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Abstract

The development of ultra high field fMRI signal readout strategies and contrasts has led to

the possibility of imaging the human brain in vivo and non-invasively at increasingly higher

spatial resolutions of cortical layers and columns. One emergent layer-fMRI acquisition

method with increasing popularity is the cerebral blood volume sensitive sequence named

vascular space occupancy (VASO). This approach has been shown to be mostly sensitive

to locally-specific changes of laminar microvasculature, without unwanted biases of trans-

laminar draining veins. Until now, however, VASO has not been applied in the technically

challenging cortical area of the auditory cortex. Here, we describe the main challenges we

encountered when developing a VASO protocol for auditory neuroscientific applications and

the solutions we have adopted. With the resulting protocol, we present preliminary results of

laminar responses to sounds and as a proof of concept for future investigations, we map the

topographic representation of frequency preference (tonotopy) in the auditory cortex.

Introduction

Ultra high field (UHF) magnetic resonance imaging allows the acquisition of functional data

with increased sensitivity [1]. This increased sensitivity can be used to breach into the meso-

scopic scale in humans [2–9], and the layered functional responses can be leveraged as a proxy

for cortical architecture [10].

Gradient-echo blood oxygenation level dependent (GE-BOLD) functional magnetic reso-

nance imaging (fMRI) is the conventional approach to collect submillimeter data, due to its

relatively high signal-to-noise ratio (SNR) [11]. However, T2�-weighted images collected at 7

Tesla (and higher fields) still contain contributions of both macro- and micro-extravasculature

compartments [11,12]. The macrovascular contribution to GE-BOLD originates from both

pial vessels and draining vessels that penetrate the cortex orthogonally [13]. This results in two

effects: the signal in superficial cortical depths is larger and the layer dependent spatial specific-

ity is reduced as activation is drained away from the original locus of neural activity [14–17].
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Regardless, the increased sensitivity, coverage and temporal efficiency of GE-BOLD makes it

the most common approach for laminar fMRI (for a recent review see e.g. [18]), also when

considering auditory studies [19–23].

While draining effects in GE-BOLD can be reduced with modeling and analyses approaches

(see e.g. [24,25]), alternative acquisitions have been proposed to minimize the contribution of

macrovasculature. For example, spin-echo (SE) echo planar imaging (EPI) has been used to

collect T2-weighted functional data [7,8]. To retain T2-weighted specificity, these applications

used segmented EPI acquisitions, while non segmented acquisitions introduce unwanted T2�

contributions [26]. 3D gradient-echo and spin-echo (3D-GRASE) [27,28], has also been used

to investigate human laminar and columnar function in both visual and auditory cortices

[2,9,29–31]. However, the limited field of view (FOV) of early 3D-GRASE approaches has

allowed only the investigation of small portions of cortex and, in auditory studies in particular,

often in a single hemisphere ([2,30]; for a review see [32]). More recent 3D-GRASE advance-

ments can mitigate FOV constraints [33]. Furthermore, a large spectrum of alternative

approaches is currently under development to optimize the sensitivity and specificity of layer-

fMRI experiments [34–44].

Cerebral blood volume (CBV) based imaging is one of the approaches to collect functional

data with high spatial specificity. The most commonly used approach to measure functional

CBV changes is vascular space occupancy (VASO) [39,45,46]. Previous studies have acquired

CBV functional responses alongside conventional BOLD [47–50]. A concomitant acquisition

approach of BOLD and VASO has the potential to combine their complementary aspects and

facilitate a more comprehensive understanding of the physiology underlying laminar activa-

tion changes. Furthermore, a combined acquisition of BOLD and VASO allows researchers to

benefit from cumulative quality metrics of both methods, e.g. a high detection sensitivity (in

BOLD compared to VASO) and a high localization specificity (in VASO compared to BOLD).

VASO has been used to investigate laminar functional responses in visual [51], motor [3,52],

somatosensory [53] and prefrontal [54] cortices.

To date, VASO has not been successfully applied to investigate layer dependent functional

responses in the human auditory cortex. Despite its lower power compared to BOLD [55], the

use of VASO has proven useful outside of auditory cortical areas [3,51–54] and this warrants

the need for developing an effective VASO protocol for auditory neuroimaging. Here, we pres-

ent the results of the exploration of a wide parameter space aimed at mitigating methodological

and physiological challenges encountered when using VASO to image the auditory cortex at

submillimeter resolution. We evaluated functional images collected at 7T using concurrent

measurements of GE-BOLD and VASO. Specifically, we investigated the difference between a

2D- and a 3D-EPI readout and their stability across several participants. The resulting 3D-EPI

protocol was then also tested for stability of responses within an extensive session with one vol-

unteer. Lastly, we present preliminary results for laminar profiles of VASO data, and the use of

VASO for auditory neuroscience applications by characterizing VASO acquisitions of cortical

sound frequency preference (i.e. tonotopic maps).

