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Significance

Molecular cell phenotype 
identification is important for the 
investigation of the role of cells 
and for their medical applications. 
For this identification, single-cell 
whole-transcriptome analysis, 
which is an unbiased method, is a 
powerful tool. However, this 
method kills the target cell, which 
prevents further investigation of 
the cell. Here, we showed a 
successful noninvasive approach; 
label-free live-cell imaging with 
deep learning–based prediction 
can distinguish cell phenotypes 
defined by whole-transcriptome 
sequencing. This approach was 
enabled by linking cell images and 
the whole transcriptome for the 
same cell using our newly 
developed robot, the automated 
live imaging and cell picking 
system (ALPS). This noninvasive 
and unbiased determination of 
live-cell molecular phenotypes will 
be useful for cell dynamics studies.
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Single-cell whole-transcriptome analysis is the gold standard approach to identifying 
molecularly defined cell phenotypes. However, this approach cannot be used for dynam-
ics measurements such as live-cell imaging. Here, we developed a multifunctional robot, 
the automated live imaging and cell picking system (ALPS) and used it to perform 
single-cell RNA sequencing for microscopically observed cells with multiple imaging 
modes. Using robotically obtained data that linked cell images and the whole transcrip-
tome, we successfully predicted transcriptome-defined cell phenotypes in a noninvasive 
manner using cell image–based deep learning. This noninvasive approach opens a win-
dow to determine the live-cell whole transcriptome in real time. Moreover, this work, 
which is based on a data-driven approach, is a proof of concept for determining the 
transcriptome-defined phenotypes (i.e., not relying on specific genes) of any cell from 
cell images using a model trained on linked datasets.

robotics | microscopy | deep learning | single-cell RNA sequencing | cell picking

Omics analyses are powerful tools to measure biological samples in an unbiased 
manner, and single-cell whole-transcriptome analysis by RNA sequencing (RNA-seq) 
has been widely used to identify cell phenotypes at the molecular level (1, 2). 
Furthermore, an unbiased understanding of cell dynamics using RNA-seq is impor-
tant, which may be efficiently achieved through the continuous measurement of the 
same cell. However, the unbiased analysis for cell dynamics is difficult because the 
cells are lysed or fixed for RNA-seq. As a noninvasive approach, the image-based 
prediction of biological phenotypes, including disease stages, at the molecular level 
using deep learning has become a powerful tool. Generally, each image is labeled, 
e.g., as cancer or normal cells; the correlation between image features and labels is 
modeled using a large number of labeled images, and the label of a new image is 
predicted based on the modeled correlation (3–6). For further applications using this 
type of image-based deep learning, determining labels based on parameters measured 
without bias, e.g., by using RNA-seq, is essential because the capability to identify 
biological phenotypes based on a small number of molecular markers or by experienced 
individuals is limited (6, 7). However, to the best of our knowledge, image-based 
prediction of phenotypes of untreated single cells defined by RNA-seq has not been 
performed thus far. To perform this prediction using deep learning with modeling, a 
large dataset of single cells, in which each cell has high-quality label-free live-cell 
images, and the whole transcriptome is needed. Recently, single-cell RNA-seq (scR-
NA-seq) was performed on many cells after cell isolation in microwells and live-cell 
imaging (SI Appendix, Table S1) (8–10). However, this approach is unsuitable for 
cells that cannot be cultured in isolation, which is critical for live-cell imaging. 
Therefore, an alternative approach that allows a cell to be imaged in a dish (a common 
vessel for cell culture) in the presence of other cells, and subsequently isolated from 
the dish to a sequencing platform, is desired (10). Indeed, in a recent study, single 
live cells (yeast) in a dish were isolated after imaging, and scRNA-seq was performed 
on the isolated cells (SI Appendix, Table S1) (11). However, in this approach, each 
cell was imaged and isolated sequentially without automation, which prevents rapid 
data acquisition and ease of use.

Here, for efficient high-quality data acquisition for deep learning, we developed a robot, 
the automated live imaging and cell picking system (ALPS), which enabled scRNA-seq, 
with programmable functions, for microscopically observed, targeted, and freely moving 
cells in a normal dish. Using the datasets robotically obtained by the ALPS for cell lines 
and primary murine peripheral blood mononuclear cells (PBMCs), we showed that accu-
rate deep learning predictions of transcriptome-defined cell phenotypes can be achieved 
from bright-field live-cell images.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:katsuyuki.shiroguchi@riken.jp
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2210283120/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2210283120/-/DCSupplemental
http://orcid.org/0000-0003-4697-8760
https://orcid.org/0000-0002-7754-0588
https://orcid.org/0000-0002-0286-0288
https://orcid.org/0000-0003-4204-555X
https://orcid.org/0000-0002-1182-9127
https://orcid.org/0000-0003-4790-1925
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2210283120&domain=pdf&date_stamp=2022-12-27


2 of 9   https://doi.org/10.1073/pnas.2210283120� pnas.org

Results

Isolation of Biological Samples by the ALPS. Eventually, our 
developed ALPS enabled the automated isolation of single cells 
observed by optical microscopy in each well of a 96-well plate by 
synchronizing an optical microscope (Eclipse Ti2-E, Nikon Co.) and 
a cell picker (TOPickV, YODAKA Co., Ltd.) via real-time interactive 
communication (Fig. 1A, SI Appendix, Fig. S1, and Movie S1, details 
later). First, we programmed cell picking and deposition for rapid 
and automated cell isolation. Picking up a cell at the center of the 
field of view (from the start of step-(auto-7-2) to the end of step-
(auto-7-3), see Materials and Methods) took 0.52 ± 0.05 s (mean ± 
SD, n = 20), and picking and depositing the cell into a well (from the 
start of step-(auto-7-2) to the end of step-(auto-7-5), see Materials 
and Methods) took 3.58 ± 0.11 s (mean ± SD, n = 20). We set 
up an additional imaging system that recorded cell deposition to 
confirm that a single cell was actually deposited for downstream 
analyses (Materials and Methods, Movie S2). To obtain a clear cell 
image during deposition, we flattened the bottom of a 96-well 
plate by vertically grinding the tips of the wells by approximately 
0.3 mm (Materials and Methods). We showed that the ALPS 
successfully picked up and deposited objects with a wide range 
of sizes, such as 1-, 3-, 45-, and 200- to 300-μm-diameter beads, 
and biological samples, such as cells (~10 μm), organoids (~200 
μm), and crypts (~30 μm, a piece of tissue from the small intestine) 
(Movies S2–S8 and SI Appendix, Texts 1 and 2). We confirmed that 
mouse leukemia cells and human Jurkat cells proliferated after 

isolation by the ALPS (SI Appendix, Fig. S2 and Text 3). Thus, 
the ALPS may be used for the quick and efficient isolation of 
microscopically targeted samples with a range of more than two 
orders of magnitude in size and for the isolation of live biological 
samples for subsequent culturing and analyses.

