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Abstract

Support vector machine (SVM) is a new machine learning method developed from statistical

learning theory. Since the objective function of the unconstrained SVM model is a non-

smooth function, a lot of fast optimization algorithms can’t be used to find the solution.

Firstly, to overcome the non-smooth property of this model, a new padé33 approximation

smooth function is constructed by rational approximation method, and a new smooth sup-

port vector machine model (SSVM) is established based on the smooth function. Then, by

analyzing the performance of the smooth function, we find that the smooth precision is sig-

nificantly higher than existing smooth functions. Moreover, theoretical and rigorous mathe-

matical analyses are given to prove the convergence of the new model. Finally, it is applied

to the heart disease diagnosis. The results show that the Padé33-SSVM model has better

classification capability than existing SSVMs.

1. Introduction

With the development of machine learning, support vector machine (SVM) is a new machine

learning method in statistical learning theory, and has achieved remarkable results in face rec-

ognition, population prediction, image retrieval, data mining and other fields [1–4]. SVM has

good generalization performance, and its classifier shows special advantages in solving the pat-

tern recognition problems of small samples, nonlinearity and high dimension, especially in

dealing with classification problems [5–7]. At present, the research of SVM mainly includes

the following three aspects: First, the improvement of SVM model. Lopez et al. [8] proposed

an extension of the non-parallel SVM method and experimentally demonstrated the advan-

tages of achieving the best average performance compared to other SVM methods. Subse-

quently, Chen et al. [9] improved projective Twin Support Vector Machine (PTSVM) to a

novel non-parallel classifier, and experimental evaluation on both synthetic and real-world

datasets demonstrated the feasibility and effectiveness of the proposed approach. In literature

[10], a new weighted quantum particle swarm optimization (WQPSO) hybrid model is pro-

posed for sequence data clustering based on Smooth Support Vector Machine (SSVM) for clas-

sification. The limitation of the proposed work is an increase of computational complexity due

to the usage of weighing optimization strategy. Some studies yet to be conducted to reduce the
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computational complexity. In order to solve the problem that the existing common classifica-

tion algorithm has poor fault tolerance, identify single lithology and cannot effectively over-

come the imbalance between classes, Su et al. [11] proposed an improved Synthetic Minority

Over Sampling Technique (SMOTE)to process data sets and proposed a new fuzzy member-

ship function to improve the fuzzy twin support vector machine. Sun et al. [12] proposed a

partial binary tree twin support vector machine multi-classification algorithm based on opti-

mal classification features (OCF-PBT-TWSVM) to achieve effective classification of non-sta-

tionary transient random signals with edge distortion of tooth profile images, and to meet the

requirements of real-time gear vision measurement and distortion compensation accuracy

claim. Fang et al. [13] proposed a new model: similarity feature transformation smooth sup-

port vector machine based on fuzzy C-means and the experimental results indicate that the

proposed model has better performance compared with the conventional SVM model as well

as some variants in terms of classification accuracy and training time. In order to solve the

problem of low approximation accuracy of S-shaped smooth function adopted by smooth twin

support vector machine (STWSVM), a polynomial smooth twin support vector machine

model based on Newton Armijo optimization (PSTWSVM-NA) was proposed in [14].

The second is the application of SVM model. Indrawan et al. [15] focused on developing

this prediction at the suicidal behavior of psychiatric patients by using smooth support vector

machine method, which is very useful for the prevention of psychiatric hospitals. In order to

solve the problem of vibration signal recognition of fiber perimeter, Ma et al. [16] proposed a

vibration signal recognition method based on SVD and MPSO-SVM, and predicted the fiber

signal, achieving good classification results. Wang et al. [17] proposed a new method combin-

ing computer numerical simulation method with machine learning to predict deep mineraliza-

tion. Wang and Dong [18] combined support vector machine (SVM) and ant colony

algorithm (ACA) to study the problem of power human accident, and proposed a statistical

analysis model for data fitting and prediction of power human accident.

Third, the algorithm for solving the SVM model. In order to solve the excessive consump-

tion of space and time in standard support vector machines, a new method of training support

vector machines using boundary points is proposed in [19]. To improve the accuracy of group

activity recognition in video, a group activity recognition algorithm based on tensor features

and twin support vector machines is proposed in [20]. In order to reduce the error of commu-

nication information security situation prediction, Wang et al. [21] designed a support vector

machine communication information security situation prediction model based on ant colony

optimization algorithm, and compared it with the traditional support vector machine.

In general, support vector machine (SVM) is a new machine learning method based on sta-

tistical theory. It has outstanding performance in small sample, high-dimensional and nonlin-

ear problems, and has achieved great success in many fields. Although the conventional

support vector machine has many advantages, there are still many problems. In recent years,

researchers have a large number of methods to reduce the impact of outliers and noise points

on conventional support vector machines. At the same time, many researches have been car-

ried out on how to filter support vectors effectively when dealing with large-scale datasets, and

there are generally two aspects that need to be improved. Firstly, the conditional quadratic

convex optimization problem restricts the use of some effective optimization algorithms in the

field of unconditional optimization; Secondly, when large sample data sets need to be pro-

cessed, the training time of the algorithm is relatively long and the efficiency is low.