Materials and methods

Ethics

The scanning procedures were approved by the Ethics Review Committee for Psychology and

Neuroscience (ERCPN) at Maastricht University, following the principles expressed in the

Declaration of Helsinki. Informed consent was obtained from all participants.
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Participants

Participants were healthy volunteers with normal hearing and no history of hearing or neuro-

logical disorders. Participants were excluded if they had any standard MRI contraindications

(e.g. any metal implants etc.).

Eleven healthy volunteers participated in three separate studies. In study 1 (N = 4), we

addressed challenges we encountered in the development of our VASO protocol. In study 2

(N = 5), we evaluated the stability of the protocol with 2D and 3D readouts in four volunteers.

Additionally, in one volunteer we investigated the stability of responses with the 3D-EPI. In

study 3 (N = 2), we applied the resulting 3D protocol for tonotopic mapping as a proof of

principle.

Scanner

Scanning was performed on a MAGNETOM “classic” 7T scanner (Siemens Healthineers)

hosted by Scannexus (Maastricht) equipped with a 32-channel Nova Head Coil (Nova Medical,

Wilmington, MA, USA). Sequences were implemented using the vendor provided IDEA envi-

ronment (VB17A-UHF). We used an in-house developed 3rd order B0-shim system (Scan-

nexus) that depends on the vendor provided "3rdOrder ShimSet" feature.

Auditory stimulation

Sounds were presented to participants in the MRI scanner using MRI compatible ear buds of

Sensimetrics Corporation (www.sens.com).

Slice-saturation slab-inversion VASO

We used a slice-saturation slab-inversion VASO (SS-SI-VASO—[46]) acquisition with either a

3D-EPI [56] or 2D-EPI readout [57]. VASO uses an inversion recovery pulse to effectively null

the contribution from the blood magnetization [39,45]. For all of the tested protocols, the

inversion delay (i.e. the dead time between the inversion pulse and the VASO signal readout

module) was chosen to have the readout block roughly centered around the expected blood

nulling time. In SS-SI-VASO, VASO and BOLD images are acquired in an interleaved fashion,

which allows for a straightforward combination of the two datasets.

Reconstruction

The reconstruction of the data was conducted as described in previous studies for SMS-VASO

[57] and 3D-EPI VASO [58], respectively. In short, the vendor’s in-plane GRAPPA [59] recon-

struction algorithms were applied using a 3 × 2 (read direction x phase direction) kernel. Par-

tial Fourier reconstruction [60] was done with the projection onto convex sets (POCS)

algorithm [61] with 8 iterations. Finally, the complex coil images were combined using the

vendor’s implementation of sum-of-squares.

SMS unaliasing was performed on-line on the scanner using a combination of the vendor

software and the SMS reconstruction as distributed with the MGH blipped-CAIPI C2P (http://

www.nmr.mgh.harvard.edu/software/c2p/sms). SMS signals were first un-aliased with an

implementation of SplitSlice-GRAPPA with LeakBlock [62] and a 3 × 3 SliceGRAPPA kernel

before entering in-plane reconstruction as described above.

The 3D-EPI reconstruction was based on a previous 3D-EPI implementation [56] using a

combination of standard scanner software and a vendor-provided work-in-progress imple-

mentation of GRAPPA CAIPIRINHA (Siemens software identifier: IcePAT WIP 571).
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Study 1: Protocol development in pilot experiments

We aimed at implementing and testing a VASO protocol for the auditory cortex that can mitigate

a series of methodological challenges. The purpose of study 1 was to explore the protocol parame-

ter space of previously described 2D and 3D VASO sequences with respect to temporal signal-to-

noise ratio (tSNR) and minimal artifact level in auditory cortical regions. The protocol resulting

from this study will then be subject to quantitative investigations and validations in a subsequent

study (study 2). Often, results of these pilot experiments are not reported in manuscripts. How-

ever, after encountering several artifacts, we decided to describe the rationale behind the steps we

have taken in our mitigation strategies. This might benefit other researchers that encounter simi-

lar artifacts and can potentially use the same (or similar strategies) to mitigate their own artifacts.

While developing a protocol we encountered several artifacts of a physiological nature and

had to consider different readout strategies. To mitigate physiological noise artifacts, across

several sessions, we explored the effect of using a phase-skipped adiabatic inversion pulse with

B1-independent partial inversion (based on shapes of a TR-FOCI pulse—[64]) and looked at

several readout times (700 ms and 1235 ms) and strategies (2D using multiband and different

GRAPPA reference acquisition schemes, and 3D acquisitions).

During the development stages, we tested the protocols for activation elicited by sound pre-

sentation. We presented pure tones (800 ms) within the inherent 900 ms dead time of the

SS-SI-VASO sequence. The choice of this approach stems from the fact that in auditory fMRI

studies, sounds are generally presented inside the silent gap between volume acquisitions

(sparse design) [63]. However, this approach resulted in weak auditory evoked fMRI responses

in the VASO (and simultaneously acquired BOLD) data. A possible reason for this reduced

effectiveness of the sparse design is the relatively short duration of the gap and sound (900 ms

and 800 ms respectively) compared to the noise of the BOLD/VASO acquisition time (~2.5

seconds depending on the protocol) [64]. Following this rationale, in studies 2 and 3 we con-

tinuously presented auditory stimuli (e.g. the auditory stimulation overlapped with the scanner

noise) and played them loud enough to be audible compared to the scanner noise. This

approach resulted in larger evoked responses (see results study 2 and 3).