Automated Cell Isolation by the ALPS. Next, we further 
automated the ALPS by synchronizing cell picking and deposition 
with an optical microscope (Eclipse Ti2-E) via real-time electronic 
communication, which enabled the successive rapid isolation of 
many observed cells using programmable functions, including 
multimodal imaging, real-time cell targeting, and time-lapse 
imaging (Fig. 1A and Movies S1 and S2). The essential automated 
steps were as follows (Materials and Methods): i) the positions 
of individual cells in a dish were determined by NIS-Elements 
(Nikon, Co.); ii) cells that were at least a particular distance from 
any other cells were labeled; iii) a labeled cell was moved to the 
center of the field of view by moving the microscope stage, and 
its position was redetermined; iv) one or more images of the cell 
were captured; v) the signal was sent from NIS-Elements to the cell 
picker (TOPickV); vi) the cell at the center was picked with 9 nL 
or 11 nL of solution by a glass needle (40 or 60 μm in diameter); 
vii) the needle was moved to a 96-well plate; viii) the picked cell 
was deposited with 15 nL or 19 nL of solution from the needle 
into prepared medium (2 μL) in a well of a 96-well plate; and ix) 
the signal was sent from the cell picker to NIS-Elements. Between 
(vi) and (vii), the 96-well plate was translated so that the picked 
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Fig. 1. ALPS. (A) Schematic of the ALPS (details in Materials and Methods). (B) The running time and success rate for the automated isolation of 96 T cells in 
a dish based on the cell density. Running time, total time from the start of step-(auto-1) of the first isolation to the end of step-(auto-7) of the 96th isolation. 
Success rate, the number of isolations, where one cell was picked and deposited, in each of the 96 automated isolations divided by 96. Cell density, average 
number of cells per mm2 of all scanned squares for each of the 96 automated isolations (see section “Automated Single-Cell Isolation Programs” in Materials and 
Methods). (C and D) Four images (as column), bright-field image (Top) and fluorescent images of GFP (green), PE (cyan), and Alexa647 (magenta) of each cell from 
3mix-ALPS-random-multimode (C) or 3mix-ALPS-target-multimode (D). The numbers indicate the order of isolation. Image size, 26 μm × 26 μm. The contrast of 
the images shown in (C) and (D) changed linearly.
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cell was deposited in the next well. The procedure from (iii) to 
(ix) was repeated to collect 96 cells, one cell in each well of the 
plate. After all of the above procedures were carried out, the plate 
was sealed, quickly frozen in liquid nitrogen within 1 min, and 
stored at −80 °C in the cases where RNA-seq for transcriptome 
analysis was subsequently performed (see below).

We performed five applications of the ALPS with different 
functions and samples. First, we successively isolated 96 cultured 
murine T cells (Materials and Methods) by capturing a bright-field 
image for each cell and measured the total time from steps (i) to 
(ix) with 96 repetitions and the success rate for single-cell picking 
and deposition depending on the cell density (9 to 262 cells/
mm2) (Fig. 1B). The total time ranged from 15 min 26 s to 15 
min 49 s, and the success rate was 81 to 98% when the cell 
density was 9 to 71 cells/mm2 (Fig. 1B). The high success rate 
may have been due to the interactive communication function, 
which was used to determine the cell position immediately before 
every cell picking. When the cell density was higher, failures were 
mainly due to the picking of multiple cells (Dataset S1).  
Second, to obtain more information by imaging, we investigated 
the protein expression levels of randomly selected cells by mul-
timodal imaging before cell isolation. We prepared a mixture of 
three types of fluorescently labeled cultured cells (mouse T cells 
labeled with the PE-CD8a antibody, mouse leukemia cells 
expressing the EGFP fusion protein, and mouse hematopoietic 
progenitor cells (HPCs) labeled with the Alexa647-B220, 
referred to hereafter as three-type–mixed cells, see Materials and 
Methods), captured images with the bright field and three fluo-
rescent colors, and picked and deposited cells for four 96-well 
plates (3mix-ALPS-random-multimode) (Fig. 1C, SI Appendix, 
Fig. S3, Materials and Methods, and Dataset S2). Third, we 
showed that the ALPS enabled targeted cell isolation by real-time 
feature identification. We prepared the three-type–mixed cells 
above and isolated 36 leukemia cells, 36 T cells, and 24 HPCs 
in this order for each 96-well plate (four plates in total) by the 
real-time calculation of fluorescent intensities using NIS-
Elements (3mix-ALPS-target-multimode) (Fig. 1D, SI Appendix, 
Fig. S3, Materials and Methods, and Dataset S2). Fourth, to 
exploit the advantages of the ALPS, which uses an optical micro-
scope, we performed time-lapse imaging followed by cell isola-
tion. We used the three-type–mixed cells without labeling, 
captured bright-field cell images every 1 min for 29 min (30 
frames), and scanned an area of 4.36 mm × 3.68 mm, which 
contained ~200 cells. We picked 96 cells sequentially and depos-
ited them into different wells of 96-well plates, scanning the area 
after the isolation of every 12 cells to track the cells during cell 
isolation (Materials and Methods, Dataset S2). In total, we 
obtained sixteen 96-well plates with the cells (3mix-ALPS-
timelapse). Finally, we performed isolation after the time-lapse 
imaging of primary PBMCs in eight 96-well plates (Materials 
and Methods, Dataset S2). For all plates in the 2nd to 5th appli-
cations, the success rate for single-cell picking and deposition 
was 86 ± 7% (mean ± SD, n = 32) (Dataset S2). Thus, the ALPS 
enabled the rapid, high-throughput isolation of cell lines and 
primary cells through its flexible programmable operations, 
which allowed the introduction of multimodal imaging, the 
identification of image-based cell features in real time, and time-
lapse–based cell dynamics observation.