Therefore, to overcome such problems, Lee and Mangasarian [22] first to introduce the Sig-

moid integral function into the SVM to smooth the non-differentiable SVM model, and estab-

lished a smooth support vector machine model (SSVM) based on the Sigmoid function. Thus,

many fast optimization algorithms can be used to solve it, which greatly reduces the
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computational complexity. SVM has strict convexity and infinitely differentiable mathematical

characteristics, and introduced efficient unconstrained optimization problems, which attracted

many scholars to study SSVM models from different perspectives [23–29], Some proposed dif-

ferent smoothing functions [23–26], while others extended them to the prediction field

[16,17]. Other applications of SVM and SSVM are introduced in [27–29].

In conclusion, because the objective function of unconstrained SVM model is not smooth,

many fast optimization algorithms can’t solve it. Many scholars [22–26] proposed to solve

such problems by approximating the objective function of support vector machine with

smooth function. In the research, we found that the performance of SSVM will change with

the change of smooth function, that is, the higher the approximation accuracy of smooth func-

tion, the better the convergence of the corresponding SSVM model, and thus the higher the

classification accuracy. To further explore the smooth function with higher approximation

accuracy, based on previous studies, this paper first constructs padé33 rational smooth func-

tion to approximate positive sign function through the calculation method of determinant for-

mula and the definition of an orthogonal polynomial of padé type approximation. Secondly,

the approximation accuracy of the smooth function and the convergence performance of the

model are analyzed and proved, and compared with the existing smooth functions. Finally,

through the numerical experiments on heart disease, it is proved that the smooth vector

machine model based on the smooth function in this paper can obtain high classification accu-

racy when used to deal with classification problems.

This paper is organized as follows. First, Section 2 reviews some preliminary knowledge

about smooth support vector machine model. Then, a new padé33 smooth function and two

theorems are proposed in Section 3. After that, we present numerical examples to illustrate the

potential applications of the new models and compare six methods of the model in Section 4

and Section 5. Finally, the concluding remarks and future research directions are given in Sec-

tion 6.

2. Smooth support vector machine model

For binary classification problems [30], the training set includesm samples fðxi; yiÞg
m
i¼1

, where

xi2Rn is the row vector and yi2{1,−1}. Thesem samples such as xi (i = 1,� � �,m) are represented

by matrix Am×n. x1,x2,. . .,xm is divided into two categories A+ and A−. If Ai belongs to class A+,

denoted as 1; otherwise, Ai belongs to class A−, denoted as -1, that is, the goal of the support

vector machine is to divide A1,A2,. . .,Am into two categories: A+ and A−. Therefore, the specific

classification can be represented by a diagonal matrix D of typem×n, where the diagonal ele-

ment of D is 1 or -1. Thus, a strongly convex support vector machine (SVM) model modified

by this problem is established as follows:

minðω;b;ξÞ2Rnþ1þm
C
2

ξTξþ
1

2
ωTωþ b2ð Þ

s:t: DðAω � ebÞ þ ξ � e; x � 0:

ð1Þ

Where ξ is the relaxation variable, e = (1,. . .,1)T is the column vector with all units of 1,

C>0 is the misdivision penalty parameter, and ω is the normal vector of the following bound-

ary surface:

xTω � b ¼ 1

xTω � b ¼ � 1
ð2Þ

(

In Formula (2), b is the distance from the boundary surface to the origin.
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For model (1), on the one hand, when A+ and A− are strictly linearly separable, there is ξ =

0; xTω−b = 1 and xTω−b = −1 are the boundaries of A+ and A− respectively. At this time, xTω =

b is the classified hyperplane, that is, the plane is located between the two edge interfaces

described in (2), as shown in S1 Fig. On the other hand, when A+ and A− are quasilinear sepa-

rable, then there is ξ>0, which will make: if xT = Ai, Dii = 1, then xTω−b+ξi�1; Otherwise, xT

= Ai, Dii = −1, and xTω−b+ξi�−1.

Obviously, model (1) is a quadratic programming problem with constraints. In (1), if

ξ ¼ ðe � DðAω � ebÞÞ
þ

ð3Þ

Here (.)+ is a positive sign function, that is, ðxÞ
þ
¼ ððx1Þþ; ðx2Þþ; . . .; ðxmÞþÞ

T
, and ðxiÞþ ¼

maxf0; xig; i = 1,2,. . .,m, Replace (3) in Formula (1) to obtain an unconstrained optimization

model:

min
ω;b

C
2
kðe � DðAω � ebÞÞ

þ
k

2

2
þ

1

2
ωTωþ b2ð Þ ð4Þ

The objective function of the unconstrained optimization model (4) has the characteristics

of strong convexity. Since the minimized objective function contains a non-smooth positive

sign function ξ = (e−D(Aω−eb))+, it cannot be solved by a smooth unconstrained optimization

algorithm. Therefore, scholars have proposed different styles of smooth functions to approxi-

mate positive sign functions and established SSVM models with sigmoid integral functions,

quadratic and quartic polynomials, cubic and quantic spline functions, and padé22 approxi-

mation rational functions as smooth functions [22–26]. Since different smooth functions can

construct different SSVM models correspondingly, for convenience, the above smooth models

are recorded as sigmoid-SSVM, P2 -SSVM, P4-SSVM, T3-SSVM, T5-SSVM, padé22-SSVM

respectively. For the convenience of subsequent experiments, a unified model (5) is used to

solve the linearly separable case, and the function f(x) in (5) can be replaced by different

smooth functions.

