
A Mechanistic Framework for Integrating Chemical Structure 
and High-Throughput Screening Results to Improve Toxicity 
Predictions

Mark D. Nelmsa,b, Claire L. Mellorc,1, Steven J. Enochc, Richard S. Judsond, Grace 
Patlewiczd, Ann M. Richardd, Judith M. Maddenc, Mark T. D. Croninc, Stephen W. Edwardsb,2

aOak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA

bIntegrated Systems Toxicology Division, National Health and Environmental Effects Research 
Laboratory (NHEERL), Office of Research and Development, U.S. Environmental Protection 
Agency, Research Triangle Park, Durham, NC 27709, USA

cSchool of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom 
Street, Liverpool L3 3AF, United Kingdom

dNational Center for Computational Toxicology (NCCT), U.S. Environmental Protection Agency, 
Research Triangle Park, Durham, NC 27709, USA

Abstract

Adverse Outcome Pathways (AOPs) establish a connection between a molecular initiating event 

(MIE) and an adverse outcome. Detailed understanding of the MIE provides the ideal data for 

determining chemical properties required to elicit the MIE. This study utilized high-throughput 

screening data from the ToxCast program, coupled with chemical structural information, to 

generate chemical clusters using three similarity methods pertaining to nine MIEs within an 

AOP network for hepatic steatosis. Three case studies demonstrate the utility of the mechanistic 

information held by the MIE for integrating biological and chemical data. Evaluation of the 

chemical clusters activating the glucocorticoid receptor identified activity differences in chemicals 

within a cluster. Comparison of the estrogen receptor results with previous work showed that 

bioactivity data and structural alerts can be combined to improve predictions in a customizable 

way where bioactivity data are limited. The aryl hydrocarbon receptor (AHR) highlighted that 

while structural data can be used to offset limited data for new screening efforts, not all ToxCast 
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targets have sufficient data to define robust chemical clusters. In this context, an alternative 

to additional receptor assays is proposed where assays for proximal key events downstream of 

AHR activation could be used to enhance confidence in active calls. These case studies illustrate 

how the AOP framework can support an iterative process whereby in vitro toxicity testing and 

chemical structure can be combined to improve toxicity predictions. In vitro assays can inform the 

development of structural alerts linking chemical structure to toxicity. Consequently, structurally 

related chemical groups can facilitate identification of assays that would be informative for a 

specific MIE. Together, these activities form a virtuous cycle where the mechanistic basis for the 

in vitro results and the breadth of the structural alerts continually improve over time to better 

predict activity of chemicals for which limited toxicity data exist.

Graphical Abstract

Keywords

Molecular Initiating Event (MIE); Structure Activity Relationship (SAR); ToxCast; Adverse 
Outcome Pathway (AOP); Chemical Grouping; Structural Alert

1. Introduction

In 2007, the National Research Council recommended increased use of alternative 

approaches to toxicity testing such as in vitro, in chemico, in silico, and –omics techniques 

that report on toxicity pathways at the molecular and cellular level (NRC, 2007). To 

make full use of the information generated by these alternative approaches, a framework 

that integrates these different data streams and connects the toxicity pathways with apical 

endpoints typically used for evaluation of toxicity was needed. The Adverse Outcome 

Pathway (AOP) concept provides such a framework that links mechanistic information 

derived from these alternative approaches to a biological target and, subsequently, to an 

apical adverse outcome (Ankley et al., 2010, Villeneuve et al., 2014a). This mechanistic 
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focus enables the use of AOPs for organizing and integrating information from multiple 

methods for toxicity assessment. As such, the assays associated with these approaches 

may measure changes to the same or different biological processes along the pathway. 

Additionally, the structure of AOPs provides a scaffold on which mechanistic data from 

various sources including in silico models, in chemico, in vitro and/or in vivo assays, and 

literature information can be organized.

The molecular initiating event (MIE) is the initial key event (KE) within an AOP and its 

elicitation is essential for initiation of an AOP. The MIE is unique compared to other KEs 

as it is the stage where the chemical directly interacts with the biological system (Villeneuve 

et al., 2014b). As such, the MIE can provide mechanistic understanding of the interaction 

between the chemical and the biological system at the molecular level. Insight into these 

underlying mechanisms can help discern the chemical properties that are responsible for 

the interaction with the biological system (Enoch et al., 2013, Enoch and Roberts, 2013, 

Przybylak and Schultz, 2013). Once structural features have been identified as being 

associated with the elicitation of a particular MIE, they can facilitate the development of 

structural alerts, i.e. structural fragments associated with a specific MIE (Allen et al., 2014, 

Allen et al., 2016, Gutsell and Russell, 2013, Przybylak and Schultz, 2013). Collections of 

structural alerts associated with a given MIE have been recently termed in silico profilers 

especially in the context of their practical implementation into software tools such as the 

OECD Toolbox (Dimitrov et al., 2016). The information held by these profilers can be 

used to generate chemical clusters centered on the ability to elicit the same MIE (Allen et 

al., 2016, Enoch et al., 2011, Enoch et al., 2012, Enoch et al., 2013, Enoch and Roberts, 

2013, Naven et al., 2013, Nelms et al., 2015a, Nelms et al., 2015b, Sakuratani et al., 2013a, 

Sakuratani et al., 2013b).

Alternatively, in vitro data related to a MIE can be utilized as a primary filter to identify 

chemicals active against the target of interest. Subsequently, the active chemicals can be 

clustered based upon structural similarity (Enoch and Roberts, 2013). To develop chemical 

clusters in this manner requires: 1) a representation of the chemical structure and, 2) a 

method to calculate the similarity between two chemicals (Leach and Gillet, 2007). There 

are a multitude of options available for both components, leading to an overwhelming 

number of possible combinations (Cereto-Massague et al., 2015). However, encoding 

chemical structure as a binary fingerprint (i.e. a string of vectors indicating the presence 

(1) or absence (0) of particular substructural features) and calculating similarity using the 

Tanimoto coefficient are most commonly used (Leach and Gillet, 2007, Willett, 2009, 

Willett, 2006). The outcome of this provides a measure of the similarity between two 

chemicals ranging from zero to one, where zero indicates a complete dissimilarity and one 

indicates the chemicals are identical.

As noted by Carrió et al. (2016), since there is no general agreement about which method 

is the most appropriate for quantifying chemical similarity, as this will be dependent on 

the characteristics of both the chemicals and the endpoint being evaluated, in this study we 

investigated three different similarity approaches that were chosen arbitrarily: 1) atom-pair 

descriptors and Tanimoto similarity, 2) ToxPrint chemotypes and Tanimoto similarity, and 3) 

atom environment descriptors and Hellinger distance (Carhart et al., 1984, Yang et al., 2015, 
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Jeliazkova et al., 2009). For more discussion about the issues of characterizing chemical 

similarity, the reader is referred to other works by Todeschini et al. (2012), Floris et al. 

(2014), and Floris and Olla (2018).

A practical number of chemical clusters can be identified by using a similarity threshold. 

An index of 0.6 (i.e. 60% similarity) or greater, has been found to be useful in developing 

chemical clusters in previous works (Enoch et al., 2009). Investigation of the resultant 

chemical clusters in conjunction with the associated bioactivity data can, in certain 

circumstances, also enable the identification of structural alerts that may be incorporated 

into in silico profilers. It should be noted that the chemicals present within clusters can 

vary depending upon the chemical representation and similarity calculation used (Cereto-

Massague et al., 2015). As such, just because chemicals cluster based upon one method does 

not mean they will necessarily cluster based upon a different method.