Study 2: 2D versus 3D comparison

With the resulting protocol of study 1 (see results for an explanation of why specific parame-

ters were selected), we collected two datasets of both BOLD and VASO (0.9 mm isotropic and

12 slices), one with a 2D readout (TR = 1833.5 ms; TE = 21 ms; flip angle = 70˚; GRAPPA = 3;

reference scan = segmented) and one with a 3D readout (TR = 1609 ms; TE = 22 ms; variable

flip angles between 16˚(first segment of readout block) and 30˚ (last segment of readout

block); GRAPPA = 3; reference scan = FLASH [65]) in four volunteers.

Participants were asked to passively listen to a series of sounds consisting of multi-fre-

quency sweeps. Stimuli were presented following a blocked design with 20 volumes of sound

stimulation followed by 20 volumes of rest. Each run consisted of thirteen stimulation blocks

lasting about 11 minutes. A recording of the stimuli is available here: https://layerfmri.page.

link/aud_stim. In each participant we collected two runs (S1 and S4 Figs) or 3 runs (S2 and S3

Figs) with a 2D readout and a 3D readout.

To further test the reliability of the 3D acquisition protocol (see results for why we opted

for a 3D readout), we scanned one additional volunteer in an extensive session in which we

collected 12 runs with the same block design explained above to measure stability of responses

across independent splits of the data. We opted for scanning this volunteer in one long session,

instead of scanning the same participant twice in two shorter sessions, because alignment

across sessions with our current experimental setup is challenging due to the small coverage.
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Study 3: Tonotopy

Simultaneous BOLD and VASO data were collected using the 3D sequence (after finalizing

study 2) described above (0.9 mm isotropic; 12 slices; TR = 1609 ms; TE = 22 ms; GRAPPA = 3;

reference scan = FLASH), variable flip angles between 16˚ (first segment of readout block) and

30˚ (last segment of readout block). In addition, we collected anatomical data (with optimized

gray/white matter contrast) using MP2RAGE (TR = 6000 ms, TE = 2.39 ms, TI1/TI2 = 800/

2750 ms, FA1/FA2 = 4˚/5˚, GRAPPA = 3 and 256 slices) [66] at a resolution of 0.7 mm

isotropic.

Participants passively listened to tones varying slightly around 7 different center frequencies

(130, 246.2, 466.3, 883.2, 1673, 3168 and 6000 Hz). Center frequencies were presented follow-

ing a blocked design. Stimulation blocks (23 seconds) contained forty-six tones (500 ms each)

varying 0.2 octaves around the center frequency. Each stimulation block was followed by a rest

period (23 seconds). Functional runs consisted of fourteen stimulation blocks with a total

duration of approximately 11 minutes per run. In one participant we collected four runs and

in a second participant five runs. Before each tonotopic experiment tones were equalized for

perceived loudness.

Functional data analysis

Preprocessing in all studies was done in the same way. All functional images were sorted by

contrast, resulting in a (BOLD-contaminated) VASO and a BOLD time series. The first three

volumes of each time series were removed to account for the steady state. Each time series was

motion corrected using SPM12 (Functional Imaging Laboratory, University College London,

UK). The estimation of the motion parameters was restricted to a mask of the temporal lobe.

Next, the time series were temporally upsampled by a factor of 2. This resulted in an interpo-

lated TR of 1.15 seconds in the 3D readout and about 1.3 seconds in the 2D readout. As in pre-

vious studies, we corrected for the BOLD contamination in the VASO data using the open

software suite LayNii (version 2.2.0) [67].

In study 2, activation maps were created using AFNI (3dDeconvolve—version 21.2.04 and

Matlab). We used a General Linear Model and normalized the time course to z-scores (when

comparing 2D versus 3D) and to percent signal change (to test the reliability of the 3D proto-

col). The resulting F-maps portray normalized differences between periods of auditory stimu-

lation and rest. Two-dimensional ROI’s were drawn manually in spatially upsampled EPI

space and were divided in 7 equivolume layers [68] with which layer plots were created using

LayNii.

In study 3, after preprocessing, functional data were first aligned to the anatomical data

using Brainvoyager (version 22.2—Brain Innovation, Maastricht, The Netherlands). Anatomi-

cal images were processed in BrainVoyager (BV). We used an automatic segmentation pipeline

of BV with which we created a mid gray matter surface. For statistical analysis we used a Gen-

eral Linear Model with one predictor for each center frequency. Time series were normalized

to percent signal change prior to statistical analysis. Tonotopic maps were created using best

frequency mapping [69] and were interpolated across depths and projected on the mid gray

matter surface.

Results

Study 1: Protocol development

In study 1, we aimed to mitigate several methodological and physiological challenges that we

encountered while exploring the use of different parameters. In the following section, we will
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discuss the rationale behind the use of specific parameters and how they have helped reduce

the artifacts in our data.