min
ω;b

C
2
kf ðe � DðAω � ebÞÞ

þ
k

2

2
þ

1

2
ωTωþ b2ð Þ ð5Þ

3. Construction and analysis of a new padé33 smooth function

3.1 Constructing padé33 rational smooth function approximating (x)+

Lemma 1 ([26]) Assuming k>0, the positive sign function x+ = max{0,x} can be expanded into

uniformly convergent polynomial series on the interval � 1

k ;
1

k

� �
, that is

xþ ¼
jxj þ x

2
¼ L x; kð Þ ¼

1

2k
1þ k2x2

2
�
X1

n¼2

ð2n � 3Þ!!

ð2nÞ!!
ð1 � k2x2Þ

n

" #

þ
x
2

ð6Þ

Based on (6), the related concepts of the Padé approximation of f(x) are proposed as

follows:

Definition 1 ([31]): Suppose f(x) is a power series with ci2C as the coefficient, as follows:

f ðxÞ ¼ c0 þ c1xþ c2x2 þ . . .þ cnxn þ . . .. Let qnðxÞ
e

and pmeðxÞ be polynomials of degree n and

m respectively, if they satisfy: qnðxÞ
ef ðxÞ � pmeðxÞ ¼ Oðxmþnþ1Þ, then the rational expression

pmeðxÞ= qnðxÞ
e

is called the Padé approximation of the function f(x), denoted by [m/n]f(x).
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According to definition 1, a padé rational approximation of f(x) can be obtained by approx-

imating the positive sign function derivation, as follows:

½m=n�fðxÞ ¼
pmeðxÞ
qneðxÞ

¼

Xn

i¼0

aix
n� ifm� nþiðxÞ

Xn

i¼0

aix
n� i

ð7Þ

Of which:

pm
e
ðxÞ ¼ det

ðcm� nþ1; cm� nþ1Þ ðcm� nþ1; cm� nþ2Þ. . . ðcm� nþ1; cmþ1Þ

ðcm� nþ1; cm� nþ2Þ ðcm� nþ1; cm� nþ3Þ. . . ðcm� nþ1; cmþ2Þ

..

.

ðcm� nþ1; cmÞ ðcm� nþ1; cmþ1Þ. . . :: ðcm� nþ1; cmþnÞ
Xm

i¼n

ci� nxi
Xm

i¼n� 1

ci� nþ1xi
Xm

i¼0

cix
i

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

ð8Þ

qn
e
ðxÞ ¼ det

ðcm� nþ1; cm� nþ1Þ ðcm� nþ1; cm� nþ2Þ. . . ðcm� nþ1; cmþ1Þ

ðcm� nþ1; cm� nþ2Þ ðcm� nþ1; cm� nþ3Þ. . . ðcm� nþ1; cmþ2Þ

..

.

ðcm� nþ1; cmÞ ðcm� nþ1; cmþ1Þ. . . :: ðcm� nþ1; cmþnÞ

xn xn� 1 1

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ð9Þ

When m = n = 3, in this paper, according to the definition of padé approximation Formula

(7), a new rational smooth function padé33 can be calculated by padé approximation orthogo-

nal polynomial and determinant formula algorithms (8) and (9) to approximate the positive

sign function:

Pade033ðx; kÞ ¼

x; x � 1=k

7ð1 � k2x2Þ
3
� 56ð1 � k2x2Þ

2
þ 112ð1 � k2x2Þ � 64

2kðð1 � k2x2Þ
3
� 24ð1 � k2x2Þ

2
þ 80ð1 � k2x2Þ � 64Þ

þ
x
2
; � 1=k < x < 1=k

0; x � � 1=k

ð10Þ

8
>>>><

>>>>:

Compared with the accuracy of other smooth functions approaching the positive function, the

effect of approaching the padé33 rational smooth function constructed in this paper to the pos-

itive function is shown in S2 Fig, where k = 10.

According to S2 Fig, sigmoid integral function, polynomials and spline functions of differ-

ent degrees, padé22 function, and padé33 function constructed in this paper can approximate

and smooth the positive sign function, but compared with other smooth functions, padé33

rational smooth function constructed in this paper has a significantly better approximation to

the positive sign function.