Recently, Angrish et al. (2016) outlined an AOP network (i.e. individual AOPs that share 

at least one common KE) for hepatic steatosis focusing on the key events of chemical 

mediated non-alcoholic fatty liver disease (Angrish et al., 2016). Fatty liver disease is 

currently the most common liver disease in the United States, affecting between 20–30% 

of the population (Noureddin and Rinella, 2015). Hepatic steatosis can be induced either 

by excessive alcohol consumption (alcoholic fatty liver disease) or by a variety of other 

stressors, including both therapeutic drugs and environmental chemicals (non-alcoholic 

fatty liver disease) (Al-Eryani et al., 2015). Within their AOP network Angrish and 

colleagues identified seven MIEs that may induce non-alcoholic fatty liver disease, five 

of these MIEs related to nuclear receptor interactions. Work performed by Mellor et al. 

expanded the number of MIEs present in the AOP network developed by Angrish et al. by 

identifying five additional nuclear receptors (NR) associated with hepatic steatosis (Mellor 

et al., 2016a). Consequently, a total of ten NRs have been identified as MIEs associated 

with the potential to induce hepatic steatosis, namely: Aryl hydrocarbon receptor (AHR), 

Constitutive androstane receptor (CAR), Estrogen receptor (ER), Farnesoid X receptor 

(FXR), Glucocorticoid receptor (GR), Liver X receptor (LXR), Peroxisome proliferator-

activated receptor (PPAR), Pregnane X receptor (PXR), Retinoic acid receptor (RAR), and 

Retinoid X receptor (RXR).

In a follow-up paper, Mellor et al. identified two hundred and fourteen structural features 

and eight physicochemical descriptors that can be used as structural alerts to screen for 

chemicals with the potential to bind to one, or more, of these NRs (Mellor et al., 2016b). 

It should be noted that due to a lack of data in the database used to construct these alerts 

(only 40 chemical structures could be found in ChEMBL and none of these structures had 

an associated pChEMBL value), no structural alerts could be developed for the constitutive 

androstane receptor (CAR). Therefore, in this study we will only consider the nine NRs for 

which structural alerts were developed.

Both the AOP network developed by Angrish et al., and the work undertaken by Mellor 

et al., identify interactions between chemical ligands and various NRs as important MIEs 

that have the potential to induce hepatic steatosis. In order to discern chemicals with the 

ability to elicit the same MIE, biological information pertaining to the targets of interest is 
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needed. The U.S. EPA’s Toxicity Forecasting (ToxCast) project, and the U.S. federal cross-

agency Tox21 program have utilized high-throughput screening methods to generate large 

quantities of in vitro assay data (Dix et al., 2007, Judson et al., 2010, Kavlock et al., 2012, 

Attene-Ramos et al., 2013, Collins et al., 2008, Tice et al., 2013). At present, across both 

projects, a total of more than 9000 chemicals have undergone some level of assay screening 

(Richard et al., 2016, ToxCast). Of these 9000 chemicals, the vast majority have been tested 

in approximately 100 assays as part of the Tox21 program; whilst a subsection (~1060 

ToxCast Phases I and II chemicals) have the broadest assay coverage, having been tested in 

more than 1000 assays across both the Tox21 and ToxCast projects. These chemicals cover 

a broad range of uses including food additives, cosmetic/personal care product ingredients, 

pesticides, pharmaceutical drugs, and industrial chemicals (Richard et al., 2016). As such, 

not only the chemical-use space, but the structure-feature space associated with the ToxCast 

and Tox21 data is highly diverse. The ToxCast database (which contains all the data from 

both ToxCast and Tox21 projects), contains at least two assay endpoints associated with 

each of the NRs identified as MIEs for hepatic steatosis.

The aim of this study was to highlight the power of combining biological activity and 

chemical structure in an iterative manner to better leverage both when attempting to predict 

chemical toxicity in data limited situations. To illustrate this process, chemical clusters were 

formed based on in vitro data corresponding to a set of MIE(s) within an AOP network 

for hepatic steatosis. Given the importance of hepatic steatosis as an AO, and interactions 

with NRs as MIEs within the AOP network, it provided an ideal set of case studies for 

demonstrating some of the applications for these chemical clusters. However, as we are only 

utilizing data pertaining to the MIEs any predictions of downstream events are, therefore, 

beyond the scope of the current study.

2. Materials and Methods

2.1 ToxCast high-throughput screening data

High-throughput screening data for the 9076 chemicals and 1192 assay endpoints, contained 

within the October 2015 data released by the ToxCast project, were used for this analysis 

(Judson et al., 2010, Kavlock et al., 2012, Richard et al., 2016). Further information 

regarding the chemicals and assays within ToxCast can be obtained from the data 

download page (https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data, 

accessed on July 16th 2018), the interactive webpage of the iCSS ToxCast Dashboard 

(https://actor.epa.gov/dashboard/, accessed on July 16th 2018), or the CompTox Chemistry 

Dashboard (https://comptox.epa.gov/dashboard/, accessed on July 16th 2018) (Williams et 

al., 2017). The DSSTox Substance Identifiers (DTXSIDs) provided in this manuscript can be 

utilized to access highly curated chemical information, with associated chemical properties, 

present in the CompTox Chemistry Dashboard. Three files were utilized for this analysis, 

the first containing AC50 values (i.e. the concentration at 50% of maximum activity) for 

each chemical-assay pair (oldstyle_ac50_Matrix_151020.csv, provided by ToxCast), the 

second containing a list of chemical-assay combinations with a flag for quality control (QC) 

(AllResults_flags_151020.csv, provided by ToxCast), and the third containing the chemical 

specific cytotoxicity point (Supplementary Table 1). All ToxCast files referenced throughout 
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this manuscript are available for download from the ToxCast data download page at ftp://

newftp.epa.gov/comptox/High_Throughput_Screening_Data/Summary_Files (accessed July 

16th 2018).

The AC50 file comprises a matrix containing an AC50 value (in μM) for each chemical-

assay pair that has been tested and identified as being active within ToxCast. A value 

of 1,000,000μM (1M) is used to represent a chemical-assay combination that has been 

tested but was identified as being inactive, and “NA” values represent chemical-assay 

combinations that have not currently been tested (as of the October 2015 data release) 

(Judson et al., 2016, Documentation, 2015). Meanwhile, the QC flag file identifies chemical-

assay pairs where there may be false positive/negative results; alternatively, the associated 

flag(s) may help to explain potentially anomalous data (Filer et al., 2015, Filer et al., 

2017(ToxCast, 2018)).

The cytotoxicity point file contains a list of the chemicals within ToxCast and the associated 

concentration (in log units and μM) at which the chemical exhibited cytotoxicity. It has been 

shown that chemicals can cause a large number of non-specific hits (the “burst”) in in vitro 
assays at concentrations near or above where cell stress and cytotoxicity occur (Judson et 

al., 2016). The burst region is defined by taking activity data from a range of cytotoxicity 

assays (46 total in the current analysis) in the form of hits (i.e. was the chemical active or 

not) and AC50 values (concentrations at 50% of maximal activity). A chemical is defined 

as being cytotoxic if at least 2 of the cytotoxicity assays were active below the typical 

upper limit of testing of 100μM. For each chemical, we take the median(log10(AC50)) as 

the center of the cytotoxicity region, and we additionally calculate the median absolute 

deviation (MAD) of the log10(AC50) values. Since the individual chemical MAD values are 

sensitive to the number of cytotoxicity assays that are positive, we then take the median of 

the cytotoxicity MAD values across all chemicals, which is termed the global cytotoxicity 

MAD. In this instance, the global cytotoxicity MAD value is 0.289. Finally, the lower 

bound of cytotoxicity for each chemical is defined as the median(log10(AC50)) – (3*global 

cytotoxicity MAD) (Judson et al., 2016). Thus, any chemical-assay pair concentration above 

this lower bound value would be considered within the cytotoxicity region. Additionally, 

because this lower bound value takes into consideration the variability of the cytotoxicity 

point across the entire ToxCast dataset, it acts as a more conservative estimate of the 

cytotoxicity point. For chemicals with 0 or 1 active cytotoxicity assays, the center of the 

cytotoxicity region is set to a default value of 1000μM. More information regarding how the 

values contained within this file were generated can be found in Judson et al. (2016).