Combination of the ALPS and RNA-seq. To perform high-
throughput scRNA-seq for cells isolated with the ALPS 
(ALPS&RNA-seq), we set up an automated library preparation 
system for scRNA-seq using the Bravo NGS workstation (Agilent 
Technologies) (SI Appendix, Text 4). We first performed scRNA-

seq on the cells from 3mix-ALPS-random-multimode (4 plates) 
and 3mix-ALPS-target-multimode (4 plates). For the eight plates 
(3mix-ALPS-random&target-multimode), after filtering to 
remove wells that contained multiple cells, no cells, apparent dust, 
or an unusually small amount of detected RNA, a total of 649 cells 
were analyzed further (Datasets S3 and S4 and SI Appendix, Texts 5 
and 6). We found that the quality of the sequencing results was not 
affected by the cell isolation time because the number of total RNA 
molecules and genes detected did not depend on the order of wells, 
i.e., earlier picked cells and later picked cells (SI Appendix, Fig. S4). 
We confirmed that there were three clusters obtained from whole-
transcriptome–based clustering, which was the expected result, 
and we determined the cell types in the clusters using marker 
genes (Fig. 2A and SI Appendix, Fig. S5). Importantly, we showed 
that the ALPS and cell barcodes (a combination of well-position 
barcodes and plate barcodes in SI Appendix, Text 4) were used to 
correctly link image-captured individual cells and their sequencing 
results for the 649 cells. This was confirmed through cell types 
identified by fluorescence imaging (SI Appendix, Text 7) and by 
whole-transcriptome sequencing, where completely consistent 
results were obtained (Figs. 1 C and D and 2A). To evaluate the 
effects of the ALPS on scRNA-seq, we compared the sequencing 
results of single cells from 3mix-ALPS-random&target-multimode 
and those of the three-type–mixed cells isolated by a sorter 
(SI Appendix, Text 8). We found that the total numbers of detected 
RNA molecules and genes and the copy numbers of detected RNA 
molecules for each gene were consistent between cells obtained by 
the ALPS and the cell sorter (SI Appendix, Fig. S6). These results 
showed that the acquisition of a linked dataset of cell images and 
the whole transcriptome was successful by the ALPS&RNA-seq.

We then performed scRNA-seq for cells from 3mix-ALPS-
timelapse (Materials and Methods, Datasets S3 and S4). In total, 
1,008 cells with both images and high-quality sequencing results 
were further analyzed (SI Appendix, Fig. S7). The sequencing results 
from 3mix-ALPS-timelapse and 3mix-ALPS-random&target-mul-
timode were consistent (SI Appendix, Figs. S6 A and B and S7). 
We also performed scRNA-seq for PBMCs obtained by the ALPS, 
as described above; 346 cells with images and sequencing results 
were further analyzed (Fig. 2 B and C, Materials and Methods, 
Datasets S5 and S6). We clustered the scRNA-seq results of 
PBMCs into three subpopulations, which were identified by 
marker genes as CD4+ T cells, CD8+ T cells, and B cells, the main 
cell types in PBMCs (12) (Fig. 2B and SI Appendix, Fig. S8 and 
Text 6). Thus, we linked the cell dynamics observed by time-lapse 
imaging and the whole transcriptome by the ALPS&RNA-seq for 
both cell lines and primary cells.

Prediction of Transcriptome-Defined Cell Phenotypes (Types 
and States). Next, we predicted scRNA-seq–determined cell 
phenotypes (types or states) from the time-lapse label-free cell 
images using deep learning classification methods with the datasets 
obtained by the ALPS&RNA-seq. To efficiently extract features 
from the cell images and dynamics, we used two deep learning 
architectures: ResNet–LSTM is a combination of a deep residual 
network (ResNet) (13) [deep convolutional neural network 
(CNN)] and a long short-term memory (LSTM) (14) [recurrent 
neural network (RNN)], and LeNet–LSTM is a combination 
of a LeNet (15) (simple CNN) and an LSTM (Materials and 
Methods, SI Appendix, Fig. S9 and Text 9). First, we classified the 
cells from 3mix-ALPS-timelapse using the linked dataset (1,008 
single cells) of time-lapse images and scRNA-seq–determined cell 
types (318 T cells, 423 leukemia cells, and 267 HPCs) between 
which 29 to 40% of detected genes were significantly different 
(padj < 0.05 and |log2foldchange| > 1) (SI Appendix, Fig. S10). To 
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assess the generalization power of our classification in independent 
experiments, we trained ResNet–LSTM and LeNet–LSTM to 
generate models, tested those models, and repeated this process 16 
times using 16 plates in a leave-one-out cross-validation strategy 
(16) (Materials and Methods, SI Appendix Text 9). We found that 
the classification of three cell types achieved a high accuracy of 0.81 
± 0.07 for ResNet–LSTM (“All cells” in Fig. 3A) and 0.75 ± 0.12 
for LeNet–LSTM (SI Appendix, Fig. S11B) and high weighted 
F1 scores of 0.81 ± 0.06 for ResNet–LSTM and 0.75 ± 0.12 for 
LeNet–LSTM (mean ± SD, n = 16) (“All cells” in SI Appendix, 
Fig. S11 A and B). As a comparison, we also classified these cells 
into three clusters based on their morphological and dynamical 
features (Datasets S7–S9), which were extracted from the cell 
images by three representative and well-used conventional image 
analysis software programs (17): NIS-Elements (18), CellProfiler 
4 (17), and TrackMate 7 (19) in Fiji (ImageJ) (20) (SI Appendix, 
Fig. S12 A, C, and E and Text 7). For each analysis, we assigned the 
feature-determined clusters to the three scRNA-seq–determined 
cell types by any possible one-to-one correspondence, and for each 

correspondence, we calculated the accuracy (that is, the number of 
cells matched with their scRNA-seq–determined cell types divided 
by the total number of cells) (SI Appendix, Fig. S12 B, D, and F). 
We found that the accuracies of all correspondences were in the 
range of 0.15 to 0.47 for the NIS-Elements analysis, 0.11 to 0.70 
for CellProfiler 4, and 0.16 to 0.48 for TrackMate 7, which were all 
lower than the deep learning classification accuracy shown above 
(0.81). These results indicated that the deep learning model can 
be used to predict the cell types defined by RNA-seq from the cell 
images and dynamics, and the accuracy obtained was higher than 
that of conventional image analysis methods.

We then investigated the effects of the number of cells and 
number of frames on the prediction by ResNet–LSTM. The accu-
racy and F1 score decreased when a smaller number of cells and 
frames were used (Fig. 3A and SI Appendix, Fig. S11 A and C), 
which suggested that the high-throughput data acquisition and 
time-lapse imaging achieved by the development of the 
ALPS&RNA-seq were essential for accurate cell classification 
using deep learning.