3.2 Approximation accuracy and model convergence analysis of padé33

rational smooth function

Theorem 1 Let x2R, Padé(x,k) be a function defined by Eq (10), then:
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(1) Padé33(x,k) has second-order smoothness and at the point x ¼ � 1

k ; x ¼ 0 satisfies the fol-

lowing conditions:

Pad�e33
1

k
; k

� �

¼
1

k
; Pad�e33 �

1

k
; k

� �

¼ 0;

rPad�e33
1

k
; k

� �

¼ 1; rPad�e33 �
1

k
; k

� �

¼ 0;

r2Pad�e33
1

k
; k

� �

¼ 0; r2Pad�e33 �
1

k
; k

� �

¼ 0;

8
>>>>>>>><

>>>>>>>>:

(2) Padé33(x,k)�x+;

(3) Pad�e33ðx; kÞ2 � xþ2 � 0:0051

k2

Proof: (1) (2) easy to prove, which can also be seen from the image.

For (3), discuss according to the situation.

When x � 1

k, or x � � 1

k, Pad�e33ðx; kÞ2 � xþ2 ¼ 0 � 0:0051

k2 is true obviously.

When � 1

k � x �
1

k, let t = kx, then t2[−1,1], so

Pad�e33ðx; kÞ2 � xþ2 ¼
7ð1 � k2x2Þ

3
� 56ð1 � k2x2Þ

2
þ 112ð1 � k2x2Þ � 64

2kðð1 � k2x2Þ
3
� 24ð1 � k2x2Þ

2
þ 80ð1 � k2x2Þ � 64Þ

þ
x
2

 !2

� x2

¼
7ð1 � t2Þ3 � 56ð1 � t2Þ2 þ 112ð1 � t2Þ � 64

2kðð1 � t2Þ3 � 24ð1 � t2Þ2 þ 80ð1 � t2Þ � 64Þ
þ
t

2k

 !2

�
t
k

� �2

¼
1

k2

(
7ð1 � t2Þ3 � 56ð1 � t2Þ2 þ 112ð1 � t2Þ � 64

2ðð1 � t2Þ3 � 24ð1 � t2Þ2 þ 80ð1 � t2Þ � 64Þ
þ
t
2

 !2

� t2
)

Let gðtÞ ¼ 7ð1� t2Þ3 � 56ð1� t2Þ2þ112ð1� t2Þ� 64

2ðð1� t2Þ3 � 24ð1� t2Þ2þ80ð1� t2Þ� 64Þ
þ t

2

� �2

� t2, where t2[−1,1], use MATLAB software to

solve the maximum value of g(t) at t2[−1,1], and get max g(t) = 0.0051, thus

Pad�e33ðx; kÞ2 � xþ2 ¼ 1

k2 gðtÞ � 0:0051

k2 .

To sum up, no matter what value x takes, there is always Pad�e33ðx; kÞ2 � xþ2 � 0:0051

k2 .

Theorem 2 let A2Rm×n and b2Rn×1.The real function h(x):Rn!R and g(x,k):Rn×N!R are

defined as follows:

hðxÞ ¼
1

2
kðAx � bÞ

þ
k

2

2
þ

1

2
kxk2

2
ð11Þ

g x; kð Þ ¼
1

2
kPad�e33ðAx � b; kk

þ
Þ

2

2
þ

1

2
kxk2

2
ð12Þ

Where k>0, Padé33(x,k) is defined by Formula (10), then the following conclusion is true:

1. h(x) and g(x,k) are strongly convex functions;

2. The optimization problems minx hðxÞ and minx gðx; kÞ have unique solutions, which are

recorded as �x and �xk respectively;

3. For any k�1, k�xk � �xk2

2
� 0:0026m

k2 holds, wherem is the number of training samples;
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4. lim
k!1

�xk ¼ �x.

Proof: the proof idea of this theorem is similar to the method involved in literature [7]

1. Because of the inherent strong convexity of k � k
2

2
, according to the formulas of h(x) and g

(x,k), it can be concluded that these two functions also conform to strong convexity, so they

are strong convex functions.

2. According to the formulas of h(x) and g(x,k), the corresponding level sets can be set sepa-

rately as follows: LnðhðxÞÞ ¼ fxjx 2 RnÞ; hðxÞ � ng: Lnðgðx; kÞÞ ¼ fxjx 2 RnÞ; gðx; kÞ � ng.
Because of Pad�e33ðx; kÞ � xþ, for any v�0, they satisfy

Lnðgðx; kÞÞ � LnðhðxÞÞ � fxkxk
2

2
� 2ng. Therefore, both min h(x) and min g(x,k) are com-

pact sets in Rn space, so the optimization problems min h(x) and min g(x,k) have optimal

solutions. In addition, for any k2Z+, h(x) and g(x,k) also satisfy strong convexity, so

minx2Rn hðxÞ and minx2Rn gðx; kÞ have unique solutions, which can be recorded as �x and �xk.