First, compared to other cortical areas, the auditory cortex has an exceptionally short arte-

rial arrival time of approximately 0.5–0.8s (see reference [70], in particular the results reported

in its Fig 7B). This is approximately 1-2s earlier than the primary visual cortex. Such short arte-

rial arrival times can result in the unwanted inflow of fresh (uninverted) blood during the

VASO readout. The inflow effects result in very bright vessels in both the BOLD and the

VASO data. However, the ratio between the background signal and the signal from the vessels

is higher in the BOLD data compared to the VASO data. This results in lower relative contrast

between tissue types in the VASO data compared to the BOLD data (Fig 1A). To mitigate this

challenge, we explored the usage of a phase-skipped adiabatic inversion pulse with B1-inde-

pendent partial inversion (based on shapes of a TR-FOCI pulse—[71]) that minimized these

contaminants at the cost of SNR. Reducing the inversion efficiency by means of the phase

skipped adiabatic inversion pulse can reduce the blood nulling time so that it is shorter than

the arterial arrival time, mitigating inflow artifacts. Depending on the TR, the inversion effi-

ciency and excitation flip angles that are used, the tissue signal can be reduced by about 30%.

Second, we explored the effect of readout time (and its relationship to the cardiac cycle) on

VASO data in the temporal cortex. Initially, we used a readout time of about 1235 ms (in one

participant), which is longer than the cardiac cycle. Such a long readout time resulted in loss of

contrast around Heschl’s gyrus (HG). Therefore, we opted for using a readout time shorter

than the cardiac cycle (700 ms) in subsequent volunteers in all three studies, to mitigate this

artifact. An additional independent component analysis (FSL MELODIC, 30 components) on

the VASO time series (Fig 1B) collected with a readout longer than the cardiac cycle showed

that the component with the largest variance was a typical vascular artifact centered on the

large vessels in the auditory cortex. These two results exemplify the effect of physiological

noise originating from the cardiac cycle after which we decided to shorten the readout time.

These physiological noise artifacts additionally made us consider different readout strate-

gies. High-resolution VASO is commonly used in combination with a 3D signal readout (e.g.

3D-EPI). However, since the auditory cortex, especially the medial portion of HG, is located

right next to large feeding arteries, the partitioned 3D-EPI approach can result in higher sus-

ceptibility to physiological noise. To compare it to a 2D-EPI readout (study 2), the optimiza-

tion of parameters specific to the 2D readout was required. In particular, the location of the

auditory cortex requires large in-plane imaging FOVs, resulting in a large matrix size, and low

bandwidth in the phase encoding direction for submillimeter acquisition protocols. The corre-

spondingly long readout duration makes the acquisition protocol more susceptible to General-

ized Autocalibrating Partially Parallel Acquisitions (GRAPPA) [59] artifacts. To find an

effective protocol we compared the tSNR over 40 volumes resulting from an SS-SI-VASO

acquisition with 2D readout at 0.9 mm isotropic employing different GRAPPA references: sin-

gle-shot, segmented and FLEET [16] with three different flip angles (2, 30 and 90 degrees) (Fig

1C). We calculated the ghost level by taking the ratio of intensity values of a region outside of

the brain and one region centered on the auditory cortex. We expressed this as a percentage

value that can be found in the first row of Fig 1C. The FLEET ACS approach exhibited worse

ghosting compared to single-shot and segmented in our experimental setup. Therefore we

decided to refrain from using FLEET in the following experiments. Since the echo time and

the phase evolution of single-shot GRAPPA reference lines are approximately three times lon-

ger/stronger for single-shot ACS compared to the segmented approach, we expected that using

a segmented approach would mitigate intermittent ghosting across the time series. This is

expected to result in stable tSNR values across protocols and participants. Thus, we decided to
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Fig 1. Overview of the challenges encountered when acquiring VASO data in the auditory cortex. (A) Inflow

effects were found in both GE-BOLD and VASO in temporal regions. However, the VASO signal seemed to be more

affected by the inflow of not-nulled blood. (B) Cardiac pulsation effects reduced image contrast due to long 3D-EPI

readouts. In the functional images, the contrast in our region of interest seemed to be particularly affected. Additional

ICA analysis (left bottom) showed the main components around Heschl’s gyrus. (C) In the presence of physiological

noise, there is a tradeoff in the amount of ghosts and the tSNR when evaluating different GRAPPA auto calibration

signal (ACS) acquisitions. The first row contains the percentage of background signal compared to signal in the

auditory cortex. The second row gives an impression of the ghost level and the third row gives an illustration of the

tSNR. These tests were conducted for the protocol with 2D-SMS readouts. (D) 2D-SMS VASO resulted in T1-weighted

slice-wise intensity differences that were most visible in the middle of the slab. The two axial slices show the intensity

differences between two “consecutive” slices (with the same signal intensity scaling). (E) Schematic depiction of one

TR of the final SS-SI-VASO sequence. An inaudible phase-skipped adiabatic pulse is used in the inherent silent gap of

this sequence. This is followed by the acquisition of a volume of VASO and a volume of BOLD.

https://doi.org/10.1371/journal.pone.0280855.g001
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use the segmented approach for the remainder of the study as this is expected to be the best

compromise between artifact level and tSNR in temporal areas.