Fig. 2. ALPS-linked cell images and whole transcriptome for the same cell. (A) t-SNE visualization of single cells from 3mix-ALPS-random&target-multimode 
clustered based on whole transcriptomes. Filled colors represent the cell types determined by fluorescent images; the gray color indicates that the cell type was 
undetermined due to low fluorescent intensities. The edge colors represent the cell types determined by the transcriptome. (B) t-SNE visualization of all PBMCs 
clustered based on whole transcriptomes. The colors represent the cell types determined by the transcriptome. The black circles and numbers correspond to 
the cells shown in (C). (C) Examples of bright-field time-lapse cell images of PBMCs (SI Appendix, Text 10). Image size, 20 μm × 20 μm. The contrast of the images 
shown in (C) changed linearly.

http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials


PNAS  2023  Vol. 120  No. 1  e2210283120� https://doi.org/10.1073/pnas.2210283120   5 of 9

Second, to test the capability of deep learning for the image-
based classification of cells from the same cell type but different 
biological states, we classified the cells from 3mix-ALPS-timelapse 
into six clusters using their whole transcriptomes and found two 
subclusters in each cell type, i.e., T cells, leukemia cells, and HPCs 
(SI Appendix, Fig. S13A). We found that 4.7% of the detected 
genes were differentially expressed (padj < 0.05 and |log2fold-
change| > 1) between the two subclusters of HPCs (HPC-1: 143 
cells and HPC-2: 124 cells), while only 0.3% were differentially 
expressed between the two subclusters of T cells (T cell-1: 188 
cells and T cell-2: 130 cells) and leukemia cells (leukemia cell-1: 
220 cells and leukemia cell-2: 203 cells) (SI Appendix, Fig. S13 
B–D). We found that these differentially expressed genes were 
predominantly linked to several biological processes, such as 
immune-related processes, which were identified by gene ontology 
analysis (21) (SI Appendix, Fig. S13 B–D), suggesting that the two 
subclusters generated from each cell type were in different biolog-
ical states. We then performed image-based cell classification for 
the two subclusters of each cell type using ResNet–LSTM; we 
trained ResNet–LSTM to generate models, tested those models, 
and repeated this process eight times using the 16 plates in a leave-
one-out cross-validation strategy (16) (every two plates were 
merged in order) (Materials and Methods, SI Appendix, Text 9 and 
Dataset S3). For the HPCs, the accuracy and F1 score were 0.66 
± 0.06 and 0.64 ± 0.07 (mean ± SD, n = 8), respectively, which 
were significantly higher than the results obtained using the same 
learning strategy with artificial random labeling of subclusters 
(Fig. 3B and SI Appendix, Fig. S14B). For the T cells and leukemia 
cells, the accuracies and F1 scores were not significantly different 
from those obtained using the same learning strategy with artificial 
random labeling of subclusters (SI Appendix, Fig. S14). These 
results indicated that the ResNet–LSTM deep learning model was 
generalized for predicting the biological cell states of HPCs that 
were defined by 4.7% differentially expressed detected genes from 
cell images and dynamics but not for predicting the biological cell 
states of T cells and leukemia cells defined by only 0.3% differ-
entially expressed detected genes.

Third, we performed cell classification for the PBMCs using 
the linked dataset (346 single cells) of time-lapse label-free cell 
images and scRNA-seq–determined cell types, each of which was 
labeled by one of three types (152 CD4+ T cells, 103 CD8+ T 
cells, and 91 B cells) or two types (255 (= 152+103) T cells and 
91 B cells) based on the whole transcriptome between cell types 
[12 to 15% detected genes were differentially expressed (padj < 
0.05 and |log2foldchange| > 1) (SI Appendix, Fig. S15)]. For the 

PBMCs labeled by both two and three cell types, we trained 
ResNet–LSTM and LeNet–LSTM, respectively, to generate mod-
els, tested those models, and repeated this process eight times using 
the eight plates in a leave-one-out cross-validation strategy (16) 
(Materials and Methods, SI Appendix, Text 9). Although the accu-
racies and F1 scores for both labels were not very high (e.g., accu-
racy of 0.71 ± 0.12 for two types and 0.56 ± 0.10 for three types 
(mean ± SD, n = 8) when ResNet–LSTM was used), they were 
significantly higher than the results obtained using the same learn-
ing strategy with artificial random labeling of cell types (Fig. 3C 
and SI Appendix, Fig. S16). For comparison, we then performed 
conventional image analyses for PBMCs using the same strategy 
as for the cells from the 3mix-ALPS-timelapse above. We classified 
the PBMCs into three clusters based on extracted morphological 
and dynamical features (Datasets S10–S12) from the cell images, 
assigned them as CD4+ T cells, CD8+ T cells, and B cells by any 
possible one-to-one correspondence, and calculated the accuracy 
for each correspondence (SI Appendix, Fig. S17). We found that 
the accuracies of all correspondences were in the range of 0.14 to 
0.40 for the NIS-Elements analysis, 0.21 to 0.53 for CellProfiler 
4, and 0.24 to 0.46 for TrackMate 7, which were lower than the 
deep learning classification accuracy shown above (0.56). These 
results indicated that the deep learning model for predicting the 
cell types of murine primary PBMCs defined by RNA-seq from 
cell images and dynamics was generalized, and the accuracy of the 
determination of cell types using deep learning was higher than 
that using the conventional image analysis methods.

Individual Cell States Determined by Predicted RNA Expression 
Levels from Cell Images. First, to test the capability of predicting 
the RNA expression level of each gene from the cell images and 
dynamics, we performed regression analysis for each of the top 
300 variant genes for the cells from 3mix-ALPS-timelapse using 
ResNet–LSTM. Again, we trained, tested, and repeated the 
process 16 times using the different plates (Materials and Methods, 
SI Appendix, Text 9). Although the expression levels of most genes 
could not be accurately predicted (SI Appendix, Fig. S18 A and 
B), we found 14 genes (one example in Fig. 4A and others in 
SI Appendix, Fig. S18 C and D), which showed that > 40% (median 
out-of-sample R2 = 0.41 to 0.58, median Pearson’s correlation 
coefficient r = 0.66 to 0.77 for predicted expression levels versus 
measured expression levels) of the variance in expression levels 
among cells was explained by the cell images and dynamics, 
suggesting the possibility of predicting the RNA expression levels 
of individual genes from cell images and dynamics.

A CB

Fig. 3. Deep learning–based classification for time-lapse imaged samples. (A) Accuracy of predicting the scRNA-seq–determined cell types of the cells from the 
3mix-ALPS-timelapse using ResNet–LSTM. RNA-seq, cell types determined by scRNA-seq; Random, cell types labeled randomly; 16, 64, 256, and All cells, 16, 64, 
256, and all cells were randomly selected from 15 plates for training (cells in one plate were used for testing). The P values were calculated using the Kruskal–
Wallis rank sum test [in (B) and (C) as well]. (B) Accuracy of predicting scRNA-seq–determined cell states of HPCs (HPC-1 and HPC-2 in SI Appendix, Fig. S13A) using 
ResNet–LSTM. (C) Accuracy of predicting scRNA-seq–determined cell types of PBMCs using ResNet–LSTM. Two types, PBMCs were clustered into T cells and  
B cells. Three types, PBMCs were clustered into CD4+ T cells, CD8+ T cells, and B cells.

http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210283120#supplementary-materials