3. Let the unique solutions of min h(x) a and min g(x,k) be �x and �xk respectively, which is

obvious: hð�xkÞ � h �xð Þ � rhð�xÞ �xk � �xð Þ þ 1

2
k�xk � �xk2

2
¼ 1

2
k�xk � �xk2

2

g �x; kð Þ � gð�xk; kÞ � rgð�xk; kÞ �x � �xkð Þ þ 1

2
k�xk � �xk2

2
¼ 1

2
k�xk � �xk2

2
,

Add the above two equations to get:

k�xk � �xk2

2
� ðhð�xkÞ � hð�xÞÞ þ ðgð�x; kÞ � gð�xk; kÞÞ

� ðgð�x; kÞ � hð�xÞÞ � ðgð�xk; kÞ � hð�xkÞÞ

� gð�x; kÞ � hð�xÞ

�
1

2
kPad�e33ðAx � b; kÞ

þ
k

2

2
�

1

2
kðAx � bÞ

þ
k

2

2

From (3) Pad�e33ðx; kÞ2 � xþ2 � 0:0051

k2 of Theorem 1:

k�xk � �xk2

2
�

1

2
kPad�e33ðAx � b; kkþÞ

2

2
�

1

2
kðAx � bÞ

þ
k

2

2
�

0:0051m
2k2

¼
0:0026m
k2

(4) From (3): k�xk � �xk2

2
� 0:0026m

k2 , so limk!1 k�xk � �xk2

2
� limk!1

0:0026m
k2 ¼ 0

Therefore limk!1 �xk ¼ �x.

From theorem 2, it can be found that when the smoothing coefficient k tends to infinity,

the unique solution based on padé33 SSVM can be approximate to the solution of the original

optimization model (4). Therefore, the solution of padé33 SSVM established in this paper

meets the convergence. In addition, according to Table 1 and S2 Fig, it can be found that the

Padé33 rational smooth function constructed in this paper is closer to the positive sign func-

tion than the previous smooth function, and its approximation accuracy is one order of magni-

tude higher than the original Sigmoid integral function. At the same time, in terms of

convergence speed, the Padé33-SSVM established in this paper is also faster than the existing

SSVM, and two orders of magnitude higher than the Sigmoid-SSVM.

4. A training algorithm for smooth support vector machines

In model (5), the nonlinear classification problem can be solved only by introducing a kernel

function. Therefore, model (5) still maintains strong convexity and smoothness for any kernel

function, and its convergence still holds in this nonlinear case. Therefore, for the smoothed
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model (5), the BFGS Armijo optimization algorithm [25] can be directly used to classify its

solution. To make better use of this algorithm, this paper unifies the notation, denoting the

objective function of the model (5) as φ(w,b), its first-order derivation asrφ(w,b), the solution

accuracy of the algorithm itself is mainly ε = 10−5, and the number of iterative steps is denoted

as i. Thus, the BFGS-Armijo optimization algorithm is used to give the calculation steps when

the objective function is first-order smooth, as follows:

Step 1: Initialization ðo0; b0Þ ¼ u0 2 Rnþ1;H0 ¼ I; set max = 1000, i = 0,and ε = 10−5.

Step 2: If i�max, calculate vi =rφ(ui).
Step 3:If kvik

2

2
� ε, then stop, the optimal solution of model (5) can be obtained as ui = (ωi,

bi). Otherwise, calculate di = −Hivi, then go to step 4;

Step 4:Performe a one-dimensional search along the direction di to get the step factor αi>0:

Let

uiþ1 ¼ ui þ aidi;

si ¼ uiþ1 � ui ¼ � aiHivi:

Then calculate

φiþ1
¼ φðuiþ1Þ;

rφiþ1
¼ rφðuiþ1Þ;

yi ¼ rφiþ1
� rφi:

Step 5: CorrectHi to get Hi+1;

Hiþ1 ¼ I �
siðyiÞ

T

ðsiÞ
Tyi

 !

Hi I �
yiðsiÞ

T

ðsiÞ
Tyi

 !

þ
siðsiÞ

T

ðsiÞ
Tyi
;

Table 1. Approximation accuracy of different smooth functions and the convergence rate of the model.

Smooth support vector machine(SSVM) Smooth function

fsmooth(x,k)

Approximation accuracy

fsmoothðx; kÞ
2
� x2

þ
�

Convergence speed k�x�k � �x�k
2

2
�

Sigmoid-SSVM xþ 1

k log 1þ e� kxð Þ 0.6927/k2. 0.3463m/k2

P2-SSVM k
4
x2 þ x

2
þ 1

4k. 0.0909/k2 0.0455m/k2

P4-SSVM � 1

16k ðkxþ 1Þ
3
ðkx � 3Þ 0.0526/k2 0.0263m/k2

T3-SSVM k2

6
x3 þ

k
2
x2 þ

1

2
xþ

1

6k
; �

1

k
< x < 0

�
k2

6
x3 þ

k
2
x2 þ

1

2
xþ

1

6k
; 0 � x <

1

k

8
>><

>>:

0.04167/k2 0.0208m/k2

T5-SSVM
�
k4

10
x5 �

k3

4
x4 þ

k
2
x2 þ

1

2
xþ

3

20k
; �

1

k
< x < 0

k4

10
x5 �

k3

4
x4 þ

k
2
x2 þ

1

2
xþ

3

20k
; 0 � x <

1

k

8
>><

>>:

