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Abstract

The kidneys are responsible for maintaining physiologic homeostasis. The kidneys clear a variety 

of drugs and other substances through passive (filtration) and active processes that utilize transport 

proteins. Renal clearance is comprised of the processes of glomerular filtration, tubular secretion, 

and tubular reabsorption. Endogenous biomarkers, such as creatinine and cystatin C, are routinely 

used to estimate renal clearance. Understanding the contributing components of renal function 

and clearance, through the use of biomarkers, is necessary in elucidating the renal pharmacology 

of drugs and other substances. While exogenous markers of kidney function have been known 

for decades, several complexities have limited their usage. Several endogenous markers are 

being evaluated and hold promise to elucidate the individual components of kidney function that 

represent filtration, secretion, and reabsorption.
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Introduction

The kidneys are responsible for maintaining water, electrolyte, and acid-base homeostasis. 

They are effective at removing metabolic waste products, xenobiotics (drugs and toxins) 

and maintaining physiologic osmolality (Fig. 1). Renal clearance is characterized as 

the composite of three processes – glomerular filtration, tubular secretion, and tubular 

reabsorption (Equation (1)) [1]. While filtration and secretion add substances to the urinary 

ultrafiltrate, reabsorption removes compounds from the ultrafiltrate. The expanded renal 

clearance equation includes a term for fraction reabsorbed to account for the negative 

contribution to clearance (Equation (2)).
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ClR = Clfiltration + Clsecretion − Clreabsorption Equation 1

ClR = Fu*GFR + Q * Fu * Cli/ Q+ Fu * Cli * 1 − Fr Equation 2

where ClR is renal clearance, Fu is the fraction unbound, Q is the renal blood flow, Cli is 

the intrinsic renal clearance, and Fr is fraction of the compound reabsorbed from the tubule 

lumen.

While some small molecular weight drugs are excreted unchanged through the kidneys, 

metabolism leads to the addition of a functional group which increases the charge and 

molecular weight, requiring renal transporters for the urinary excretion of most drugs. 

Secretion and reabsorption of drugs in the kidneys are facilitated by transport proteins in 

the tubules, leading to unidirectional or bidirectional movement of both organic anions and 

cations (Fig. 2).

Glomerular filtration rate (GFR) and creatinine clearance (CrCl) are used for evaluating 

kidney function and deciding drug dosing requirements (Table 1) [2–4]. Similar to GFR 

and CrCl equations is the use of serum creatinine as the endogenous marker. Numerous 

publications have reported on the limitations of serum creatinine for determination of kidney 

function [5–8]. The use of creatinine to estimate GFR is limited secondary to several factors 

including muscle mass differences, age, sex, drugs, disease states, diets, and physical activity 

levels [5,6]. As creatinine is generally assumed to be 85% filtered and 15% secreted, it is 

primarily used to represent glomerular filtration. Equations to estimate GFR (referred to in 

the nephrology community as eGFR, representing an estimate) include age, sex, and serum 

creatinine (Table 1) [9]. Race was removed as a variable from the Chronic Kidney Disease 

Epidemiology Collaboration (CKD-EPI) formula in 2021 following a scientific debate [10].

There has been a renewed interest within the nephrology community to find improved 

markers of kidney function and more precisely differentiate the individual renal clearance 

components. There is increasing recognition of the limitations of the markers currently in 

use [3,4,11]. This review will briefly discuss exogenous markers of renal filtration and then 

highlight the most contemporary literature related to endogenous markers of glomerular 

filtration, tubular secretion, and tubular reabsorption (Table 2).