2.2 Data Analysis

Unless otherwise stated all analyses in this study were performed using R, v3.3.2 (Team, 

2016).

2.2.1 Generation of filtered hit-call matrix

2.2.1.1 Use of cytotoxicity burst phenomenon information: The AC50 and cytotoxicity 

point ToxCast data files, discussed above, were utilized to develop a discretized hit-call 

matrix that takes into account the cytotoxicity-associated burst phenomenon. To generate the 

Nelms et al. Page 6

Comput Toxicol. Author manuscript; available in PMC 2023 February 09.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

ftp://newftp.epa.gov/comptox/High_Throughput_Screening_Data/Summary_Files
ftp://newftp.epa.gov/comptox/High_Throughput_Screening_Data/Summary_Files


burst hit-call matrix, we first identified, in a chemical-specific manner, the lower value of 

either 1) the μM value of the lower bound of cytotoxicity, or 2) the lowest reported AC50 

value for the chemical within the 46 cytotoxicity assays. These criteria were used to provide 

us with the most conservative estimate of the cytotoxicity burst threshold. For this study, 

the lower of these two values will be termed the lower cytotoxicity value. Next, for each 

chemical, the lower cytotoxicity value was compared against the AC50 values present in 

the ToxCast AC50 matrix. Those chemical-assay combinations with an AC50 below the 

lower cytotoxicity value for the chemical are considered active (i.e. assigned a “1”) and 

those combinations with an AC50 above the lower cytotoxicity value are considered inactive 

(i.e. assigned a “0”) (Supplementary Figure 1). It should be noted that some of the activity 

present above this lower cytotoxicity value may be driven by the target specific mechanism 

of the assay. However, where AC50 values fall within this region it is more difficult to 

ascertain if those chemical-assay pairs are driven by a target specific mechanism or by more 

generalized cytotoxicity or cell stress effects (Judson et al., 2016). For this work, it was more 

important to enrich for chemicals that specifically act via the MIE rather than to identify all 

chemicals that may act via the MIE.

2.2.1.2 Use of quality control flag information: To evaluate the burst-filtered hit call 

matrix, the cytotoxicity assay AC50s were compared with the AC50 for the target assay 

across the chemicals. To perform this examination, the original –log10AC50 data matrix 

(old_style_neg_log_ac50_Matrix_151020.csv, provided by ToxCast) was integrated with the 

burst hit-call matrix developed above through scalar multiplication. This was done so that 

only the –log10AC50 data for those chemical-assay combinations active below the lower 

cytotoxicity value remained. Next, a scatter graph of the results from the cytotoxicity 

assays was plotted against the results for the corresponding specific target assay for each 

chemical (Supplementary Figure 1, inset). For example, the –log10AC50 values in the 

TOX21_AR_BLA_Antagonist_viability assay (a cytotoxicity assay) were plotted against 

the results from the TOX21_AR_BLA_Antagonist_ratio assay (the corresponding target-

specific assay).

The scatter graphs showed that the majority of the points fell on either the x-axis (i.e. 

the chemical exhibited a target-specific effect prior to cytotoxicity) or the y-axis (i.e. the 

chemical exhibited cytotoxicity prior to the observation of a target-specific effect). However, 

a number of points fell along the diagonal. These points are more difficult to decipher 

because the target-specific effect occurs at approximately the same concentration at which 

the chemical exhibits cytotoxicity. Therefore, we are less certain about the mechanism 

behind these chemicals because one of two scenarios may be occurring: 1) a target-specific 

mechanism may be inducing cytotoxicity at approximately the same concentration, or 2) 

cytotoxicity may be occurring via a secondary mechanism and the target-specific effect 

coincidentally occurs at the same concentration. Investigation of the points along the 

diagonal led us to identify four quality control (QC) flags that were associated with a large 

proportion of these chemical-assay pairs. These four flags are: “Only one concentration 

above baseline, active”, “Borderline active”, “Gain AC50 < lowest concentration and loss 

AC50 < mean concentration”, and “Hit-call potentially confounded by overfitting”. The 

four QC flags utilized within this study represent a subset of the nine flags present within 
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the quality control flag file released by ToxCast (AllResults_flags_151020.csv, provided by 

ToxCast). More information regarding each of these flags can be found in the ToxCast data 

analysis pipeline (tcpl, V1.4.3, accessed July 16th 2018) R package or the associated vignette 

(Filer et al., 2018). These four flags were added to the filtering criteria when creating the 

final hit-call matrix for this work to remove potentially confounding chemicals and increase 

confidence in target-specific active calls.

2.2.1.3 Combining burst and QC flag information: To generate the final hit-call matrix 

(the burst flag hit-call matrix) that was used for the remainder of this study, a chemical was 

considered active in an assay only when it passed two criteria: 1) the AC50 was below the 

lower cytotoxicity value, and 2) it did not have an associated QC flag. Unless otherwise 

noted, these criteria were used for determining chemical activity whenever a positive assay 

result is referenced throughout the manuscript. A copy of this final burst flag hit-call matrix 

is available as a comma separate value (csv) file within the Supplementary Information 

(Supplementary Table S2).

2.2.2 Extraction of chemicals active for nuclear receptors associated with 
hepatic steatosis—Since at least two cytotoxicity assays were required to establish 

a burst point, chemicals that were tested in fewer than two of the 46 cytotoxicity 

assays were not considered for this study. This information was gathered from the 

“tested_Matrix_151020.csv” file available in the ToxCast data release. Of the chemicals 

with two or more cytotoxicity assays, active chemicals for each NR from Mellor et al. 

(2016a) were defined based on activity in at least one human-relevant assay from the final 

hit-call matrix. Therefore, a separate data frame was generated for each of the nine NRs 

that contained 1) the list of active chemicals for the specific NR; 2) the assay results 

for the NR in question; 3) SMILES notation, where available, for each chemical and; 4) 

a number of chemical identifiers. Only use those chemical with a defined structure and 

corresponding simplified molecular-input line entry system (SMILES) notation are used in 

the present study. The relatively small number of compounds without a defined SMILES 

string in ToxCast are typically macromolecules, mixtures/formulations, or polymers. Only 

the chemicals with a SMILES string were used because the SMILES strings provide the 

necessary chemical structure information to create structure-based chemical clusters and 

profile against the previously developed structural alerts. Therefore, unless otherwise stated, 

numbers referenced will relate to active chemicals that have associated SMILES notation. 

All of the SMILES strings were neutralized, and salt counter ions were removed using 

ChemAxon’s Standardizer program.

2.2.3 Clustering of active chemicals—Three separate clustering methods were used 

to generate chemical clusters for each chemical list identified above based upon structural 

similarity. The first approach used the ChemmineR package (Cao et al., 2011, Cao et al., 

2008) to generate atom-pair descriptors for each chemical within the separate chemical lists 

and then calculated the Tanimoto index between chemicals (AP_Tani) (Carhart et al., 1984). 