0.03333/k2 0.0167m/k2

Padé22-SSVM 1

2k �
1þ10k2x2þ5k4x4

5þ10k2x2þk4x4 þ
x
2

0.0139/k2 0.0069m/k2

Padé33-SSVM 7ð1� k2x2Þ3 � 56ð1� k2x2Þ2þ112ð1� k2x2Þ� 64

2kðð1� k2x2Þ3 � 24ð1� k2x2Þ2þ80ð1� k2x2Þ� 64Þ
þ x

2
0.0051/k2 0.0026m/k2

https://doi.org/10.1371/journal.pone.0280804.t001
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Step 6: Then let i = i+1, go to step 2; where φ(ui) is defined according to model (4), and αi
can be obtained according to the following formula:

φðui þ aidiÞ � φðuiÞ þ rðviÞ
Tui;

φðui þ aidiÞ � φðuiÞ þ ð1 � rÞðviÞ
Tui;

ui ¼ aidi; 0 < r <
1

2
:

8
>>><

>>>:

5. Numerical experiments

To verify the application effect of padé33-SSVM model constructed in this paper in practical

classification problems, based on the training and testing data sets of the UCI machine learn-

ing database, the training and prediction experiments of the classifier were designed for the

heart disease data set. The experiment in Section 5.1 uses different SSVM models to train on

the heart disease data set with different scales, and compares them with classical SVM and

LSSVM. The main purpose of the experiment in Section 5.2 is to verify whether the

Padé33-SSVM can obtain more accurate classification accuracy in prediction under different

numbers of training samples. In addition, simulation experiment 5.3 is mainly aimed at the

classification machine training experiment of different SSVMS with kernel function under dif-

ferent datasets of different sizes, and mainly verifies the applicability of the proposed model in

classification problems under large datasets.

5.1 Classifier training based on heart disease data

Experiment 1: The heart disease dataset was obtained from the Cleverland Clinic Foundation,

with sample data available from the UCI Machine Learning Database. There are a total of 270

sample data, and each sample includes 13 attributes such as gender, age, diastolic blood pres-

sure, cholestoral content per deciliter of plasma, chest pain category, and blood sugar. All the

sample data on heart disease status are divided into two categories: presence and absence.

Due to the large individual differences of each patient and the different speed of heart rate,

the value range is significantly different. At the same time, in view of the redundancy and

noise of the real data provided by the hospital, it is necessary to normalize the data to make the

data value between [–1,1]. By normalizing the data, the redundancy of sample data can be

eliminated, and the low computational efficiency under large sample data can also be

overcome.

To compare the classification effects of different smooth support vector machine models,

the generalization ability of the classifier is generally used as an index. The generalization abil-

ity of the classifier is usually measured by the accuracy of the training samples, and the time

CPU consumed by the algorithm is recorded as the training time (s). The experiment in this

section adopts model (5), in which the function f(x) adopts Sigmoid integral function, qua-

dratic and quartic polynomial, cubic and quintic spline functions, Padé22 and Padé33 rational

smooth function constructed in this paper. By solving the smooth support vector machine

(padé33-SSVM) based on padé33 rational smooth function, the decision function is g(x) = sgn

(ωTx−b), where o ¼ ½0:01227 � 0:36243 � 0:19132 � 0:00526 � 0:00168 0:18655 � 0:10120

0:01017 � 0:25288 � 0:12861 � 0:05915 � 0:37907 � 0:12470�
T
; b ¼ � 1:0781. Different

SSVM models are used to train the data sets with inconsistent scales on the heart disease data

sets, and BFGS Armijo algorithm is used to solve Eq (5). The performance indicators obtained

from the solution are shown in Table 2.

Two conclusions can be drawn from the experimental results in Table 2. On the one hand,

under different training scales, compared with classical SVM, the Padé33-SSVM constructed
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in this paper has an absolute advantage in training accuracy and time. Compared with

LSSVM, the training accuracy in this paper is also relatively high. On the other hand, when dif-

ferent SSVM models are used for classification training under different data scales, the larger

the scale, the higher the accuracy and the longer the time-consuming. In addition, under the

same data scale, the smooth model established when the padé33 rational smooth function con-

structed in this paper approximates the positive function can obtain higher classification accu-

racy in the classification of heart disease data. Therefore, the smooth support vector machine

(padé33-SSVM) based on the padé33 rational smooth function constructed in this paper can

obtain higher accuracy when it is used for classification training of heart disease data. The

numerical experiment shows that we can get the decision function through Padé33-SSVM,

and can obtain more accurate judgment when we predict the data of heart diseases with 13

attributes.