Exogenous markers of filtration

Exogenous markers that focus on filtration and effective renal plasma flow (eRPF) have 

been used for several decades and inulin and para-aminohippurate (PAH), respectively, 

are considered the gold standards [12,13]. There are well-established methods for using 

these markers [14–18]. Inulin is not routinely used clinically as it requires a continuous 

infusion, frequent timed serum and urine collections, and an assay that is not convenient for 

clinical practice [12]. PAH is unbound, has a high clearance, and undergoes both filtration 

and tubular secretion. At low plasma concentrations (10–20 mg/L), about 90% of PAH is 

cleared by the kidneys in a single pass [19]. To measure eRPF, PAH is administered as 

an intravenous infusion, to sustain a plasma concentration of 20 mg/L, and frequent timed 

Thompson and Joy Page 2

Curr Opin Toxicol. Author manuscript; available in PMC 2023 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



plasma and urine samples are collected [16–19]. However, these studies are arduous due to 

the long infusion needed to achieve steady-state and the need for timed collections of plasma 

and urine [18]. High doses of PAH at plasma levels 400–600 mg/L, saturate tubular secretion 

of PAH and can be used to parse out the tubular secretion component [19,20].

Although inulin and PAH are considered gold standards for assessment of kidney function, 

they are expensive, invasive, and cumbersome procedures that are not conducive to routine 

use. The search for an ideal exogenous filtration marker should be centered on the 

characteristics of 1) excreted solely by the kidneys, 2) no protein binding, 3) no secretion 

or reabsorption, 4) easy to use, and 5) low distribution volume, indicating a relatively 

short redistribution phase and therefore a shorter test. Newer exogenous markers, such as 

iothalamate, iohexol, and radioactive compounds, have been evaluated. Common methods 

for measuring GFR are the urinary clearance of non-radioactive iothalamate and the plasma 

clearance of iohexol [12]. For these tests, the exogenous compound is administered as either 

a sub-cutaneous injection (for urinary clearance) or infusion (for plasma clearance) and 

timed blood and/or urine samples are collected over the clearance period [21]. Measuring 

plasma clearance is often advantageous in populations with bladder impairment as it does 

not require urine collection [22]. However, when calculating GFR by plasma clearance 

using a limited number of samples, an equation to correct for the absence of the early 

compartment must be used to account for the redistribution phase [23]. Iohexol is not 

metabolized or transported in the kidneys and is excreted predominantly by glomerular 

filtration, making it an excellent candidate marker of GFR [24]. Radioactive compounds 

such as I-125 iothalamate, chromium-51 labelled ethylene diamine tetra-acetic acid (51Cr-

EDTA), and technetium-99 m diethylenetriaminepentaacetic acid (99mTc-DPTA) can also be 

used for measuring GFR. Urinary and plasma clearance methods following a single injection 

accurately measure GFR and produce similar results [25,26]. The CKD-EPI 2009 and 2012 

eGFR equations were validated using urinary non-radioactive iothalamate clearance while 

the CKD-EPI 2021 equations were validated using the plasma clearance of iohexol and 
51Cr-EDTA (Table 1) [10,27].

Numerous limitations with exogenous assessment methods exist including long infusions to 

achieve equilibration, bias due to methodology or sample timing, and in individuals with low 

GFR, the elimination of the marker may not be fully elucidated during the sample collection 

period [12,13]. Given these limitations, there has been interest in evaluating endogenous 

compounds.

Endogenous markers of filtration

An ideal endogenous marker of GFR has been defined to have a constant rate of endogenous 

production, free passage through the glomerulus, no-to-limited protein binding, excretion 

exclusively by glomerular filtration, and measurement that is simple, accurate, and cost-

effective [28]. This section will review conventional and contemporary endogenous markers 

of filtration and Table 2 provides concise data usages and normal ranges.
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1. Creatinine

Serum creatinine (SCr) is the oldest and most commonly used endogenous marker to 

estimate GFR (Tables 1 and 2). Since creatinine undergoes filtration and secretion, patients 

with reduced kidney function can exhibit a reduction in creatinine filtration and an increase 

in the secretion contribution [29]. There can be confusion around the degree of kidney 

function with SCr, as observations of elevated concentrations may be delayed until after 

GFR has been reduced by over 50% [7,8]. Creatinine is a relatively insensitive endogenous 

biomarker for early detection of kidney injury.

Endogenous CrCl has traditionally been used to guide drug dosing and uses the Cockcroft–

Gault equation (Table 1) [30]. CrCl can also be calculated by collecting urine and blood and 

using SCr and urinary creatinine concentrations (Table 1). CrCl can overestimate actual GFR 

due to the tubular secretion of creatinine [31].