The second approach utilized the more than 700 freely available ToxPrint chemotypes 

implemented within the ChemoTyper software to generate a molecular fingerprint for 

each chemical (Yang et al., 2015) (https://chemotyper.org, accessed July 16th 2018). 
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Subsequently, the ChemmineR package was used to calculate the Tanimoto index between 

chemicals (TP_Tani). For the final approach, we used Toxmatch (v1.07) to generate a 

similarity matrix identifying the Hellinger distance between atom environments within each 

chemical list (AE_Hell) (Gallegos Saliner et al., 2008, Jeliazkova et al., 2009, Patlewicz et 

al., 2008).

The chemical cluster generation for each individual method was performed using the single-

linkage (nearest neighbor) binning clustering function implemented within the ChemmineR 

package (Cao et al., 2011). It should be noted that for the first two approaches a distance 

matrix was calculated on the fly by the ChemmineR package. For the final approach, a 

distance matrix calculated as 1-similarity was generated prior and subsequently utilized by 

the clustering function within ChemmineR. We used an initial similarity threshold of 0.6 

(60%) and increased in 5% increments. Our initial threshold was based upon previous work 

that demonstrated a cut-off of 0.6 works well for chemicals clustering for teratogenicity 

(Enoch et al., 2009) The final similarity thresholds were chosen based upon visual 

inspection of the clusters after each iteration to keep the cluster sizes generally consistent 

across the different chemicals/metrics. Neither chemical structure, toxicity information, 

nor any other information regarding expected clustering of the chemicals were used as 

criteria. As such, the chosen similarity thresholds varied between chemical list and similarity 

approach used.

2.3 Profiling active chemicals against previously developed structural alerts

Each chemical list was profiled against a set of previously developed structural alerts 

associated with NRs that have the potential to induce hepatic steatosis (Mellor et al., 2016b). 

The majority of these alerts are present in the AOP network developed by Angrish et al. 

(2016). The KNIME workflow developed by Mellor et al. (2016b) was utilized within 

KNIME (v3.2) to perform the profiling of each of the chemical lists to identify those 

chemicals that contain a structural fragment(s) associated with NR binding. Chemicals 

triggering an alert for a NR, therefore, suggest chemicals that have the potential to bind to 

the specific NR.

2.4 Use of Judson et al. estrogen receptor model to evaluate our approach

The results from the full ER model developed by Judson et al. (2015) were used to evaluate 

our approach. These results were utilized because the Judson et al. (2015) ER model has 

been shown to perform on par with other, more traditional, lower-throughput tests (Browne 

et al., 2015, Kleinstreuer et al., 2016). To evaluate our approach, chemicals not given a 

designation of “agonist”, “antagonist”, or “none” within the supplemental table provided 

by Judson et al. (2015) were removed. The chemicals were then split into two groups 

based upon their classification by the Judson et al. (2015) ER model: those classified as 

either “agonist” or “antagonist” were consider active, and those classified as “none” were 

considered inactive. Subsequently, we varied the conditions under which a chemical would 

be considered active by our approach. The conditions utilized were as follows: 1) an active 

call in at least one ER assay; 2) an active call in at least one ER assay AND the presence of 

a structural alert for ER binding; 3) an active call in at least one ER assay OR the presence 

of a structural alert for ER binding; and 4) the presence of a structural alert only. For each 
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of the first three conditions we iterated through every combination of sets of four ER assays 

(a total of 3060 different combinations per condition) based on the work of Judson et al. 

(2017). Finally, we calculated the mean sensitivity, specificity, accuracy, and Matthews’ 

correlation coefficient and the corresponding 95% confidence interval for each condition.

Additionally, the same calculations for the same three conditions were made when iterating 

through every combination of between five and eighteen ER assays to estimate the minimum 

number of assays needed to better define chemical clusters for cases like the AHR case 

study.

3. Results and Discussion

This study demonstrates the use of chemical structure and bioactivity information to 

improve chemical toxicity prediction in situations where data are limited. To ensure that 

chemical activity used for developing the chemical clusters represented target-mediated 

effects, stringent filters removed assay results that were potentially confounded by non-

specific cytotoxicity. These filters include explicit filtering on cytotoxicity and more general 

filtering via quality control flags identified as informative based on preliminary analysis. 

While the stringency of the filters likely resulted in a high false negative rate, it increases our 

confidence that an active call was due to a target-mediated mechanism. This, in turn, makes 

the structural clusters more reliably focused on target-mediated mechanisms.

Using the target-specific hit-calls, active chemicals were defined for each NR acting as an 

MIE within the liver steatosis AOP network (Angrish et al., 2016, Mellor et al., 2016a). 

Active chemicals were subsequently profiled against previously developed structural alerts 

associated with the potential to bind to NRs linked to inducing hepatic steatosis (Mellor 

et al., 2016b). It should be noted that different numbers of assays are associated with the 

different NRs. For example, there are twenty human-relevant assays associated with ER but 

only two assays associated with AHR (Table 1). Furthermore, the total number of chemicals 

active below the cytotoxicity burst also varied across the NRs with the liver X receptor 

(LXR) having the fewest number of chemicals active below the burst (20) and ER having 

the highest number of chemicals active below the burst (1449) (Table 1). Additionally, 

there is no apparent correlation between the number of active chemicals identified and the 

total number of assays associated with a NR; although, increased sensitivity to actives with 

increasing number of assays cannot be ruled out. For example, there are 680 total chemicals 

active within at least one of the three assays associated with pregnane X receptor (PXR); in 

comparison, there are only 285 total chemicals active within at least one of the eight assays 

associated with farnesoid X receptor (FXR) (Table 1).

3.1 Coverage of previously developed structural alerts

After identifying active chemicals for each NR, each chemical list was profiled against the 

structural alerts developed by Mellor et al. (2016b). Upon inspecting the profiling results, 

it became clear that the structural alerts associated with certain NRs performed better 

than others at identifying potential binders (Table 1). The four best performing suites of 

structural alerts were able to identify between 36–60% of chemicals active for a particular 

NR as having the potential to bind to that specific NR (Table 1). For example, of the 448 
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chemicals active in at least one AHR assay, 161 (36%) were profiled as having a structural 

alert for AHR. Meanwhile, the suites of structural alerts perform poorly for other NRs, 

with the structural alerts for LXR, the retinoic acid receptor (RAR), and the retinoid X 

receptor (RXR) identifying between 0–5% of chemicals active for one of these NRs as 

having the potential to bind to that specific NR. The varying success of suites of structural 

alerts will depend, in part, on the size of the active NR sets from which the alerts were 

derived, and to which the alerts are being applied. As discussed below, the iterative nature of 

evaluating structural alerts based on functional assay information and then refining chemical 

activity predictions using the structural alerts holds the promise to both refine the structural 

alerts, and their predictive ability, as well as provide the additional support of the structural 

predictions when evaluating assay activity.

In using the more stringent threshold for defining our active chemicals, we may have 

removed false positives that resulted in aberrant structural alerts that were more influenced 

by general cytotoxicity previously or we may have removed true positives that fell above the 

cytotoxicity burst threshold the would have been informative for developing structural alerts. 

To determine the impact of our stringent threshold on the lack of coverage by the structural 

alerts, we investigated how the suites of structural alerts performed when the chemical lists 

were generated using the original ToxCast hit-call matrix. As would be expected a larger 

number of chemicals were identified as being active for each NR (Table 2). However, for 

the vast majority of the NRs there was either no change or only a modest decline in the 

percentage of active chemicals containing a structural alert for the specific NR (Table 2): the 

exception being those chemicals active in at least one GR assay that had a decline of 15% 

compared to the results using the burst flag hit-call matrix.