5.2 Classifier prediction based on heart disease data

Experiment 2: According to 5.1, the total sample data about heart disease is 270, and each

sample data has 13 attributes. This experiment mainly verifies whether the padé33-SSVM

established in this paper can obtain more accurate classification accuracy in prediction. The

experiment divides the sample data into two steps. The first step is to obtain the classification

accuracy, training time, and decision function by randomly searching the data for training;

The second step is to predict the remaining test data through the decision function of one

stage, and the accuracy and time of prediction can be obtained. The experiment adopts model

(5), in which the smooth function f(x) is the padé33 rational smooth function constructed in

this paper. The classification effect is shown in Table 3 by solving padé33-SSVM through the

optimization algorithm:

The experimental results are shown in Table 3. With the increase of the number of training

samples, the more accurate the decision function is, and then when predicting the remaining

sample data, the higher the accuracy is. This is also consistent with the reality, that is, the larger

the sample data size, the more accurate the decision function can be trained. In addition, the

decision function trained is also different due to the different number of training samples, and

after the padé33-SSVM training constructed in this paper, the model can adjust the parameter

C value to obtain the function with high training classification accuracy for the second stage of

prediction experiment. Therefore, for the training samples of heart disease under the scale of

large data, a more accurate decision function can be obtained after the Padé33-SSVM classifi-

cation training in this paper. As a result, the data of heart disease can be diagnosed and

Table 2. Comparison of different SSVMS with SVM and LSSVM at different scales.

performance

SSVM

Classification accuracy

(percentage)

M = 130

CPU

Training time (s)

Classification accuracy

(percentage)

M = 270

CPU

Training time (s)

SVM 83.850 6.817 85.560 10.043

LSSVM 81.539 0.032 84.815 0.055

Sigmoid-SSVM 83.077 0.089 84.074 0.943

P2-SSVM 84.184 0.073 84.444 0.686

P4-SSVM 84.444 0.032 84.815 0.751

T3-SSVM 84.615 0.089 85.185 0.689

T5-SSVM 84.615 0.069 85.185 0.670

Padé22-SSVM 84.615 0.074 85.556 0.517

Padé33-SSVM 85.556 0.059 86.296 0.462

https://doi.org/10.1371/journal.pone.0280804.t002

PLOS ONE Smooth support vector machine and its applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0280804 February 9, 2023 10 / 14

https://doi.org/10.1371/journal.pone.0280804.t002
https://doi.org/10.1371/journal.pone.0280804


predicted, the potential patients with heart disease can be predicted and treated early, and the

early warning can be given to those who do not suffer from heart disease.

5.3 Classifier training based on large data sets

Experiment 3: The experiment in this section solves the classification problem of large data

sets by solving model (5), and the kernel function selected is Gaussian kernel function [14]

K x; yð Þ ¼ exp � kx� yk2

2s2

� �
. The sample datasets used in this experiment include Banknote authen-

tication, EEG Eye Status, QSAR biodegradation, Crowdsourced mapping and Diabetic Reti-

nopathy Debrecen datasets, which are all from the UCI database (http://archive.ics.uci.edu/

ml/datasets.php?format=&task=cla&att=&area=&numAtt=&numIns=&type=&sort=

nameUp&view=table). The banknote authentication data is 1372 � 4, extracted from the image

used to evaluate the banknote authentication program, and all data samples are divided into

two categories. The original EEG state data is 14,980 � 20 dimensions, and the data are divided

into two categories: ’1’ for closed eyes and ’0’ for open eyes; QSAR biodegradation data is 1055
� 41, and 1055 chemical samples are divided into 2 categories; The original mapping data of

crowdsourcing is 10546 � 28, and the crowdsourcing data is divided into six categories. To

facilitate calculation, two categories (farm and forest) data are randomly searched as training

data. The Debrecen data of diabetes retinopathy is 1151 � 20. The data set contains features

extracted from the Messidor image set to predict whether the image contains signs of diabetes

retinopathy, and these 1151 chemicals are divided into two categories. In the experiment,

1372, 1500, 1055, 2000 and 1151 samples were randomly selected from the above dataset for

classification training. The results are shown in Table 4. The data in each column is the train-

ing accuracy rate (%), and the training time (s) is in the parentheses in the second row.

According to Table 4, under different data set sizes, compared with classical SVM and

LSSVM, Pade33-SSVM constructed in this paper has a slightly lower training accuracy than

SVM, but it takes a shorter time and speeds up the calculation speed. Compared with LSSVM,

although the training time is relatively long, the training accuracy is significantly higher than

that of LSSVM. Therefore, compared with SSVM and LSSVM, the Padé33-SSVM constructed

Table 3. Classification and test comparison of padé33-SSVM under different training sample functions.