6 of 9   https://doi.org/10.1073/pnas.2210283120� pnas.org

Then, instead of classifying cells into subpopulation-based cell 
phenotypes, we determined the state for each individual cell using 
the predicted RNA expression levels of the 300 variant genes 
together (Fig. 4 B and C). To quantitatively evaluate the accuracy 
of the prediction of RNA expression–defined cell states, we inves-
tigated the difference between the predicted and measured cell states 
for each cell by calculating the Euclidean distance between the pre-
dicted and measured cell states defined by 300 gene expression levels 
and compared the distances of all cells with the distances between 
all possible pairs of measured cell states; the former was distributed 
at the short end of the latter range (Fig. 4B, red and blue). 
Furthermore, we found that although the distances between the 
predicted and measured cell states were nonnegligible (Fig. 4B, red), 
their average [7.429 ± 0.067 (mean ± SEM, n = 1,008)] was signif-
icantly smaller than both the average distance between the meas-
ured cell states of all possible pairs of same-type cells [Fig. 4B, black; 
7.722 ± 0.004 (mean ± SEM, n = 175,167)] and that of differ-
ent-type cells [Fig. 4B, gray; 14.103 ± 0.003 (mean ± SEM, n = 
332,361)]. To visualize the prediction relative to the measurement 
for individual cells, we performed PCA for all cells in each plate 
with the predicted and measured 300 gene expression levels together 
(one plate in Fig. 4C and others in SI Appendix, Fig. S19). As 
expected, the predicted RNA expression–defined cell states were 
shown to be globally closer to the measured RNA expression–
defined cell states of same-type cells than those of different-type 
cells (Fig. 4C and SI Appendix, Fig. S19). These results suggested 
that the states of individual cells can be directly determined by 
predicting the RNA expression levels of individual genes without 
subpopulation-based cell phenotype information.

Discussion

Both our deep learning–based classification and regression results 
showed that transcriptome-defined cell phenotypes (types and 
states) (i.e., labels without bias) could be predicted from time-lapse 
live-cell images. These results were enabled by our developed 
ALPS&RNA-seq, by which a linked dataset of live images and 
whole transcriptomes for the same single cells was acquired. This 
prediction provides a way to develop machine learning–refined 
images as omics-based live-cell markers that do not rely on one or 

more specific genes or surface proteins or on antibody labeling. 
Furthermore, label-free imaging is tremendously scalable at very 
low cost. Importantly, our successful prediction opens a window 
for decoding phenotypes of any cell defined by the whole tran-
scriptome from only cell images using a trained model, once the 
linked datasets of images and transcriptome analyses for many 
phenotypes of cells are accumulated. This deep learning–based 
determination of live-cell molecular phenotypes will provide a 
noninvasive and an unbiased approach for cell dynamics studies 
on transcriptomes. An open challenge is to predict similar tran-
scriptomic states of cells with high accuracy.

The ALPS, which is a key part of our developed system, has the 
following advantages. First, the ALPS is sufficiently fast (0.52 s) and 
can pick up most biological samples, unless they are rapidly moved, 
e.g., by an artificial flow. Second, the ALPS can be easily equipped 
with different types of microscopes, such as a differential interference 
contrast (DIC) (22), total internal reflection fluorescence (TIRF) 
microscope (23), confocal microscope (24), or superresolution 
microscope (25), to maximize the advantages of microscopy to 
acquire different types of informative cell images. Third, cells iso-
lated by the ALPS can be further cultured and/or applied to different 
kinds of downstream analyses, such as whole-genome sequencing 
(26, 27), epigenetic sequencing (28), and proteomic analysis (29). 
Fourth, the ALPS has a flexibly programmable interactive commu-
nication function; one may target individual cells by real-time posi-
tion determination and feature detection, e.g., molecular localization, 
cell movement, or cell shape. Finally, the ALPS may pick freely 
interacting cells in a cell population, which can be used to study, 
e.g., the molecular mechanism of cell–cell interactions. These advan-
tages will easily expand the usage of ALPS for data acquisition, 
obtaining multiple features by imaging, measuring different types 
of molecules, and applying for different samples, which may advance 
not only deep learning–based prediction but also single-cell char-
acterization in fundamental research and medical applications. A 
subsequent technical challenge is the automatic isolation of adherent 
cells such as neurons and fibroblasts from a substrate after live-cell 
imaging. In a recent study (30), the automatic isolation of single 
adherent cells by laser microdissection was shown but without live-
cell imaging. When using the ALPS, an additional process to detach 
the adherent cells will be required.
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Fig. 4. Deep learning–based regression for time-lapse imaged three-type–mixed cells (3mix-ALPS-timelapse). (A) Scatterplots of the measured and predicted 
RNA expression levels of the cells for the Gm1821 gene (log-transformed; SI Appendix, Text 6), including 16 predictions using different plates. Median R2, median 
of the out-of-sample R2 value for each prediction (SI Appendix, Fig. S18C); median Pearson’s r, median of the Pearson’s correlation coefficient r for each prediction 
(SI Appendix, Fig. S18D). Dashed line, diagonal line. (B) Distribution of the Euclidean distances between the predicted and measured expression levels of 300 genes 
for the same cell and between the measured expression levels of 300 genes of all possible pairs of all cells, same-type cells, and different-type cells. The orange 
lines indicate the means. The P values were calculated using the Kruskal–Wallis rank sum test. (C) PCA of the cells from 3mix-timelapse-plate5 with predicted 
(open circle) and measured (closed circle) expression levels of 300 genes (each cell has two dots) (data from the other 15 plates are shown in SI Appendix, Fig. S19). 
Colors correspond to the three different cell types determined by the measured whole transcriptome. Lines link the predicted and measured expression levels 
of the same cell.
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Materials and Methods

Preparation of Cells, Organoids, and Tissue Samples. Mouse T cells (a cell 
line) were established from BW-1100.129.237 (provided by Leszek Ignatowicz, 
Georgia State University, USA); mouse leukemia cells were established from the 
C1498 cell line (ATCC), and mouse hematopoietic progenitor cells (HPCs) were 
prepared as previously described (31) (details in SI Appendix, Text 1).

Mouse (C57BL6/J) peripheral blood mononuclear cells (PBMCs) were pre-
pared from whole blood by a general protocol (SI Appendix, Text 1) using den-
sity centrifugation and a cell sorter [FACS Aria III (BD Biosciences)]. Mouse small 
intestinal crypts were isolated and cultured as described with slight modification 
(32) (SI Appendix, Text 1). Mouse small intestinal organoids were grown from the 
crypts as described (33) with slight modifications (SI Appendix, Text 1).

C57BL6/J mice were purchased from CLEA Japan and maintained in the 
RIKEN facility by being fed a CE-2 diet (CLEA Japan). All animal experiments 
were approved by the RIKEN Institutional Animal Care and Use Committee and 
were performed in accordance with institutional guidelines.