Given that the results seem to be at least as good with the more stringent cutoff, utilizing 

the lower cytotoxicity value to remove chemicals that are (potential) false positives is likely 

to be a less significant contributing factor to the lack of coverage by the structural alerts 

when compared to the chemical space that the structural alerts cover. This may be explained, 

at least in part, by examining the two datasets used as the training and test set. To develop 

the structural alerts Mellor et al. (2016b) used ChEMBL as the training set, a data set 

containing mainly drug-like bioactive molecules. In comparison, the test set chemicals, i.e. 

ToxCast, contains mainly environmentally-relevant chemicals with few drug-like molecules. 

Therefore, it is likely that a difference in chemical space between the chemicals in the 

training and test sets contributed to our not observing more active chemicals associated 

with an alert for the specific NR. In other words, many ToxCast chemicals lie outside the 

applicability domain of the existing alerts, which were derived based on drug-like chemicals.

Chemicals with biological activity for each NR were clustered based on structural similarity 

using three separate clustering methods to generate chemical clusters. We chose to employ 

three different fingerprinting and similarity approaches to investigate what differences, if 

any, may be observed. It should be noted that detailed analysis as to the distinctions between 

the methodologies employed by the different approaches is beyond the scope of this study. 

Whilst investigating these chemical clusters, we were able to hypothesize refinements to 

some of the existing alerts whilst also positing additional alerts. One example of a cluster 

that may lead to a possible refinement to an existing alert can be seen in Figure 1, whereby 
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seven chemicals active in at least one AHR assay were clustered together using the AP_Tani 

similarity approach. The original alert developed by Mellor et al. (2016b) (center structure, 

Figure 1) enables either a fluorine, chlorine, or hydrogen atom to be at the meta and/or 

para position on the benzene ring. However, this existing alert does not cover two of the 

chemicals present within this cluster because they contain a bromine atom para to the amino 

substituent. After examination of the chemicals within the cluster it would make sense 

to expand the existing alert to cover bromine substituted chemicals, especially given that 

bromine is also a halogen and, therefore, has the potential to act in a similar manner to the 

fluorine and chlorine substituted chemicals.

One example of a hypothesized additional alert regarding the potential to bind to the 

peroxisome proliferator-activated receptor (PPAR) can be seen in Figure 2 (center structure). 

Each of the four chemicals used to derive this potential alert were active in at least 

one PPAR assay and were clustered together using the TP_Tani similarity approach. As 

can be seen in Figure 2, each of the four chemicals contain the same backbone that 

has been utilized to generate the posited alert. Three of the chemicals present within 

this cluster (mefenamic acid (DTXSID5023243), tolfenamic acid (DTXSID1045409), and 

meclofenamate sodium (DTXSID8045567)) were also clustered when using the AP_Tani 

approach. However, both putative alerts used as examples here should not yet be considered 

“finished”. This is because additional data are required to confirm (or refute) the 

mechanistic information as to how these chemicals bind AHR or PPAR. Additionally, for the 

hypothesized PPAR alert more data from further studies would likely be needed for other, 

similar chemicals to further define/refine the alert.

3.2 Case Studies

Three nuclear receptors will be considered in turn to evaluate the findings and to 

demonstrate the value of integrating in vitro and in silico data using the AOP framework. 

As the data used within this study only relate to the MIE, and not to any downstream KEs, 

we will be limiting discussion to those applications that could be performed using the data 

included in this study. Thus, predictions regarding the likelihood that a chemical induces 

hepatic steatosis will not be made.

3.2.1 Glucocorticoid Receptor—A total of 340 chemicals were active below the 

cytotoxicity burst in at least one of the five GR related assays (Table 1). Comparing the 

structure-based chemical clusters for GR active chemicals highlights some of the main 

differences in results between the different clustering methods.

As can be seen in Table 3, irrespective of the clustering approach used, approximately 

two thirds of the active chemicals were assigned to “clusters” with either one or two 

members and the vast majority (at least 85%) of “clusters” contain only a single chemical. 

This is perhaps expected given the diversity of chemical space in the ToxCast chemical 

library (Richard et al., 2016). Within this study, any cluster with fewer than three 

members was not investigated further. Overall, there is modest variability across the three 

clustering approaches in terms of the number of clusters produced containing three or 

more cluster members: the AE_Hell (i.e. Hellinger distance between atom environments) 
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approach generated the most clusters (14) covering 99 active chemicals; the TP_Tani (i.e. 

Tanimoto similarity between ToxPrint chemotypes) approach generated the fewest clusters 

(7) covering 97 active chemicals; and the AP_Tani Tani (i.e. Tanimoto similarity between 

atom pair descriptors) approach generated 10 clusters covering the fewest active chemicals 

(88) (Table 3). Even though the number of clusters generated across the approaches differ, 

the chemicals that comprise the clusters essentially remain the same, i.e. the extra clusters 

generated by the AP_Tani and AE_Hell approaches are primarily subsets of the clusters 

containing larger numbers of chemicals generated by the TP_Tani approach. For example, 

the 32 chemicals that form Cluster 44 generated by the TP_Tani approach are, in large part, 

spread over two separate clusters (Clusters 95 and 136) when using the AP_Tani approach, 

whilst these chemicals are split into four clusters (Clusters 7, 27, 29, and 77) when using the 

AE_Hell approach. There are cases where novel clusters are formed, however, such as two 

chemical clusters (Clusters 76 and 98) defined by AE_Hell that were not identified by either 

the AP_Tani or TP_Tani.

The AP_Tani approach was, in most cases, able to cluster chemicals that were 

active in either the TOX21_GR_BLA_Agonist_ratio or TOX21_GR_BLA_Antagonist_ratio 

(Supplemental Figure 12). This is also borne out for the other two similarity approaches 

(Supplemental Figures 11 and 13). One example where this is not the case is 

Cluster 10 generated by the AP_Tani approach that contains 25 chemicals, of which 

22 are active in the TOX21_GR_BLA_Agonist_ratio assay, with three (prednisone 

(DTXSID4021185), meprednisone (DTXSID8023260), and cortisone (DTXSID5022857)) 

active in the TOX21_GR_BLA_Antagonist_ratio assay. Upon closer inspection, the three 

chemicals active within the antagonist assay contain a carbonyl substituent at the 11-carbon 

position within the steroid ring system (Figure 3A). In contrast, the chemicals active 

in the Tox21 GR β-lactamase agonist assay all contain a hydroxyl substituent at the 11-

carbon position (Figure 3B). This is further corroborated by Cluster 5 generated by the 

TP_Tani approach, of the 48 chemicals contained within this cluster only the two chemicals 

(prednisone and meprednisone) active in the Tox21 GR β-lactamase antagonist assay did not 

have a hydroxyl substituent present at the 11-carbon position within the steroid ring. The 

results from these clusters suggest that the change in substituent at the 11-carbon position 

from a ketone to a hydroxyl may play a role in conferring agonist activity. Information 

within the literature further supports this hypothesis: prednisone is a known pro-drug that 

must be metabolized in order to be converted to the GR active form, prednisolone (Becker, 

2013). In the conversion from prednisone to prednisolone the only difference between the 

two chemical structures is the change from a ketone moiety at the 11-carbon position 

to a hydroxyl moiety. Additionally, in terms of GR activity, cortisone can be considered 

the inactive form of cortisol (Rask et al., 2001). In this instance, the 11β-hydroxysteroid 

dehydrogenase enzyme is responsible for metabolizing cortisone to cortisol. Therefore, 

the information we have gained by taking into consideration both the assay and chemical 

structure data can be utilized to help inform the development and/or refinement of structural 

alerts pertaining to chemicals that contain this steroid backbone.