2. Cystatin C

Cystatin C is a protein that is eliminated exclusively by glomerular filtration but 

subsequently undergoes catabolism in the lysosomes of tubular cells, resulting in limited 

appearance in the urine of healthy individuals [32,33]. Cystatin C in the blood is not 

a product of muscle mass and is instead produced by all nucleated cells, meaning its 

production is more uniform across populations than creatinine [34]. However, increased age, 

smoking, obesity, hyperthyroidism, and the use of corticosteroids are all associated with 

increased concentrations [34,35]. Many studies have demonstrated that eGFR determination 

using both SCr and serum cystatin C concentrations results in improved accuracy over eGFR 

determined from either SCr or serum cystatin C alone (Tables 1 and 2) [5,10,36,37].

3. Beta-2 microglobulin (B2M)

Beta-2 microglobulin (B2M) is generated by all nucleated cells in the body. B2M is freely 

filtered by the glomerulus and concentrations (plasma and urinary) can increase early after 

a kidney insult [38,39]. Studies have shown that the CKD-EPI B2M equation for estimating 

GFR, which is independent of age and sex, performs similarly to the CKD-EPI creatinine-

cystatin C equation (Table 1) [40–42].

4. Beta-trace protein (BTP)

Beta-trace protein (BTP), also known as lipocalin-type-prostaglandin-D-synthase, is filtered 

by the glomerulus with limited tubular reabsorption [43]. Elevated serum and urine BTP 

concentrations have been associated with renal and cardiovascular diseases, as well as 

mortality [44]. However, the CKD-EPI BTP equation does not outperform either the CKD-

EPI creatinine or cystatin C equations in estimating GFR (Table 1) [40,45].

5. Symmetric dimethylarginine (SDMA)

Symmetric dimethylarginine (SDMA) is the endogenous catabolic product of methylated 

arginine-containing proteins and is mainly excreted by the kidneys [46]. SDMA is not 

influenced by the non-renal factors that impact creatinine and/or cystatin C, such as diet, 

muscle mass, etc., and is only minimally influenced by obesity, gender, and age [47]. SDMA 
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levels are increased in the plasma of patients with kidney disease and correlate with GFR in 

patients with CKD [48]. Additionally, the use of SDMA as a biomarker of renal function is 

consistent across species (human, cat, dog) and is often used in veterinary medicine [47,49–

51].

6. Albumin

Albumin is filtered by the glomerulus and then largely reabsorbed in the tubules (~97%) 

[52]. The presence of albumin in the urine (albuminuria) signifies structural damage to the 

kidney glomerulus, due to diseases such as glomerulonephritis or diabetes mellitus. This 

damage results in the “filtering” of large molecular weight compounds. There can also be 

a reduced ability of the tubules to reabsorb albumin due to either saturation of reabsorption 

capacity or injury leading to decreases in the function of uptake pathways [53,54]. Urinary 

albumin excretion is used in CKD staging and is an independent risk factor of mortality [55]. 

After a stage of hyperfiltration (high GFR), individuals with diabetes or obesity develop 

albuminuria, and this is associated with the development of CKD, cardiovascular disease, 

and death [56]. Increased GFR is associated with albuminuria and an increased urinary 

albumin-to-creatinine ratio [57]. Decreased serum albumin (hypoalbuminemia) is associated 

with decreased eGFR [58].

7. Urea

Urea is produced by the liver as a product of protein and amino acid catabolism. In the 

kidneys, it is freely filtered from the blood and allows the kidneys to create hyperosmotic 

urine, helping to prevent the loss of water [12]. The amount of urea reabsorbed in the 

collecting ducts (~50%) is dependent on the permeability and the tubular concentration of 

urea, which are both regulated by antidiuretic hormone (ADH), also known as vasopressin. 