Finally, we considered the use of 2D simultaneous multi slice (SMS—also known as multi-

band) [72,73] EPI readouts in VASO in order to ‘freeze’ cardiac-induced vessel pulsation arti-

facts. The use of SMS results in different effective inversion times across slices and in our

investigations this translated to sudden jumps of signal intensity in the VASO data (Fig 1D).

As this complicates the performance of retrospective motion correction and results in spatially

heterogeneous tSNR we did not use SMS in the comparison in study 2.

A schematic depiction of the final protocol is illustrated in Fig 1E (and a complete parame-

ter list is made available here: https://github.com/layerfMRI/Sequence_Github/tree/master/

Auditory). In particular, we used an (inherently) inaudible adiabatic inversion pulse with a 30

degree phase skip, a readout time of 700 ms (which is shorter than the cardiac cycle) and a 70

degree reset-pulse [74] at the end of each acquisition of a VASO-BOLD pair. The purpose of

the reset pulse was to effectively saturate stationary Mz-magnetization of cerebrospinal fluid

(CSF) and gray matter (GM) before the application of the consecutive inversion pulse. At the

blood nulling time in the subsequent TR, this results in a positive Mz-magnetization of CSF

with a magnitude smaller than GM. Having a positive CSF Mz-magnetization in SS-SI-VASO

is in contrast to the negative CSF magnetization in the traditional VASO approach. The sup-

pressed CSF signal (see contrast in Fig 1E) mitigates potential biases of dynamic CSF volume

changes that have previously been reported to impose a source of bias for VASO applications

in the auditory cortex [75]. The effective temporal resolution was 2.3 seconds.

Study 2: 3D-EPI versus 2D-EPI

The presentation of auditory stimuli resulted in reliable responses in the bilateral auditory cor-

tex for VASO (except for participant 2 in the 2D readout acquisition—see Fig 2A) and for

BOLD (S1 Fig). For VASO, the 3D readout resulted in higher z-scores in bilateral auditory cor-

tex, while this benefit was not directly visible in the BOLD data at these resolutions (S1 Fig).

Even though the activation scores in VASO are relatively weak, they are within the expected

regime of sub-millimeter protocols [58]. These results are somewhat consistent with previous

2D vs. 3D comparisons of VASO in the primary motor cortex [76]. Here we extend these find-

ings for the physiological-noise constrained primary auditory cortex.

Average time courses of active voxels calculated in percent signal change are plotted in Fig

2B against our experimental paradigm (yellow bars). These time courses exemplify the nega-

tive percent signal change of VASO following auditory stimulation.

Since the VASO signal is a composite signal from blood-nulled and not-nulled (BOLD)

images, its detection sensitivity is indirectly dependent on the noise level of BOLD too. We

believe the result that VASO benefits from 3D-EPI more strongly than BOLD, is thus mostly

driven by the relatively lower tSNR of blood-nulled images compared to non-nulled BOLD

images.

Cortical depth-dependent responses

Fig 3 shows the layer profiles obtained in 2D regions of interest (ROIs; covering Heschl’s

Gyrus [HG]). In VASO, the signal had a tendency to increase within gray matter. However,

the cortical depth dependent signal also showed a reduction at the pial surface (CSF/GM in

Figs 3 and 4), indicating its reduced sensitivity to macrovasculature. Separate analysis on the

BOLD data using the same ROI definition, showed a monotonic increase in functional activa-

tion towards the cortical surface (S2 Fig) and no decrease on the pial surface. Similar results

were obtained when defining ROIs based on functional activation (response to sounds) in the
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medial anterior part of HG on the left hemisphere (Fig 4 for VASO and S3 Fig for BOLD).

Both the activation maps and the laminar analysis indicate that a 3D readout is beneficial for

collecting VASO data (higher z-scores and increased reliability).

Fig 2. Activation maps and time courses of VASO. (A) Z-scored activation maps overlayed on distortion corrected

mean EPI images (per participant and readout). For our data, using a 3D-EPI readout seems to be beneficial in VASO.

(B) VASO time courses (average coming from active voxels) calculated in percent signal change illustrate the negative

percent signal change when auditory stimuli are presented. Yellow bars indicate the presentation of auditory stimuli.

https://doi.org/10.1371/journal.pone.0280855.g002
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Reliability of responses

To measure the reliability of auditory responses in our 3D acquisition protocol, we collected

12 runs with the 3D acquisition protocol in one volunteer. By analyzing two independent splits

of the data (6 runs each) we evaluated the stability of the responses (Fig 5). Whole brain GLM’s

were computed for each split independently. In Fig 5A, we show the F-maps thresholded at

p<0.05 uncorrected (and a minimum cluster size of 10 voxels) for both splits to illustrate the

spatial reliability of activation maps obtained across splits. The time course of active voxels (in

percent signal change, Fig 5B) demonstrates the expected negative responses upon stimulation.