3.2.2 Estrogen Receptor—A total of 1449 chemicals, were active below the 

cytotoxicity burst in at least one of the 20 ER related assays (Table 1). As discussed above, 
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there is a moderate level of variability in terms of the number of clusters containing three 

or more cluster members generated by the different clustering approaches: the AE_Hell 

approach generated 27 clusters covering 173 active chemicals (12%), the AP_Tani approach 

generated 42 clusters covering 237 active chemicals (16%), and the TP_Tani approach 

generated 59 clusters covering 325 active chemicals (22%) (Table 3 ). Whilst there was 

overlap between the chemicals contained within clusters with three or more members, 

together the three clustering approaches covered a total of 443 active chemicals (31%).

Work recently published by Judson and colleagues demonstrated that for certain 

combinations of in vitro assays, as few as four assays were sufficient to predict ER agonist 

activity at a level comparable to the 16-assay ER agonist model (Judson et al., 2017). In 

this work, Judson et al. generated subset models for each combination of 1–16 in vitro 
assays that comprise the ER agonist pathway model. For each subset model, a variety of 

performance metrics were calculated (i.e. sensitivity, specificity, and balanced accuracy) for 

different contexts, namely: using all chemicals against the previously developed full ER 

model (Judson et al., 2015); using only the reference chemicals against the full ER model, 

using only in vitro literature-based reference chemicals (Judson et al., 2015); and using only 

in vivo literature-based reference chemicals (Kleinstreuer et al., 2016). The results of certain 

combinations of four ER agonist-related assays were observed to have a minimum balanced 

accuracy (across the four different situations named above) of 0.94, which was on par with 

the minimum balanced accuracy for the model containing all 16 ER agonist-related assays. 

As a consequence of this, and the fact that few targets within ToxCast contain as many 

assays as ER, we decided to use the minimum number of assays identified by Judson et al. 

(2017) to generate two distinct models.

The models were created by iterating through every combination of four ER-relevant assays 

from the burst flag hit-call matrix and combining this information with the ER-specific 

structural alerts developed by Mellor et al. (2016b). The first model (the higher confidence 

model) aimed to provide a higher confidence in a hazard call; this was achieved by requiring 

the presence of 1) activity within at least one ER assay in the burst flag hit-call matrix 

and 2) an ER structural alert. In comparison, the second model (the wider coverage model) 

was designed to capture the maximal number of positive chemicals; this was achieved by 

requiring only the presence of activity in at least one ER assay or an ER structural alert. Due 

to the relative simplicity of our models, we wanted to evaluate them against the much more 

detailed ER model developed by Judson et al. (2015) (Table 4). The reason for this was not 

to attempt to replace the Judson et al. (2015) ER model, but rather to investigate how reliable 

our approach would be in instances where only limited bioactivity data are available.

As can be seen in Table 4, the higher confidence model has a higher specificity, accuracy, 

and Matthew’s Correlation Coefficient (MCC) than the wider coverage model or bioactivity 

data in isolation; thus, demonstrating that the higher confidence model is able to utilize the 

combination of bioactivity data from only four assays and structural alert information to 

correctly identify chemicals with the ability to bind to the ER (Table 4). Therefore, if the 

higher confidence model predicts a chemical as being active, there is a greater likelihood the 

chemical is a true active. In comparison, the wider coverage model has a higher sensitivity 

and lower specificity, i.e. it identifies a larger number of chemicals as being active at the 
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expense of identifying a larger number of false positives. This is to be expected as the aim of 

the wider coverage model is to identify chemicals that have the potential to bind to the ER 

with further, confirmatory, toxicity tests subsequently being performed.

Based on how the models performed against the Judson et al. (2015) ER model we believe 

our approach of integrating structural information into predictions could be of use in 

instances where bioactivity data are limited. This approach will be useful to limit the amount 

of testing required for novel chemicals that contain either a structural alert or are structurally 

similar to other chemicals that have already undergone testing.

3.2.3 Aryl Hydrocarbon Receptor—Overall, a total of 461 chemicals were active in 

at least one of the two AHR assays present in ToxCast (Table 1). The AP_Tani approach 

generated the fewest clusters with at least three cluster members (17) covering the fewest 

chemicals (90), the TP_Tani approach generated the most clusters (24) covering the largest 

number of chemicals (121), and the AE_Hell approach generated an intermediate number of 

clusters (19) covering 92 chemicals (Table 3).

Unlike ER, the majority of targets within ToxCast have many fewer assays in which a 

chemical can be tested to verify bioactivity. For example, considering the two assays 

related to AHR binding, over half (55%) of the active chemicals were tested in only one 

assay. Therefore, it is difficult to determine a chemical’s activity with a high degree of 

certainty. Determining true activity is especially difficult in instances where a chemical has 

been tested in both AHR assays but is active in only one. Even taking cytotoxicity into 

consideration, certain chemicals may be active in a specific assay or technology due to: 

1) assay interference (e.g. chemicals used as dyes interfering with fluorescence readouts), 

or 2) real activity that can only be captured in a specific assay (e.g. the assay may have 

metabolic capabilities not present in other assays within the battery). With data from fewer 

assays it is also more difficult to define robust chemical clusters. Thus, while four assays are 

sufficient once the pathway is known and mechanistic models exist for integrating the data, 

the number of assays needed to define this information initially is likely to be higher.

To estimate the minimum number of assays required when nothing is known about the 

chemical clusters or mechanistic linkage among the assays, we again used the Judson et 

al. (2015) model results. However, this time we varied the number of assays used between 

five and eighteen and iterated through every combination to calculate the same statistics 

(Table 5 and Figure 4). The results suggest that chemical activity in any one (or more) of 10 

assays provides a good balance between bringing the statistics in-line with using the entire 

18 assay battery and the number of assays used to generate the statistics. Therefore, it is 

likely that information from up to 10 assays may be required to enable the development of 

robust chemical clusters and allow development of more sophisticated models for integrating 

the assay results. There are two means by which we could acquire the additional assay 

data. The first is by using additional assays specific for the biological target (e.g. AHR) 

or MIE. Alternatively, the AHR AOP could be utilized to identify appropriate assays that 

measure changes in downstream KEs and the information from these assays could be used. 

This second approach may be more desirable, especially where data for downstream KEs is 

available such as in ToxCast, as it would allow for data from proximal KEs to be used not 
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only for determining the chemical clusters but also to provide orthogonal assays to evaluate 

active calls at the MIE in the context of the broader AOP.

4. Conclusion

ToxCast data has shown promise for providing cost-effective bioactivity information for a 

large number of chemicals, especially in cases where many related or orthogonal assays 

exist for a common target-mediated mechanism (Judson et al., 2015, Browne et al., 

2015). Cheminformatics approaches are also providing valuable information for chemicals 

where little or no toxicity data exist (Allen et al., 2016, Enoch et al., 2011, Enoch et 

al., 2012, Enoch et al., 2013, Enoch and Roberts, 2013, Nelms et al., 2015a, Nelms et 

al., 2015b, Sakuratani et al., 2013b, Sakuratani et al., 2013a, Naven et al., 2013). The 

present work focused on how in vitro and in silico data can be leveraged to provide the 

maximal information in data-limited situations. Our results have shown the importance of 

the applicability domain and how this can be difficult to overcome with the wide array of 

structural diversity seen with environmental chemicals.

The ultimate goal for this work would be an iterative process whereby solutions can be 

provided to maximize the utility of existing in vitro and in silico data while providing 

concrete information for use in improving the confidence in those predictions when needed. 