ADH synthesis in the hypothalamus is triggered by increases in blood osmolarity, such as 

an increase in sodium concentration, and acts in the kidneys to increase water reabsorption 

to prevent dehydration [59]. ADH renders the medullary collecting ducts highly permeable 

to urea by increasing phosphorylation and apical plasma-membrane accumulation of urea 

transporters A1 (UT-A1) and A3 (UT-A3) (Fig. 2) [60]. UT-A1 (apical) and UT-A3 

(basolateral, apical after ADH stimulation) are found in the inner medullary collecting 

duct. Additionally, in the presence of ADH, water is avidly reabsorbed in the distal tubule 

and urea becomes highly concentrated, driving urea reabsorption. Alternatively, the absence 

of ADH results in decreased collecting duct permeability and high levels of water in the 

collecting duct, diluting the concentration of tubular urea and decreasing urea reabsorption. 

While blood osmolarity and volume are the main factors that affect ADH synthesis, 

angiotensin, pain, nausea, hypoglycemia, nicotine, and certain medications can also promote 

ADH secretion [59]. ADH secretion is inhibited by ethanol, explaining the increased diuresis 

and free water loss during intoxication [59].

Blood urea nitrogen (BUN) concentrations are ~46% of blood urea concentrations [61]. 

BUN has an inverse relationship with GFR. Previous reports have demonstrated the 

usefulness of eGFR calculated by equations based on SCr, BUN, height, gender, and cystatin 

C serum levels, particularly in children with CKD (Table 1) [62,63]. Since the serum and 
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urinary concentrations of urea depend on ADH production, urine flow rate, diet, and urea 

cycle enzymes, it is a poor marker of GFR [7].

Endogenous markers of secretion

Tubular secretion is the primary mechanism of drug excretion through the kidneys (Fig. 

1) [3,4]. Tubular secretion removes drugs from circulation, including those that are protein-

bound, via transporter proteins on the basolateral membrane of the proximal tubule, while 

proteins on the apical membrane further contribute by moving drugs from the proximal 

tubule to the urine ultrafiltrate (Fig. 2). Transporters can be bidirectional depending on pH. 

Transporters can also facilitate the movement of drugs back into the blood from the urinary 

ultrafiltrate. Unlike glomerular filtration, tubular secretion is a saturable process and can 

be altered by competitive binding interactions between medications and other circulating 

substances [2]. An ideal endogenous marker of secretion should be excreted into the urine 

without degradation in the body and be measured easily, accurately, and cost-effectively. 

Despite the importance of tubular secretion, it is difficult to quantify using endogenous 

markers and hence there are no established user-friendly equations analogous to GFR or 

CrCl for filtration [2,4].

1. Creatinine

As mentioned previously, creatinine is actively secreted by the tubules in addition to being 

filtered by the glomerulus. CrCl calculations result in an overestimation of kidney filtration 

function since creatinine is 15% cleared through tubular secretion [31]. Studies often 

compare the measured renal clearance of a drug to the CrCl to predict whether the drug 

undergoes a significant secretory component [64]. For example, if the renal clearance of a 

drug is greater than CrCl, secretion is presumed to be a contributing process. Drugs that are 

substrates of organic cation transporters may compete with creatinine renal secretion and 

result in an underestimation of GFR [65]. It is important to differentiate whether a reduction 

in GFR or CrCl is due to a transporter competition or due to drug-induced kidney injury 

[64].

2. Hippurate

Hippurate, an organic anion, is a glycine conjugate of benzoic acid formed by gut bacterial 

metabolism and by mitochondria in the liver and kidneys [66]. The primary excretion route 

is through renal tubular secretion via OAT1 and OAT3, located on the tubular basolateral 

membrane (Fig. 2). Endogenous hippurate is cleared on a single pass through the kidneys 

(50–90% extraction) and the clearance, measured using a timed urine collection and a 

single plasma sample, can provide an estimate of an individual’s eRPF (Table 1) [67]. 

Hippurate urinary excretion decreases with decreased tubular secretion and accumulates in 

the plasma of patients with renal failure [68,69]. Individual variability in the gut production 

of hippurate, influenced by diet and microbiome composition, may limit its ability to 

estimate eRPF [66].
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3. Cinnamoylglycine

Cinnamoylglycine is a gut-derived metabolite with a renal clearance greater than CrCl, 

suggestive of a secretion component [69]. Clearance of cinnamoylglycine is only moderately 

correlated with eGFR (0.40), confirming that it is primarily secreted rather than filtered [70]. 