Compared to Fig 2B, time courses in Fig 5B are less noisy, illustrating the benefit of averaging

over more runs.

To investigate the reliability of laminar responses, we also present the laminar activation

plots for the two independent data splits (Fig 5C) extracted from an ROI (drawn based on

functional activation on an axial slice).

Fig 3. Z-scored cortical depth-dependent activation changes for the 2D- and 3D-EPI VASO data. (A) The

anatomically-informed ROI was drawn on the bias field corrected mean 3D-EPI VASO (example at the left bottom).

The fMRI layer-dependent changes across depths for each participant. (B) Average z-scored layer-dependent

activation changes across participants.

https://doi.org/10.1371/journal.pone.0280855.g003
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Study 3: Tonotopic maps

In study 3, the presentation of pure tones resulted in responses in the bilateral auditory cortex

for both BOLD and VASO. Mid-gray matter anatomical surfaces were created from a WM/

GM segmentation and inflated (Fig 6) to visualize HG (outlined in black) and the planum tem-

porale/polare. The analysis was confined to voxels showing both a positive signal change for

BOLD (at a threshold of p<0.05 uncorrected) and a negative VASO signal change. Tonotopic

maps (Fig 6) show the expected high-low-high frequency gradient along HG in VASO (see e.g.

[77] for a comprehensive discussion on the expected topography of tonotopic maps). The

same gradient is present in the BOLD data (S4 Fig) as shown in previous studies using

GE-BOLD [77].

Discussion

Despite the fact that layer-fMRI VASO can provide valuable information in sub-millimeter

and layer-fMRI applications [3,51–54], it has not been successfully applied in the human audi-

tory cortex. This is in contrast to GE-BOLD, which has been used to image laminar and

Fig 4. Z-scored cortical depth-dependent activation changes for the 2D- and 3D-EPI VASO data. The ROI was

drawn on an axial slice as shown in Fig 3A and was based on functional activation. (A) The fMRI layer-dependent

changes across depths for each participant. (B) Average z-scored layer-dependent activation changes across

participants.

https://doi.org/10.1371/journal.pone.0280855.g004
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columnar responses in the temporal lobe [2,19–21,23]. In this study, we aimed to develop a

VASO protocol for laminar fMRI investigations of the auditory cortices by mitigating method-

ological and physiological challenges.

Starting from a protocol that was previously successfully used [51], the location and vascu-

lar physiology of the auditory cortex resulted in several artifacts. This required us to reconsider

acquisition parameters and approaches that have helped to improve layer-fMRI applications

Fig 5. Stability of responses. (A) F-maps (p<0.05 uncorrected) are displayed on a bias field corrected mean EPI

VASO image. (B) Time courses in percent signal change are displayed against our experimental paradigm, illustrating

the negative signal change upon auditory stimulation (yellow bars). (C) Laminar responses in a functional activation

based ROI for both splits of the data.

https://doi.org/10.1371/journal.pone.0280855.g005
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but whose proof of generalizability across brain areas is still limited. The need to account for

the specific vascular physiology of the auditory cortex, resulted in the use of a readout time

shorter than the cardiac cycle and optimization of the inversion pulse (Fig 1). To evaluate pos-

sible physiological contamination when using the standard 3D readout in VASO, we consid-

ered the use of a 2D readout. To develop an efficient 2D protocol for VASO, we combined

techniques (such as FLEET for GRAPPA reconstruction and SMS acquisition) which are often

used (in auditory neuroscience studies) when collecting submillimeter GE-BOLD data. To our

surprise, while these approaches showed the expected utility in the GE-BOLD data, they did

not result in the expected increase in sensitivity when considering the VASO data (Fig 1).

Study 1 resulted in two protocols (2D and 3D readout) for VASO fMRI in the temporal lobe.

A few words are warranted on the possible influence of CSF volume changes. Assuming the

skull as a container of a fixed volume, increase of one compartment, e.g., CBV, must be com-

pensated by volume decrease in another compartment, e.g., GM or CSF. VASO signal change

is based on the idea that CBV increase is compensated by GM volume decrease only. However,

depending on the brain region stimulated, a small dynamic change in CSF volume in the

range of 0.5% (for neurally-induced tasks) to 10% (for systemic gas-breathing induced hyper-

capnia) has been experimentally observed [75,78]. Such stimulus-dependent variations in CSF

volume could cause an incorrect calculation of CBV changes from the VASO signal change

[75,78,79]. In contrast with to CSF-nulled ACDC VASO [80] and VASO FLAIR [78] tech-

niques, the SS-SI VASO signal changes in this study (with the employment of a 70 deg spin-

reset pulse) reflect a positive CSF z-magnetization. Thus, the CBV change presented here

reflects both components of the CBV change—the CBV increase that is compensated by a GM

volume decrease as well as the CBV increase that is compensated by CSF volume decrease—

with similar weighting.