The AHR example (Figure 2) showed how biological activity could be used to refine 

existing structural alerts. The PPAR example (Figure 3) showed how biological activity 

could be used to identify new structural alerts. The glucocorticoid receptor case study 

highlighted how small molecular changes that are critical for agonist activity can be 

identified in a data-driven way. The estrogen receptor showed how existing structural 

alerts can be combined with biological activity readouts to provide fit-for-purpose toxicity 

predictions making optimal use of the available data for data-poor chemicals. With the 

aryl-hydrocarbon receptor case study, however, we saw that in many cases the biological 

activity data associated with many MIEs is insufficient to support many applications. While 

structural information can improve confidence in those situations as well, it can be combined 

with AOP information to assist in improving the suite of biological assays for these MIEs. 

As data-driven approaches to AOP development are established (Oki and Edwards, 2016, 

Oki et al., 2016, Bell et al., 2016), these efforts can be integrated to continually improve 21st 

century toxicity predictions.

Evaluation of the wealth of data associated with estrogen receptor activity (Judson et al., 

2015) suggests that up to ten assays may be required to define the optimal model for 

integrating the toxicity data and create high confidence chemical clusters to support the 

development of structural alerts. This does not mean that the methods described herein 

cannot be employed until after a major data gathering effort. Chemical clusters could be 

defined based on as little as two assays as shown with the AHR example, and these could be 

used to increase confidence in predictions with the two assays alone. As chemical clusters 

are defined that are highly likely to work through a given MIE, the biological activity 

of the chemicals in those clusters could be used to identify additional assays related to 

that mechanism and potentially expand the number of assays without required additional 

screening. This, in turn, could improve the clustering of chemicals to establish higher 
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quality structural groups with broader coverage of the chemical space, which then could 

be used to further expand the number of assays considered for the toxicity assessment. 

As high throughput toxicogenomics measurements are generated, this method of iterative 

development should prove extremely valuable.

It is also important to note that data from the full set of assays covering any one MIE is 

only required for a subset of the chemical universe to evaluate the assays and determine the 

optimal subset for screening. Results from Judson, et al. (2017) suggest that the remaining 

chemicals following this initial phase can be screened with as few as four assays. By 

employing an iterative process where chemical structure as well as mechanistic information 

is used as the initial assay battery is defined and evaluated, we would expect that the process 

can be optimized to minimize the up-front screening required to establish the biological 

assay panel and maximize the domain of applicability for the structural alerts identified.
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Abbreviations

AE_Tani Atom Environment and Hellinger distance approach

AHR Aryl Hydrocarbon Receptor

AOP Adverse Outcome Pathway

AO Adverse Outcome

AP_Tani Atom Pair and Tanimoto similarity approach

ER Estrogen Receptor

GR Glucocorticoid Receptor
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MAD Median Absolute Deviation

MIE Molecular Initiating Event

NR Nuclear Receptor

TP_Tani ToxPrint chemotypes and Tanimoto similarity approach
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Figure 1. 
The chemicals around the perimeter are those contained within AP_Tani Cluster 26 of the 

AHR active chemicals. The structure in the center is the previously identified structural 

alert generated by Mellor et al. (2016b). It is hypothesized that this structural alert could be 

expanded to cover brominated chemicals as well as chlorinated and fluorinated chemicals. 

As a structural alert is either present or absent from a chemical there is no relative similarity 

that can be calculated between the alert and the chemical(s) being profiled.

Nelms et al. Page 22

Comput Toxicol. Author manuscript; available in PMC 2023 February 09.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 2. 
The chemical fragment in the center is a hypothesized additional alert for chemicals with 

the potential to bind to PPAR. The chemicals around the perimeter are those contained 

within TP_Tani Cluster 124 of the PPAR active chemicals form the basis upon which this 

hypothesized alert was developed.
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Figure 3. 
A) Structures of the three chemicals present within Cluster 10 using the AP_Tani approach 

that are active within the TOX21_GR_BLA_Antagonist_ratio assay. B) General structure of 

the majority of chemicals present within AP_Tani Cluster 10 and TP_Tani Cluster 5 that 

are active in the TOX21_GR_BLA_Agonist_ratio assay. The main differences in structure 

occur at the R1 and R2 substituents. As can be seen, each of the chemicals active only in the 

antagonist assay contain a carbonyl moiety at the 11-carbon position of the steroid structure 

whilst the chemicals active in only the agonist assay contain a hydroxyl moiety at the same 

position.
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Figure 4. 
Four line graphs depicting the mean change in sensitivity, specificity, accuracy, and 

Matthew’s correlation coefficient (MCC) when adjusting the minimum number of assays 

required to initially provide a reliable determination of activity. The 95% confidence interval 

is represented by the ribbon plot surrounding each line graph. The different colors represent 

a different testing method: blue represents instances where activity required an active call 

in the burst hit-call matrix and the presence of a structural alert; orange represents instances 

where only an active call in the burst hit-call matrix was required, and; green represents 
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instances where either an active call in the burst hit-call matrix or the presence of a structural 

alert was required.
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Table 3.

Clustering data that shows the similarity threshold chosen, the number of clusters that contain three or more 

chemicals, and the number of active chemicals that are contained within a cluster with three or more members 

for each similarity measure. AE_Hell - atom environment descriptors and Hellinger distance, AP_Tani – atom 

pair descriptors and Tanimoto similarity, and TP_Tani – ToxPrint chemotypes and Tanimoto similarity.

Nuclear Receptor Similarity Approach Similarity Threshold (%) Number of clusters with 3 or 
more members

Number of active chemicals 
covered

AHR

AE_Hell 70 19 92

AP_Tani 60 17 90

TP_Tani 75 24 121

ER

AE_Hell 85 27 173

AP_Tani 65 42 237

TP_Tani 80 59 324

FXR

AE_Hell 70 14 61

AP_Tani 60 10 32

TP_Tani 75 10 41

GR

AE_Hell 80 14 99

AP_Tani 70 10 88

TP_Tani 85 7 97

LXR

AE_Hell 60 0 0

AP_Tani 60 0 0

TP_Tani 70 0 0

PPAR

AE_Hell 80 11 76

AP_Tani 65 14 62

TP_Tani 75 26 102

PXR

AE_Hell 75 22 91

AP_Tani 60 14 61

TP_Tani 80 19 110

RAR

AE_Hell 75 1 5

AP_Tani 60 1 4

TP_Tani 80 1 5

RXR

AE_Hell 75 8 44

AP_Tani 60 4 14

TP_Tani 80 4 29

Comput Toxicol. Author manuscript; available in PMC 2023 February 09.



E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Nelms et al. Page 30

Ta
b

le
 4

.

M
ea

n 
pe

rf
or

m
an

ce
 d

at
a 

of
 e

ve
ry

 v
ar

ia
tio

n 
of

 f
ou

r 
E

R
 a

ss
ay

s 
fo

r 
th

e 
tw

o 
E

R
 m

od
el

s 
an

d 
ho

w
 th

ey
 c

om
pa

re
 to

 u
si

ng
 th

e 
bu

rs
t f

la
g 

hi
t-

ca
ll 

da
ta

 o
r 

th
e 

pr
es

en
ce

 o
f 

a 
st

ru
ct

ur
al

 a
le

rt
 in

 is
ol

at
io

n.
 V

al
ue

s 
in

 p
ar

en
th

es
es

 a
re

 9
5%

 c
on

fi
de

nc
e 

in
te

rv
al

s 
(n

o 
co

nf
id

en
ce

 in
te

rv
al

 c
ou

ld
 b

e 
ca

lc
ul

at
ed

 f
or

 th
e 

pr
es

en
ce

 

of
 a

 s
tr

uc
tu

ra
l a

le
rt

 a
s 

th
er

e 
w

er
e 

no
 p

ar
am

et
er

s 
to

 c
ha

ng
e)

. M
C

C
 –

 M
at

th
ew

s 
C

or
re

la
tio

n 
C

oe
ff

ic
ie

nt
.