Like hippurate, cinnamoylglycine accumulates in the plasma of patients with renal failure 

[69]. Multiple studies have used cinnamoylglycine excretion to estimate tubular secretion 

(Table 1) [71,72].

4. N1-methylnicotinamide (NMN)

Nicotinamide undergoes liver metabolism to produce N1-methylnicotinamide (NMN), a 

substrate of OCT2 and the multidrug and toxin extrusion proteins MATE1 and MATE2-K, 

the latter of which are transporters on the tubular apical membrane (Fig. 2). NMN is 

unbound and renal clearance is higher than GFR, implying significant excretion via tubular 

secretion [73]. NMN clearance has been evaluated as a potential endogenous biomarker 

of OCT2/MATE transporter secretory function in drug–drug interaction studies (Table 1) 

[73–75].

Endogenous markers of reabsorption

The tubules reabsorb most of the urinary ultrafiltrate, including water, sodium, and other 

nutrients (Fig. 1). Most reabsorption of the filtrate occurs in the proximal tubules, which 

reabsorb ~70% of the filtered load. The distal tubules are responsible for the finer regulation 

of the water, electrolyte, and hydrogen-ion balance. With damage to the glomerulus and 

tubules, more proteins undergo filtration through the leaky glomerulus and the reabsorption 

mechanisms in the tubules are oversaturated (and damaged), leading to the presence of 

proteins in the urine ultrafiltrate. Megalin, also known as low-density lipoprotein receptor-

related protein 2 (LRP2), is an endocytic receptor that works in cooperation with the 

receptor cubilin to drive the reabsorption of nearly all filtered plasma proteins (Fig. 2) [76]. 

Certain compounds that are filtered out of the blood by the glomerulus and subsequently 

reabsorbed by the tubules, such as those discussed in this section, can be quantified in 

urine samples to estimate tubular reabsorption. For example, if a drug undergoes significant 

reabsorption after filtration, the renal clearance would be predicted to be lower than CrCl. 

Tubular reabsorption of drugs is calculated by dividing the urine to plasma ratio of the drug 

by the urine to plasma ratio of creatinine (Table 1) [77].

1. Alpha-1-microglobulin (A1M)

Alpha-1-microglobulin (A1M) is produced by hepatocytes and freely filtered by the 

glomerulus. About 99% of free A1M in the urinary ultrafiltrate is reabsorbed by megalin/

cubilin-mediated endocytosis and subsequently catabolized in the tubules [32,78]. An 

increase in urinary A1M concentration indicates impaired tubular reabsorption and an 

increased risk of AKI, rapid CKD progression, and higher mortality [79–81].
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2. Beta-2 microglobulin (B2M)

B2M is removed from circulation primarily by glomerular filtration and more than 99.9% of 

the protein is reabsorbed from the urinary ultrafiltrate and catabolized by lysosomes in the 

tubules [41]. Elevated urinary B2M is indicative of decreased tubular reabsorption [39].

3. Fatty acid binding protein 1 (FABP1)

Fatty acid binding protein 1 (FABP1), also known as liver-type FABP (LFABP), is expressed 

mainly in the liver and kidneys, and is freely filtered by the glomerulus and reabsorbed in 

the tubules by megalin/cubilin. Both serum and urinary FABP1 concentrations have been 

proposed as biomarkers for early detection of AKI [82,83]. Urinary FABP1 concentrations 

are associated with serum FABP1 concentrations and the inverse of protein reabsorption 

capacity [84]. Excretion of FABP1 increases in both kidney and liver injury, meaning it can 

be used as a biomarker of both reduced tubular reabsorption and liver function [84,85].

4. Phosphate

The electrolyte phosphate is formed when phosphorous is combined with oxygen. Phosphate 

is the most abundant intracellular anion in the body and is involved in energy production. 