The comparison of the 2D and 3D protocols resulting from study 1 (study 2) showed an

increased stability and SNR when using the 3D-EPI readout, despite its susceptibility to physi-

ological noise. Note that the benefit for the 3D readout was particularly visible in the VASO

time series (and not the BOLD data). It has been previously shown that the superiority of

2D-SMS or 3D-EPI readout strategies at 7T in conventional BOLD is highly dependent on and

Fig 6. Tonotopic maps VASO. Inflated mid-gray matter surface meshes were created to visualize tonotopic maps

coming from the VASO data. Red boxes outline the part of the mesh from which the tonotopic data was sampled.

Heschl’s gyrus is outlined in black. On the right of each inflated surface, tonotopic maps are displayed for both

hemispheres of the two participants. The expected tonotopic high-low-high frequency preference gradient is respected.

https://doi.org/10.1371/journal.pone.0280855.g006
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specific to the acquisition and analysis details including the TR, acceleration factor, resolution,

physiological noise correction and number of slices [76,81–84]. The BOLD results presented

here are in agreement with this literature (see S1–S3 Figs).

We examined laminar profiles of activation elicited by the sounds presented in study 2.

Similarly to previous studies investigating the specificity of laminar functional responses in

auditory cortex [30] (using 3D-GRASE), we did not observe a clear peak in functional

response in middle cortical depths in the 2D versus 3D comparison. Firstly, this could be due

to limited power for the data reported in Figs 3 and 4 (2 or 3 runs depending on the volunteer).

A larger data sample (6 runs) resulted in reproducible (across independent splits) laminar pro-

files with a more pronounced peak in middle gray matter (Fig 5C). Nevertheless the variability

in laminar profiles we observed in study 2 could also be caused by the nature of the stimulation

and analysis steps. As the auditory stimuli in study 2 were composed of complex dynamic

sounds presented for about 20 seconds, it is unclear what the expected neural laminar profile

would be in absence of any control for attention or another task. Second, we defined regions of

interest for the laminar profiles based on macro-anatomy (anterior HG) or activation. The

effect that this has on sampling the laminar activation profiles in auditory regions, whose

cytoarchitecture overlaps only partly with macro-anatomical features (see e.g. [85]), is beyond

the scope of this paper but could be an interesting venue for future investigations. What we

did observe was that while the signal in the upper layers has the tendency to be larger than in

middle and deeper layers, the signal decreases again at the pial surfaces. This is expected due to

VASO’s insensitivity to large pial veins. As expected, GE-BOLD data resulted in an increased

response towards superficial layers (S2 and S3 Figs) without a reduction on the pial surface.

This profile is characteristic of GE-BOLD submillimeter acquisitions and is resulting from vas-

cular draining and the contribution of large vessels on the cortical surface. If confirmed when

analyzing a larger sample, a more controlled stimulus design, and within a more extended por-

tion of temporal areas, the fact that vein-free VASO signal changes [49] within GM decrease as

a function of cortical depth, could be interpreted as a validation of previous BOLD results (e.g.

indicating that the signal trends visible in the BOLD signal in temporal areas cannot be solely

explained by draining vein effects alone). It is important to note that while we here demon-

strate that VASO auditory responses are not affected by draining and large vascular contribu-

tions on the cortical surface, we do not imply that in presence of careful controls [4,5,30] or

with the use of modeling techniques [24,25] GE-BOLD data cannot be used to investigate lam-

inar cortical processing.

To assess the reliability of functional responses collected with our 3D VASO protocol, we

measured functional responses in an extended session in one additional volunteer. The result-

ing data were split into two independent sessions (6 runs each). F-maps, time courses and lam-

inar profiles obtained from the two independent splits indicate that the acquisition (with our

3D VASO protocol) of functional responses in auditory cortical regions is spatially reliable and

results in stable temporal responses (with an expected negative response upon stimulation)

and reproducible laminar profiles.

With the resulting 3D protocol, as a first proof of concept of the usability of VASO fMRI

for the investigation of cortical processing in the temporal lobe, we presented results from a

tonotopic experiment. Neurons throughout the auditory pathway display preferential tuning

to the sound frequency [86] and using fMRI the topographic arrangement of frequency prefer-

ence (tonotopy) can be mapped in single individuals [19,69,77,87]. Tonotopy shows a typical

topography with a low frequency region residing primarily on the HG and regions preferring

high frequency bordering it both posterior medially and anterior laterally (for a description

see [77]). This characteristic topography makes tonotopy a possible benchmark for auditory

functional acquisitions. The large scale tonotopic gradient covering the superior temporal
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plane was visible in the VASO data. This initial promising result opens the venue to further

investigations on the specificity of the VASO signal across cortical depths [30].

Despite the shown applicability of VASO for auditory fMRI, we deem it necessary to outline

some limitations (many not specific to auditory studies) that require consideration when set-

ting up a neuroscientific (laminar) fMRI study. While VASO is more sensitive to microvascu-

lar CBV increases, it is also characterized by a reduced detection sensitivity (as indicated by

generally lower z-scores in Figs 2–4 than in S1–S3 Figs). To compensate for this effect a typical

approach is to average across runs. As a result, extending averaging across sessions would

require careful consideration of approaches for inter session alignment (and placement) of the

relatively small slab (12 slices in our case). Future investigations may have to address issues

related to detection sensitivity and its dependence on experimental design and sound presenta-

tion schemes. In addition, when using VASO, functional runs are typically acquired with an

identical design as averaging is performed on the raw time series before BOLD correction to

limit noise amplification. This calls for careful balancing of conditions within functional runs.

