Skip to main content
. 2023 Feb 9;18(2):e0280804. doi: 10.1371/journal.pone.0280804

Table 4. Comparison of different SSVMS with SVM and LSSVM in different data sets.

Data sets
Performance
SSVM
Banknote = 1372*4 EEG = 1500*20 QSAR = 1055*41 Crowdsourced
= 2000*28
Diabetic = 1151*20
SVM 90.690
(336.294)
62.330
(485.430)
85.010
(1863.9)
92.900
(5655.1)
69.750
(3531.0)
LSSVM 87.670
(353.127)
61.470
(0.912)
82.200
(3.134)
92.100
(2.108)
63.330
(1.348)
Sigmoid-SSVM 88.484
(353.127)
61.000
(283.030)
83.212
(279.697)
89.850
(853.942)
57.863
(254.657)
P2-SSVM 88.484
(299.069)
61.733
(243.039)
83.318
(280.922)
91.150
(879.012)
60.016
(256.051)
P4-SSVM 88.776
(297.164)
62.000
(273.971)
83.697
(285.665)
91.350
(927.105)
60.035
(255.993)
T3-SSVM 88.921
(294.272)
62.133
(244.845)
83.697
(342.235)
91.250
(899.858)
64.987
(256.087)
T5-SSVM 88.994
(298.486)
62.133
(245.261)
83.886
(311.801)
91.350
(939.453)
64.992
(256.884)
Padé22-SSVM 89.723
(295.753)
62.333
(250.239)
84.171
(396.057)
92.200
(852.956)
65.682
(256.969)
Padé33-SSVM 89.923
(276.532)
62.415
(228.632)
84.435
(280.362)
92.200
(836.634)
68.215
(250.351)