Table 4.
The performance results of different 2D and 3D CNN models on PET image.
| Model | Acc | AUC | F1 | Precision | Recall | AP |
|---|---|---|---|---|---|---|
| 3D-CNN [14] | 0.8482 | 0.8797 | 0.8095 | 0.8151 | 0.8041 | 0.7339 |
| 2D-CNN [17] | 0.8241 | 0.8446 | 0.8069 | 0.7778 | 0.8383 | 0.7229 |
| Jo et al. [15] | 0.8451 | 0.8649 | 0.8162 | 0.8506 | 0.7844 | 0.7618 |
| Hybrid [19] | 0.8714 | 0.8654 | 0.8537 | 0.8512 | 0.8563 | 0.7919 |
| Max. | 0.8583 | 0.8787 | 0.8333 | 0.8599 | 0.8084 | 0.7791 |
| Avg. | 0.8661 | 0.8904 | 0.8440 | 0.8625 | 0.8263 | 0.7888 |
| ARP [24] | 0.8609 | 0.8811 | 0.8349 | 0.8701 | 0.8024 | 0.7848 |
| LWP(current study) | 0.8871 | 0.9088 | 0.8693 | 0.8827 | 0.8563 | 0.8189 |