To increase sensitivity we also employed long stimulation periods (block design). Evaluating

the sensitivity of event-related functional responses with VASO [88] would increase its usabil-

ity (e.g. to prediction-error related responses in typical oddball designs). Moreover, alternative

approaches for increasing sensitivity such as denoising (e.g. NORDIC—[89]), should be con-

sidered in future investigations. Finally, while to compensate for physiological noise effects we

decided to use a readout train shorter than the cardiac cycle, in the future it may be interesting

to consider higher order physiological noise correction methods in k-space.

We believe that the significance of this work is multi-fold. In study 1, we describe the

approach we followed to tackle the main challenges encountered when using VASO for sub-

millimeter auditory investigations. Following these steps may prove useful in case the resulting

protocol we describe here would not generalize outside of the specific applications (as well as

coils and imaging resolutions) we present. Nevertheless, we believe our results represent a first

necessary step towards generalization as the protocol resulting from study 2 is made available

for the user base of application-focused neuroscientists for testing in a wider range of applica-

tion settings. The sequence binaries and the importable protocols are publicly available via

‘SIEMENS’ sequence ‘app-store’ on TEAMPLAY for any users of a ‘classical’ MAGNETOM

7T, which is the most widely used 7T scanner version around the world today. Users of other

scanner versions and vendors can benefit from this protocol-development study as they can

re-implement the acquisition approaches as described in study 1.

A first step towards a generally applicable VASO protocol for auditory neuroscientific stud-

ies is furthermore relevant as VASO may allow application studies that are not straightfor-

wardly addressable with the vein-bias of conventional GE-BOLD, such as single-task

condition experiments. In such experiments, utilizing VASO protocols (such as the one we

developed) alongside with BOLD can be useful to augment the understanding of the neurovas-

cular origin of the fMRI signals. Other example studies, where acquiring VASO and GE-BOLD

simultaneously may be beneficial, might be related to research questions of altered vascular

baseline physiology (e.g. in studies about pharmacological interventions, aging and surgical

interventions). Furthermore, we think that the concomitantly acquired VASO and BOLD data

can be useful to calibrate existing layer-fMRI BOLD models [14,24,25,90–93] and extend their

applicability across brain areas. For example, future GE-BOLD studies that want to apply

venous-deconvolution model-inversion and may not find an increased response in the middle

layers, can use the data we present here to increase the confidence in their results. The imaging

protocol developed here may have implications beyond the auditory cortex. The auditory cor-

tex is not the only brain area challenged by proximal macro-vessels with substantial physiolog-

ical noise. There are many other brain areas in which sub-millimeter VASO was not
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successfully applied until now, for example, hippocampus, insular cortex, claustrum, entorhi-

nal cortex, and thalamic nuclei. Researchers investigating areas with similar artifacts could test

whether following similar strategies might benefit them in these challenging areas. Finally, the

main aim of this work was to provide the auditory research community with a viable VASO

protocol for laminar fMRI studies, which is now available for testing by the community.

To conclude, our results demonstrate that, when using carefully chosen parameters, VASO

can be used to investigate cortical responses in the bilateral temporal cortex. While VASO has

a lower detection threshold compared to GE-BOLD, it is believed to be dominated by micro-

vascular CBV increase close to the site of neural activity changes. A combined acquisition

approach of BOLD and VASO, as described here, may allow benefitting from the quality fea-

tures of each method.

Supporting information

S1 Fig. Activation maps of BOLD. Z-scored activation maps overlayed on distortion cor-

rected mean GE-BOLD EPI images (per participant and readout). The color map was chosen

to match the VASO data displayed in Fig 2A.

(TIF)

S2 Fig. Z-scored cortical depth-dependent activation changes for the 2D- and 3D-EPI

BOLD data. (A) Functional layer-dependent changes across depths for each participant. The

BOLD data is coming from the same anatomically-based ROI that was used to calculate the

layer-dependent VASO changes in Fig 3. (B) Average z-scored layer-dependent activation

changes across participants.

(TIF)

S3 Fig. Z-scored cortical depth-dependent activation changes for the 2D- and 3D-EPI

BOLD data. (A) Functional layer-dependent changes across depths for each participant. The

BOLD data is coming from the same functional activation-based ROI that was used to calcu-

late the layer-dependent VASO changes in Fig 4, drawn on an axial slice as shown in Fig 3. (B)

Average z-scored layer-dependent activation changes across participants.

(TIF)

S4 Fig. Tonotopic maps BOLD. Inflated mid-gray matter surface meshes were created to visual-

ize tonotopic maps created with the BOLD data. On the right of each inflated surface, tonotopic

maps are displayed for both hemispheres of the two participants. Heschl’s Gyrus is outlined in

black. A tonotopic high-low-high frequency preference gradient is visible in the data.

(TIF)
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