The visualized results further illustrated that the 

mid-range slices had higher importance than the side-range slices. Fourth, we have proposed 

a new attention module by paralleling the self-attention module and channel-wise attention 

module together for better discriminative feature extraction. Our results demonstrated the 

effectiveness of the new attention module.

Our method is inspired by the ARP method but it is different in implementation. The 

ARP method fuses the slices of the 3D image with the static weights, but our method is 

data-driven and learnable by the model itself. Compared with ARP, the LWP can capture 

more informative features and can gain and boost better performance. Compared with 

the traditional 3D CNN models, the LWP method saves much more training time and 

computation cost and achieves comparable or even better performance. Compared with 

conventional 2D CNN models, the fused image of LWP contains more informative features 

than the single-slice 2D images, which show better performance than the single-slice input 

of the 2D CNN. The idea of the LWP method is to record the abnormal variance between 

the 3D brain slices. In the medical domain, there is severe shrinkage in the structure and 

different metabolism densities of the brain in an AD patient. The 3D-to-2D projection 

concentrates on extracting the discriminative image-level information between CU and AD 

is the critical input of the 2D CNN.

The newly developed 3D-2D model may have profound implications in the future clinical 

setting for AD early diagnosis. Currently, 3D brain images are not widely available or used 

in routine clinical diagnosis. One of the major reasons is the unreasonably long processing 

time needed to get the information timely in daily health care. The proposed model needs 
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fewer computation resources than the traditional 3D models, making the computation faster 

and less required for the hardware demands, which may be more applicable and affordable 

to be implemented in the clinical setting, as well as for mobile device use, in the future. 

Our future work will apply this method to other 3D brain image modalities, such as MRI 

structural and cerebral blood flow imaging analysis.

A limitation of the study is the lack of the spatial structure information of the 3D image as 

there was a trade-off between the 3D image spatial information and computation efficiency 

in our model. Further, our focus in the present study was on the classification of late stage 

AD versus CU and using PET-AV45 imaging only. In the future, it will be important to apply 

a similar method to earlier clinical stages (e.g., early mild cognitive impairment) and include 

other imaging measurements, such as brain atrophy using MRI.

In conclusion, we demonstrated a novel 3D-2D CNN conversion model which significantly 

increased the efficiency of Alzheimer’s disease classification using PET-AV45 imaging. The 

method may have important implications for disease diagnosis and medical applications 

using mobile devices in the future.
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Figure 1. 
The workflow of our proposed CNN model.
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Figure 2. 
The structure of the slice network.
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Figure 3. 
The structure of the attention module. The input of the attention module is the extracted 

features of the CNN backbone. The output of the attention module is forwarded to the 

classifier.
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Figure 4. 
The different views of the 3D Brain image slice and the corresponding 3D-to-2D fused 

image. Based on the axial, sagittal, and coronal views, the 3D PET image size is 96 × 160 × 

160. The corresponding fusion images of PET under different views are different: 160 × 160 

of axial view, 96 × 160 of sagittal view, and 96 × 160 of coronal view.
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Figure 5. 
The ROC curves of the different models.
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Figure 6. 
The confusion matrix of LWP on the test data.
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Figure 7. 
The visualization results of the PET image. The first column shows the digit of each slice. 

The second column shows the rank score of the slices after the softmax function. The last 

column shows the fused PET image.
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Table 1.

Demographic of the study data.

Num Age Gender (F) Edu. (Y) Race (W) APOE ϵ4

CU 214 73.6 ± 6.0 52.2% 16.5 ± 2.6 90.2% 26.6%

AD 167 74.7 ± 8.4 41.8% 15.7 ± 2.6 90.4% 65.8%

p-value 0.1511 0.0974 0.0017* 0.7346 <0.0001 *

CU, cognitively unimpaired; AD, Alzheimer’s disease. Values are displayed as the mean ± SD.

Asterisk (*) next to p-value indicates statistical significance.
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Table 2.

The performance results of different backbone models on PET image.

Model Acc AUC F1 Precision Recall AP

MobileNet_v2 0.8346 0.8745 0.8085 0.8210 0.7964 0.7431

VggNet11 0.8478 0.8851 0.8187 0.8562 0.7844 0.7661

DenseNet121 0.8477 0.8807 0.8284 0.8187 0.8383 0.7572

EfficientNet 0.8479 0.8913 0.8263 0.8263 0.8263 0.7590

ResNet34 0.8688 0.9058 0.8503 0.8503 0.8503 0.7886
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Table 3.

The performance results of LWP on different views of the 3D brain image.

Views Acc AUC F1 Precision Recall AP

Axial 0.8609 0.8811 0.8328 0.8800 0.7904 0.7874

Coronal 0.8688 0.9058 0.8503 0.8503 0.8503 0.7886

Sagittal 0.8609 0.8692 0.8349 0.8701 0.8024 0.7848
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Table 4.

The performance results of different 2D and 3D CNN models on PET image.

Model Acc AUC F1 Precision Recall AP

3D-CNN [14] 0.8482 0.8797 0.8095 0.8151 0.8041 0.7339

2D-CNN [17] 0.8241 0.8446 0.8069 0.7778 0.8383 0.7229

Jo et al. [15] 0.8451 0.8649 0.8162 0.8506 0.7844 0.7618

Hybrid [19] 0.8714 0.8654 0.8537 0.8512 0.8563 0.7919

Max. 0.8583 0.8787 0.8333 0.8599 0.8084 0.7791

Avg. 0.8661 0.8904 0.8440 0.8625 0.8263 0.7888

ARP [24] 0.8609 0.8811 0.8349 0.8701 0.8024 0.7848

LWP(current study) 0.8871 0.9088 0.8693 0.8827 0.8563 0.8189
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Table 5.

The training computation cost of different 2D and 3D CNN models on PET image.

Model Batch MADs (G) e-Time(s)

3D-CNN [14] 8 96.02 56.27 ± 1.45*

2D-CNN [17] 16 0.19 × 10−3 2.03 ± 0.03

Jo et al. [15] 16 34.39 36.18 ± 0.05

Hybrid [19] 16 1.86 2.16 ± 0.04

Max. 16 18.15 14.33 ± 0.12

Avg. 16 18.15 14.02 ± 0.63

ARP [24] 16 18.15 17.14 ± 0.02

LWP (current study) 16 18.53 16.69 ± 0.05

Asterisk (*) indicates the largest value of the epoch time (e-Time).

Electronics (Basel). Author manuscript; available in PMC 2023 February 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xing et al. Page 25

Table 6.

The performance results of ablation study on attention mechanism.

Models Acc AUC F1 Precision Recall AP

BS 0.8688 0.9058 0.8503 0.8503 0.8503 0.7886

BS + SA 0.8766 0.9135 0.8563 0.8750 0.8383 0.8044

BS + CA 0.8740 0.9040 0.8537 0.8696 0.8383 0.7998

BS + DA 0.8871 0.9178 0.8693 0.8827 0.8563 0.8189
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