Hardware and Software of the ALPS. The ALPS is composed of an inverted 
optical microscope (Eclipse Ti2-E, Nikon), a cell picker including a motorized stage 
for the displacement of a 96-well plate (TOPickV, YODAKA Co., Ltd.), an interactive 
communication system between the microscope and the picker, and an imaging 
system for monitoring a single cell in a well of a 96-well plate. For cell culture, a 
customized stage-top incubator and a surrounding temperature control system 
were used.

On the Nikon microscope, an objective lens (CFI Plan Apochromat Lambda 
20X, Nikon), LEDs for bright-field imaging (TI2-D-LHLED, Nikon) with a green filter 
(MBN11200, Nikon) and for fluorescence imaging (460 nm for GFP and 550 nm 
for PE and Alexa647; pE-300, CoolLED), filter units (GFP-B C-FLL-C for GFP, mCherry 
C-FLL-C for PE, and Cy5 C-FLL-C for Alexa647, Nikon), a motorized stage (TI2-S-SE-E, 
Nikon), a perfect-focus system (TI2-N-ND-P, Nikon), and a CMOS camera (Zyla5.5, 
Andor) were equipped, and all of them were controlled by NIS-Elements (Nikon).

The picker consisted of an S-shaped glass needle (diameter: 40, 60, 75, and 
400 μm; YODAKA) connected to an automated syringe pump (TOPick pump type 
B; YODAKA), an automated robot arm for the movement of the needle, and a 
motorized stage for the movement of a 96-well plate (plate stage). The minimum 
handling volume (one unit) of the pump [0.57 ± 0.05 nL (mean ± SE)] was meas-
ured (SI Appendix, Fig. S20). The arm had rotational and z axis degrees of freedom, 
which were used to move the needle between a dish on the microscope and a 
well of the 96-well plate on the plate stage (Fig. 1A). A motorized manipulator 
was installed between the pump and the arm for minor movement of the needle 
along the x, y, and z axes and was controlled by a 3-axis operation box (QT-AK3, 
CHUO PRECISION INDUSTRIAL CO., LTD.). The plate stage had both x and y axis 
degrees of freedom for the movement of the 96-well plate and could move each 
well of the plate to a fixed position for cell deposition (Fig. 1A). The pumping, 
arm movement, and plate stage movement were automated by software TOPickV.

To synchronize the picker and the microscope by interactive communication, 
two cables with DAQ devices (PCIe-6353 and USB-6003, National Instruments) 
were equipped between the picker and the microscope to transfer transistor–
transistor logic (TTL) signals from the microscope to the picker (TTL 1) and from 
the picker to the microscope (TTL 2). The signal transfer was controlled by NIS-
Elements and software TOPickV.

To monitor the process of cell deposition from the needle to the well, another 
CMOS camera (DMK33UX264, The Imaging Source) with a zoom lens (TS-93005; 
Sugitoh Co., Ltd.), controlled by IC capture (v2.4, The Imaging Source), was 
equipped above the plate. An LED light source (TSPA22X8-57W-4, AI Tec System 
Co., Ltd.) used with a condenser (ML-70, MORITEX Corporation) and a green filter 
(IF550, Olympus) was equipped under the plate.

To record the processes of both picking and deposition simultaneously, screen 
capture software, Shadowplay (NVIDIA) or Flashback express recorder (Blueberry), 
was used to capture the screen on a computer monitor, where the images cap-
tured by both the camera on the microscope and the camera above the 96-well 
plate were shown in real time (Movie S2).

For temperature control, a stage-top incubator (INUBG2TF-WSKM, Tokai Hit) was 
equipped on the microscope stage, which was kept at 37 °C and supplied with 5% 
CO2; we opened a 20-mm-diameter hole at the center of the incubator lid for cell 
picking. To maintain the surrounding temperature of the ALPS (35 to 37 °C), the 

ALPS was covered by a cage, and the temperature inside the cage was controlled 
using a heater (OHT-1566, Hidamari).

Automated Single-Cell Isolation Using the ALPS.
Preparation of plates for cell deposition. For clear imaging, the bottom tip 
of a 96-well PCR plate (4ti-LB0960RIG, 4titude) was planed (approximately 0.3 
mm from the bottom) using a PROXXON mini router (MM100, Proxxon) with a 
grinding bit (SMP1515, Yanase). To stabilize the RNA of the deposited cells, 2 μL of 
a solution of 1× buffer for Maxima H Minus Reverse Transcriptase (Thermo Fisher 
Scientific) with 8 U RNAsin® Plus RNase inhibitor (Promega) was added in advance 
to each well of the plate using the Bravo NGS workstation (Agilent Technologies). 
Subsequently, to position the solution at the bottom of the wells, the plate was 
sealed using the PlateLoc Thermal Microplate Sealer (Agilent Technologies), cen-
trifuged for 30 s at 4,000 rpm (Plate Centrifuge PlateSpin II, KUBOTA), vortexed 
for 15 s at 3,000 rpm using MixMate® (Eppendorf), and centrifuged again for 30 
s at 4,000 rpm. The plate was kept at room temperature (within 1 h) or at 4 °C 
until use. When it was kept at 4 °C, the plate was warmed at room temperature 
for 30 min before use.

Preparation of samples. T cells were filtered using a 35-μm cell strainer 
(Falcon), counted by a Brand™ Bürker-Türk Counting Chambers (Thermo Fisher 
Scientific), and diluted to final concentrations of 0.05, 0.10, 0.25, 0.50, and 1.0 
× 105 cells/mL using medium A [1× RPMI 1640 medium without phenol red 
(Thermo Fisher Scientific) supplemented with final concentrations of 10% (v/v) 
fetal bovine serum (Corning), 1× monothioglycerol solution (FUJIFILM Wako 
Pure Chemical Industries), 1× GlutaMAX™ supplement (Gibco), 1× Penicillin/
Streptomycin Mixed Solution (Nacalai Tesque Inc.)], which was filtered using a 
0.22-µm Steriflip filter unit (Merck). The diluted cell solutions were filtered again 
using 35-μm cell strainers. For each concentration, 3 mL of the filtered cell solu-
tion was added to a glass bottom dish (D35-27-1.5-U, Matsunami), which was 
coated in advance with 1 mL of 0.1% w/v BSA (Sigma-Aldrich) in PBS for 10 min 
at room temperature and washed with PBS three times. For cell sedimentation, 
the dish was placed on the microscope and incubated at room temperature for 
15 min.