A
ct

iv
e 

ca
ll 

in
 b

ur
st

 h
it

-c
al

l m
at

ri
x

P
re

se
nc

e 
of

 s
tr

uc
tu

ra
l 

al
er

t 
on

ly
A

ct
iv

e 
ca

ll 
in

 b
ur

st
 h

it
-c

al
l m

at
ri

x 
A

N
D

 p
re

se
nc

e 
of

 
st

ru
ct

ur
al

 a
le

rt
A

ct
iv

e 
ca

ll 
in

 b
ur

st
 h

it
-c

al
l m

at
ri

x 
O

R
 p

re
se

nc
e 

of
 

st
ru

ct
ur

al
 a

le
rt

Se
ns

iti
vi

ty
67

%
 (

48
–8

0%
)

69
%

52
%

 (
40

–6
2%

)
84

%
 (

77
–8

9%
)

Sp
ec

if
ic

ity
92

%
 (

85
–9

7%
)

73
%

98
%

 (
96

–9
9%

)
67

%
 (

61
–7

1%
)

A
cc

ur
ac

y
90

%
 (

84
–9

4%
)

72
%

94
%

 (
93

–9
5%

)
68

%
 (

63
–7

1%
)

M
C

C
0.

46
6 

(0
.3

8–
0.

57
5)

0.
23

4
0.

54
6 

(0
.4

84
–0

.6
17

)
0.

27
 (

0.
24

4–
0.

29
2)

Comput Toxicol. Author manuscript; available in PMC 2023 February 09.



E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Nelms et al. Page 31

Table 5.

Mean performance data of every variation of between 5 and 18 ER assays for the two ER models and how they 

compare to using the burst flag hit-call data in isolation. Values in parentheses are 95% confidence intervals. 

MCC – Matthews Correlation Coefficient.

No. 
Assays

Burst Only Burst AND Alert Burst OR Alert

Sensitivity Specificity Accuracy MCC Sensitivity Specificity Accuracy MCC Sensitivity Specificity Accuracy MCC

5 71 (54–
81%)

90 (84–
96%)

89 (83–
94%)

0.457 
(0.379–
0.554)

55 (43–
62%)

97 (96–
99%)

94 (93–
95%)

0.545 
(0.493–
0.607)

85 (79–
90%)

65 (61–
70%)

67 (63–
71%)

0.269 
(0.245–
0.291)

6 73 (57–
82%)

89 (82–
95%)

88 (82–
93%)

0.447 
(0.377–
0.537)

56 (46–
63%)

97 (95–
99%)

94 (93–
95%)

0.542 
(0.496–
0.597)

86 (80–
90%)

64 (60–
69%)

66 (62–
70%)

0.268 
(0.245–
0.289)

7 75 (60–
83%)

87 (82–
95%)

87 (81–
92%)

0.438 
(0.374–
0.523)

58 (48–
63%)

97 (95–
98%)

94 (92–
95%)

0.538 
(0.495–
0.586)

87 (81–
90%)

64 (59–
69%)

65 (61–
70%)

0.266 
(0.245–
0.288)

8 77 (64–
84%)

86 (81–
94%)

86 (81–
92%)

0.429 
(0.37–
0.509)

59 (50–
63%)

96 (95–
98%)

94 (92–
95%)

0.534 
(0.495–
0.577)

88 (82–
91%)

63 (58–
68%)

64 (60–
69%)

0.265 
(0.243–
0.286)

9 79 (66–
84%)

85 (80–
93%)

85 (80–
91%)

0.421 
(0.368–
0.494)

60 (52–
63%)

96 (95–
98%)

93 (92–
95%)

0.530 
(0.493–
0.572)

88 (84–
91%)

62 (58–
68%)

64 (60–
69%)

0.263 
(0.241–
0.285)

10 80 (69–
85%)

84 (79–
91%)

84 (80–
89%)

0.414 
(0.366–
0.483)

60 (53–
63%)

96 (95–
97%)

93 (92–
94%)

0.525 
(0.493–
0.567)

89 (85–
91%)

61 (57–
66%)

63 (60–
67%)

0.260 
(0.240–
0.282)

11 81 (72–
85%)

83 (79–
89%)

83 (79–
88%)

0.407 
(0.364–
0.472)

61 (53–
63%)

95 (94–
97%)

93 (92–
94%)

0.521 
(0.491–
0.563)

89 (85–
91%)

60 (57–
65%)

63 (60–
67%)

0.258 
(0.239–
0.280)

12 82 (73–
85%)

82 (79–
88%)

82 (79–
88%)

0.401 
(0.363–
0.459)

61 (55–
63%)

95 (94–
97%)

93 (92–
94%)

0.517 
(0.491–
0.557)

89 (86–
91%)

60 (57–
64%)

62 (59–
66%)

0.256 
(0.239–
0.277)

13 82 (75–
85%)

82 (79–
87%)

82 (79–
87%)

0.394 
(0.362–
0.446)

62 (56–
63%)

95 (94–
96%)

93 (92–
94%)

0.513 
(0.491–
0.552)

90 (88–
91%)

59 (57–
64%)

61 (59–
65%)

0.254 
(0.238–
0.275)

14 83 (76–
85%)

81 (78–
85%)

81 (79–
85%)

0.389 
(0.361–
0.439)

62 (56–
63%)

95 (94–
96%)

93 (92–
94%)

0.509 
(0.489–
0.544)

90 (88–
91%)

59 (57–
62%)

61 (59–
64%)

0.253 
(0.237–
0.273)

15 83 (80–
85%)

80 (78–
85%)

80 (79–
84%)

0.383 
(0.361–
0.431)

62 (60–
63%)

95 (94–
96%)

92 (92–
93%)

0.504 
(0.49–
0.534)

90 (88–
91%)

58 (57–
61%)

60 (59–
63%)

0.251 
(0.238–
0.268)

16 84 (82–
85%)

79 (78–
83%)

80 (79–
83%)

0.378 
(0.361–
0.406)

62 (62–
63%)

95 (94–
95%)

92 (92–
93%)

0.500 
(0.49–
0.529)

90 (89–
91%)

58 (57–
60%)

60 (59–
62%)

0.249 
(0.238–
0.261)

17 84 (83–
85%)

79 (78–
81%)

79 (79–
81%)

0.372 
(0.362–
0.4)

63 (62–
63%)

94 (94–
95%)

92 (92–
93%)

0.500 
(0.49–
0.517)

91 (89–
91%)

57 (57–
59%)

60 (59–
61%)

0.248 
(0.241–
0.258)

18 85 78 79 0.368 63 94 92 0.491 91 57 59 0.246

Comput Toxicol. Author manuscript; available in PMC 2023 February 09.


	Abstract
	Graphical Abstract
	Introduction
	Materials and Methods
	ToxCast high-throughput screening data
	Data Analysis
	Generation of filtered hit-call matrix
	Use of cytotoxicity burst phenomenon information
	Use of quality control flag information
	Combining burst and QC flag information

	Extraction of chemicals active for nuclear receptors associated with hepatic steatosis
	Clustering of active chemicals

	Profiling active chemicals against previously developed structural alerts
	Use of Judson et al. estrogen receptor model to evaluate our approach

	Results and Discussion
	Coverage of previously developed structural alerts
	Case Studies
	Glucocorticoid Receptor
	Estrogen Receptor
	Aryl Hydrocarbon Receptor


	Conclusion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.