samples C = 2

Train Predict

C = 4

Train Predict

C = 10

Train Predict

C = 16

Train Predict

C = 20

Train Predict

10 100

0.088

65.385

0.025

100

0.112

65

0.028

100

0.352

65.769

0.028

100

0. 319

66.154

0.028

100

0.228

65.769

0.026

30 96.667

0.104

69.167

0.027

100

0.153

67.5

0.026

100

0.285

69.583

0.030

100

0.474

69.583

0.029

100

0.472

69.583

0.036

50 96

0.133

75.909

0.016

96

0.142

74.546

0.025

96

0.197

74.546

0.023

98

0.223

75

0.033

98

0.376

74.091

0.023

70 88.571

0.127

79.5

0.028

88.571

0.105

79

0.016

92.857

0.166

77

0.027

91.429

0.218

76.5

0.017

91.429

0.246

77.5

0.026

90 88.889

0.127

81.111

0.014

90

0.162

80.556

0.021

90

0.227

78.889

0.033

90

0.179

78.333

0.027

90

0.266

78.889

0.033

130 85.385

0.203

82.143

0.020

85.385

0.219

82.143

0.034

86.154

0.297

82.143

0.032

86.154

0.237

81.429

0.026

86.154

0.417

81.429

0.023

150 86

0.251

82.5

0.021

86.667

0.291

82.5

0.013

86.667

0.316

82.5

0.017

85.333

0.355

81.667

0.013

85.333

0.418

81.833

0.017

210 88.095

0.370

83.333

0.013

87.619

0.448

83.333

0.009

88.095

0.483

81.667

0.014

88.095

0.471

81.667

0.017

87.619

0.528

81.667

0.022

240 86.667

0.490

86.667

0.010

86.667

0.686

86.667

0.017

86.25

0.678

86.667

0.031

86.25

0.869

86.667

0.014

86.25

1.046

86.667

0.017

https://doi.org/10.1371/journal.pone.0280804.t003
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in this paper is not only suitable for the training and prediction of heart disease data, but also

more suitable for the classification of data sets of different sizes. In general, when different

SSVMs with kernel function are used for classification training, the larger the scale is, the lon-

ger the time is. Under the same data scale, higher classification accuracy can be obtained when

using Padé33 rational smooth function to approximate the positive sign function. Therefore,

Padé33-SSVM is not only applicable to the classification of small-scale data, but also for the

case of large data sets.

6. Conclusions

To overcome the non-differentiability of SVM, first, based on the Padé type approximation

orthogonal polynomial definition and determinant algorithm, this paper constructs a Padé33

rational smooth function to approximate the positive sign function. Secondly, Theorem 1 and

Theorem 2 are proposed to prove that the smoothness accuracy of the Padé33 function is sig-

nificantly higher than that of the existing smooth functions, and the convergence performance

of padé33-SSVM is better than that of other SSVMs. Finally, the new smooth model estab-

lished in this paper is used to diagnose heart disease. The experimental results show that

padé33-SSVM has better classification ability and higher classification accuracy than the other

four SSVMs. Therefore, the padé33-SSVM constructed in this paper is of great significance in

real life, not limited to the prediction of heart disease.

In the future, the padé33-SSVM model established in this paper can be used to predict the

actual classification problems such as broader medical diagnosis, customer churn in company

management, and whether the enterprise’s finance is in trouble.

Supporting information

S1 Fig. Schematic diagram of linear separable support vector machine.

(TIF)

Table 4. Comparison of different SSVMS with SVM and LSSVM in different data sets.

Data sets

Performance

SSVM

Banknote = 1372�4 EEG = 1500�20 QSAR = 1055�41 Crowdsourced

= 2000�28

Diabetic = 1151�20

SVM 90.690

(336.294)

62.330

(485.430)

85.010

(1863.9)

92.900

(5655.1)

69.750

(3531.0)

LSSVM 87.670

(353.127)

61.470

(0.912)

82.200

(3.134)

92.100

(2.108)

63.330

(1.348)

Sigmoid-SSVM 88.484

(353.127)

61.000

(283.030)

83.212

(279.697)

89.850

(853.942)

57.863

(254.657)

P2-SSVM 88.484

(299.069)

61.733

(243.039)

83.318

(280.922)

91.150

(879.012)

60.016

(256.051)

P4-SSVM 88.776

(297.164)

62.000

(273.971)

83.697

(285.665)

91.350

(927.105)

60.035

(255.993)

T3-SSVM 88.921

(294.272)

62.133

(244.845)

83.697

(342.235)

91.250

(899.858)

64.987

(256.087)

T5-SSVM 88.994

(298.486)

62.133

(245.261)

83.886

(311.801)

91.350

(939.453)

64.992

(256.884)

Padé22-SSVM 89.723

(295.753)

62.333

(250.239)

84.171

(396.057)

92.200

(852.956)

65.682

(256.969)

Padé33-SSVM 89.923

(276.532)

62.415

(228.632)

84.435

(280.362)

92.200

(836.634)

68.215

(250.351)

https://doi.org/10.1371/journal.pone.0280804.t004

PLOS ONE Smooth support vector machine and its applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0280804 February 9, 2023 12 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0280804.s001
https://doi.org/10.1371/journal.pone.0280804.t004
https://doi.org/10.1371/journal.pone.0280804


S2 Fig. Effect diagram of different smooth functions approaching positive sign function

(k = 10).

(TIF)

S1 Table. Approximation accuracy of different smooth functions and the convergence rate

of the model.

(PDF)

S2 Table. Comparison of different SSVMS with SVM and LSSVM at different scales.

(PDF)

S3 Table. Classification and test comparison of padé33-SSVM under different training

sample functions.

(PDF)

S4 Table. Comparison of different SSVMS with SVM and LSSVM in different data sets.

(PDF)
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