For both random and targeted single-cell isolation using multimode imag-
ing, three types of cells, T cells, leukemia cells, and HPCs, were mixed at equal 
concentrations and diluted to a final concentration of 4,000 to 8,000 cells/mL in 
medium A. Before mixing, approximately 106 T cells were filtered using a 35-μm 
cell strainer, stained at a final concentration of 2 μg/mL PE anti-mouse CD8a anti-
body (Lot. B243038, BioLegend) and washed with medium A, and approximately 
106 HPCs were filtered using a 35-μm cell strainer, stained at a final concentration 
of 5 μg/mL Alexa647-B220 (Lot. B243963, BioLegend) and washed with medium 
A. Then, 3 mL of the mixed cell solution was added to a coated glass bottom dish 
(see above), and the cells were sedimented on the microscope stage at room 
temperature for 15 min.

For automated single-cell isolation of three-type–mixed cells after time-lapse 
imaging, the T cells, leukemia cells, and HPCs were filtered using 35-μm cell 
strainers, mixed at equal concentrations, and diluted to a final concentration of 
2,000 to 4,000 cells/mL in medium B [1× RPMI 1640 medium without phenol 
red (Sigma) supplemented with final concentrations of 10% (v/v) fetal bovine 
serum (Corning), 1× monothioglycerol solution (FUJIFILM Wako Pure Chemical 
Industries), 1× GlutaMAX™ supplement (Gibco), 1× Penicillin/Streptomycin 
Mixed Solution (Nacalai Tesque Inc.), and 0.26% (w/v) methyl cellulose 400 
(FUJIFILM Wako Pure Chemical Industries)], which was filtered using a 0.22-µm 
Steriflip filter unit. Then, 1 mL of diluted cells was placed in an Attofluor Cell 
Chamber (Thermo Fisher Scientific) equipped with a 25-mm-diameter coverslip 
(no. S1, Matsunami): the coverslip was sonicated in 1 M KOH (Nacalai Tesque Inc.) 
for 15 min at room temperature and rinsed with Milli-Q water 3 times. The cells 
were sedimented in the chamber for 2 h at 37 °C and 5% CO2 in the stage-top 
incubator on the microscope.

For automated single-cell isolation of PBMCs, the purified PBMCs (see section 
“Preparation of Cells, Organoids, and Tissue Samples”) were diluted to a final 
concentration of 2,000 to 4,000 cells/mL in medium C [1× RPMI 1640 medium 
without phenol red (Sigma) supplemented with final concentrations of 10% (v/v) 
fetal bovine serum (Corning), 1× monothioglycerol solution (FUJIFILM Wako 
Pure Chemical Industries), 1× GlutaMAX™ supplement (Gibco), 1× Penicillin/
Streptomycin Mixed Solution (Nacalai Tesque Inc.), 5 mM HEPES (Gibco), 1× MEM 
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nonessential AA (Gibco), 1 mM sodium pyruvate (Gibco), and 0.26% (w/v) methyl 
cellulose 400 (FUJIFILM Wako Pure Chemical Industries)], which was filtered 
using a 0.22-µm Steriflip filter unit. Then, 1 mL of diluted PBMCs was added 
to an Attofluor Cell Chamber as described above but sedimented for 3 to 3.5 h.

Automated single-cell isolation programs. Programs using JOBS in NIS-
Elements were developed for four automated types of experiments: isolation of 
T cells, three-type–mixed cells with multimode imaging and random selection, 
three-type–mixed cells with multimode imaging and targeted selection, and 
three-type–mixed cells and PBMCs with time-lapse imaging. The four programs 
are described in detail below in this order.

First, for T cell isolation, the initial settings were as follows: (initial-1) a circle 
area, the positions of 70 squares (819 μm × 691 μm each) that covered the 
whole circle, and the scanning order of these squares were determined using the 
“point generation” job with the parameters “radius = 4 mm and scan direction = 
meander,” and the positions and scanning order of those squares were used for 
the following steps. (initial-2) Two focal positions, 1 and 2, were determined; focal 
position 1 was determined where most cells in the field of view (FOV) at the center 
of the dish were on focus determined by the human eyes. Focal position 1 was 
used for other squares using the Nikon perfect focus system. Focal position 2 was 
determined to be 20 µm higher than focal position 1. (initial-3) A threshold for cell 
segmentation (described in the step-(auto-1) below) was determined. (initial-4) 
The needle (40 μm) and pump were washed and filled with Milli-Q water using 
a connected syringe. (initial-5) Three needle positions with the arm were set by 
TOPickV: needle position 1, where the needle was touched to the surface of the 
dish at the center of the FOV; needle position 2, which was 3 mm higher than 
needle position 1; and needle position 3, where the needle was touched to the 
center of the surface of the first well (well A1) of the 96-well plate. The needle was 
placed at needle position 2 when automated cell isolation was started. (initial-6) 
The acceleration and deceleration times of the arm were set (rotation: 500 ms and 
z axis: 10 ms) in TOPickV. (initial-7) The prepared 96-well plate was unsealed and 
placed on the motorized stage immediately before the next step.

After the initial setting, automated cell isolation was performed by following 
the program below: (auto-1) The microscope stage was moved to observe the 
first square determined above [the next square when this step was repeated, 
see step-(auto-9)], and an image of the full FOV (819 μm × 691 μm) at focal 
position 2 was captured using imaging mode 1: bright-field illumination (30% 
of the LED light source) with 10 ms exposure time and a 20× objective. Then, 
the cells in the acquired image were segmented using the “general analysis 
3” job with a threshold of intensity and size by which all cells in at least five 
randomly selected squares imaged using imaging method 1 were segmented 
(this threshold was determined before running the program). The positions and 
automatically determined IDs of the segmented cells that were more than 70 
µm from any other segmented cells were recorded. (auto-2) The microscope 
stage was moved to place the first recorded cell [the next recorded cell when 
this step was repeated, see step-(auto-8)] at the center of the FOV. (auto-3) An 
image of an area (139 μm × 99 μm) at the center of the FOV was captured 
using imaging mode 1 at focal position 2. Subsequently, the cell(s) in the 
acquired image were segmented using the “general analysis 1” job with the 
same threshold above. Then, if the number of cells was one, the following steps 
(auto-4 to auto-7) were performed using its position; if not, the following steps 
(auto-4 to auto-7) were skipped. (auto-4) The microscope stage was moved to 
locate the cell at the center of the FOV. (auto-5) An image of the area (139 μm 
× 99 μm) at the center of the FOV was captured using imaging mode 1 at focal 
position 1. (auto-6) A signal was sent from NIS-Elements to the picker (TOPickV) 
through TTL1 (see section “Hardware and Software of the ALPS”). (auto-7) The 
following procedures were performed by the picker: (auto-7-1) the needle was 
moved from needle position 2 to needle position 1; (auto-7-2) 9 nL of solution 
containing the cell at the center of the FOV was aspirated from the dish by the 
needle-connected pump; (auto-7-3) for the first round of 96-cell isolation, well 
A1 of the plate was moved to needle position 3, and for the 2nd to 96th round, 
the next well in the following order, A1-A12-B12-B1-C1-C12-D12-D1-E1-E12-
F12-F1-G1-G12-H12-H1, was moved to needle position 3; (auto-7-4) the needle 
was moved from needle position 1 to needle position 3; (auto-7-5) 15 nL of 
the solution with the cell was deposited from the needle into the prepared 
buffer in one well of the 96-well plate (see section “Preparation of Plates for 
Cell Deposition”); (auto-7-6) the needle was moved from needle position 3 to 

needle position 2; (auto-7-7) a signal was sent from the picker to NIS-Elements 
through TTL2. (auto-8) Steps (auto-2 to 7) were repeated for the next segmented 
cells until all segmented cells in step-(auto-1) were picked or skipped. (auto-9) 
Steps (auto-1 to auto-8) were repeated for the next squares until 96 cells were 
picked or all the determined squares were used.