Elevated plasma concentrations (hyper-phosphatemia) are associated with AKI, CKD, 

cardiovascular events, and mortality [86]. Phosphate levels are highly dependent on dietary 

intake so CKD patients with hyper-phosphatemia are prescribed phosphate-restrictive diets 

and phosphate binding drugs to reduce intestinal absorption of phosphate [87]. When 

phosphate intake is excessive, circulating levels of fibroblast growth factor 23 (FGF23) 

increase. FGF23 suppresses phosphate reabsorption in renal tubules, raising the tubular 

phosphate concentration until eventually, calcium phosphate crystals are formed which 

damage tubule cells and lead to interstitial fibrosis and nephron loss [87]. Urinary and 

plasma concentrations measured over 24 h can be used to calculate the percent tubular 

reabsorption of phosphate (Table 1) [88].

5. Albumin

Albumin is filtered by the glomerulus and then largely reabsorbed in the tubules (~97%; 

71% in proximal convoluted tubule, 23% in loop of Henle and distal tubule, 3% in collecting 

duct) by megalin/cubilin-mediated endocytosis [52]. Albuminuria, or albumin in the urine, 

can signify tubular stress/dysfunction and decreased reabsorption.

6. Urea

Urea is freely filtered in the glomerulus and the amount of urea reabsorbed in the collecting 

ducts (~50%) is regulated by antidiuretic hormone (ADH) [12,59]. BUN levels increase as a 

result of enhanced tubular reabsorption [64].

Conclusions

While exogenous markers of kidney function have been used for decades, limitations related 

to lengthy, cumbersome protocols and extensive sample collection have limited their utility. 

In the era of personalized medicine and to circumvent the observed limitations, there is 
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interest in using endogenous markers as tools to assess an individual’s kidney functional 

capacity. Several endogenous markers are being evaluated and hold promise to more fully 

elucidate the individual components of filtration, secretion, and reabsorption of kidney 

function and clearance.
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Abbreviations:
51Cr-EDTA chromium-51 labelled ethylene diamine tetra-acetic acid

99mTc-DTPA technetium-99 m diethylenetriaminepentaacetic acid

A1M alpha-1-microglobulin

ADH antidiuretic hormone

AKI acute kidney injury

B2M beta-2 microglobulin

BTP beta-trace protein

BUN blood urea nitrogen

CKD chronic kidney disease

CKD-EPI Chronic Kidney Disease Epidemiology Collaboration

CrCl creatinine clearance

eGFR estimated glomerular filtration rate

eRPF effective renal plasma flow

FABP1 fatty acid binding protein 1

FGF23 fibroblast growth factor 23

GFR glomerular filtration rate

LFABP liver-type fatty acid binding protein

LRP2 low-density lipoprotein receptor-related protein 2

MATE multidrug and toxin extrusion

NMN N1-methylnicotinamide

OAT organic anion transporter

OCT organic cation transporter
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PAH para-aminohippurate

SCr serum creatinine

SDMA symmetric dimethylarginine

UT urea transporter
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Figure. 1. 
The kidneys maintain physiologic osmolality and remove waste products, drugs, and toxins 

from the blood through the processes of filtration, secretion, and reabsorption. Compounds 

must fit within size and charge exclusion properties to be filtered across the glomerulus 

and into the urinary ultrafiltrate. Transporters in the proximal and distal convoluted tubules 

secrete compounds from the blood into the ultrafiltrate and reabsorb substances from the 

ultrafiltrate back into the blood. Adapted from “Kidney Reabsorption and Secretion”, by 

BioRender.com (2022).
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Figure. 2. 
Representative renal transporters that are responsible for secretion and reabsorption in 

proximal tubule cells. Transporters on the basolateral membrane transport molecules from 

the blood into the proximal tubule cells. Apical transporters are responsible for the efflux 

of molecules from the proximal tubule cells into the urinary ultrafiltrate. Some transporters 

work bi-directionally and reabsorb certain molecules from the ultrafiltrate back into the 

blood. UT: urea transporter; OAT: organic anion transporter; MATE: multidrug and toxin 

extrusion protein; MRP: multidrug resistance-associated protein; P-gp: P-glycoprotein; 

URAT: urate transporter; SGLT: sodium-glucose co-transporter; OCT: organic cation 

transporter.
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