We note that steps (auto-2), (auto-4), (auto-7-1), (auto-7-2), and (auto-7-4) 
were imaged in real time by the microscope using imaging mode 1 with the full 
FOV at focal position 1, and steps (auto-7-3) and (auto-7-5) were imaged in real 
time by the camera at the top of a 96-well plate. These real-time images by two 
cameras were shown on the same screen and were recorded by screen capture 
software (see the section “Hardware and Software of the ALPS”).

Second, for three-type–mixed cells with multimode imaging and random 
selection, a program that was the same as that for T cell isolation was performed 
except for the following modifications: in step (initial-6), the acceleration and 
deceleration time of the arm were 1,000 ms for rotation and 500 ms for the z 
axis; in step (auto-5), additionally, three fluorescent images of the same area at 
the same focus position as the bright-field imaging were captured using imaging 
mode 2 [GFP (10% of the CoolLED), PE (100%), and Alexa647 (100%) fluorescent 
illuminations, respectively, with 30 ms exposure time and 20 × objective].

Third, for three-type–mixed cells with multimode imaging and targeted selec-
tion, a program that was the same as that for multimode imaging and random 
selection was performed except for the following modifications: in step-(auto-1), 
additionally, three fluorescent images of the same area at the same focus position 
as the bright-field imaging were captured using imaging mode 2. After the cells 
were segmented in this step, for the first 36 rounds of the 96-cell isolations, GFP-
positive cells [mean gray value (0-4095) of the pixels of a cell in the acquired GFP 
fluorescent image was higher than 950] were selected as targeted cells for the 
next steps; for the 37 to 72 rounds, PE-positive cells [mean gray value (0-4095) 
of the pixels of a cell in the acquired PE fluorescent image was higher than 650] 
were selected as targeted cells for the next steps; for the last 24 rounds, Alexa647-
positive cells [mean gray value (0-4095) of the pixels of a cell in the acquired 
Alexa647 fluorescent image was higher than 350] were selected as targeted 
cells for the next steps.

Fourth, for three-type–mixed cells and PBMCs with time-lapse imaging, a 
program that was the same as that for T cell isolation was performed except for 
the following modifications: in step-(initial-1), the conditions were replaced by 
the following: the positions and scanning order of 5 × 5 squares (819 μm × 691 
μm each) were determined using the “point generation” job with the parameters 
“radius = 5 mm, scan direction = meander, and area restriction = rectangle.” 
Immediately before step-(initial-7), time-lapse images of 6 × 6 squares (defined 
by the “point generation” job with the parameters radius = 5 mm, scan direction 
= meander, area restriction = rectangle, and overlap = 15%) that covered the 5 × 
5 squares in a total of 29 min (1-min interval and 30 frames) were captured using 
imaging mode 1 at focal positions 1 and 2 (during the acquisition, the needle 
was set in a dish with Milli-Q water). Between step-(initial-7) and step-(auto-1), 
if the needle position was adjusted to needle position 1, the needle was washed 
using Milli-Q water in the connected syringe, and one scanning image of the 
6 × 6 squares was captured by the method used for time-lapse imaging. After 
step-(auto-8), for the 12th, 24th, 36th, 48th, 60th, 72nd, 84th, and 96th rounds 
of 96-cell isolation, one scanning image of the 6 × 6 squares was captured by 
the method used for time-lapse imaging (during this acquisition, the needle was 
placed at needle position 2). We note that the time gap between the time-lapse 
imaging and the step-(auto-1) was less than 5 min. For temperature control of all 
steps, the customized stage-top incubator and the cage with the heater were used 
(see section “Hardware and Software of the ALPS”). In addition, for the last 8 plates 
of the three-type–mixed cells and the last 3 plates of the PBMCs, a 60-μm-diame-
ter needle was used. When the 60-μm needle was used, the parameter “70 µm” 
in step-(auto-1) was changed to “100 µm,” the aspirating and depositing volumes 
in step-(auto-7) were changed to 11 and 19 nL, respectively, and needle position 
2 was 10 mm higher than needle position 1.

Storage of isolated cells. In experiments on three-type–mixed cells with mul-
timode imaging and random selection, three-type–mixed cells with multimode 
imaging and targeted selection, and three-type–mixed cells and PBMCs with 
time-lapse imaging, after 96 cells were isolated, the plate was sealed, quickly 
frozen in liquid nitrogen within one minute, and stored at −80 °C until RNA-seq 
was subsequently performed.
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Single-Cell RNA-seq. For single cells isolated by both the ALPS and the cell sorter 
(SI Appendix, Text 8), library preparation was performed using the Bravo NGS work-
station, and the libraries were sequenced on an Illumina platform (SI Appendix, 
Text 4). After the sequencing results were processed, the expression levels of genes 
and the type of each cell were determined (SI Appendix, Texts 5 and 6).

Machine Learning. Cell types were classified using a deep residual network 
(ResNet) (13) or a LeNet (15) with three convolutional layers as a convolutional neu-
ral network (CNN) (34) that extracts image-based features of the cells, combined with 
a long short-term memory (LSTM) architecture (14) as a recurrent neural network 
(RNN) that models the temporal information of the cells, for both three-type–mixed 
cells and PBMCs. Regression of each of the top 300 variant genes using the ResNet 
architecture and the LSTM architecture was performed for the three-type–mixed cells. 
For both classification and regression, the leave-one-out cross-validation strategy 
(16), where cells in one plate were used for testing and cells in all other plates used 
for training, was applied. Details are described in SI Appendix, Text 9.

Data, Materials, and Software Availability. All sequencing data are availa-
ble from the NCBI Sequence Read Archive under accession GSE179943. The cell 
images of 3mix-ALPS-timelapse cells and PBMCs are available via SSBD:repository 
(35) (https://doi.org/10.24631/ssbd.repos.2022.06.237).
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