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Abstract

In power fingerprint identification, feature information is insufficient when using a single fea-

ture to identify equipment, and small load data of specific customers, difficult to meet the

refined equipment classification needs. A power fingerprint identification based on the

improved voltage-current(V-I) trajectory with color encoding and transferred CBAM-

ResNet34 is proposed. First, the current, instantaneous power, and trajectory momentum

information are added to the original V-I trajectory image using color coding to obtain a color

V-I trajectory image. Then, the ResNet34 model was pre-trained using the ImageNet data-

set and a new fully-connected layer meeting the device classification goal was used to

replace the fully-connected layer of ResNet34. The Convolutional Block Attention Module

(CBAM) was added to each residual structure module of ResNet34. Finally, Class-Balanced

(CB) loss is introduced to reweight the Softmax cross-entropy (SM-CE) loss function to

solve the problem of data imbalance in V-I trajectory identification. All parameters are

retrained to extract features from the color V-I trajectory images for device classification.

The experimental results on the imbalanced PLAID dataset verify that the method in this

paper has better classification capability in small sample imbalanced datasets. The experi-

mental results show that the method effectively improves the identification accuracy by

4.4% and reduces the training time of the model by 14 minutes compared with the existing

methods, which meets the accuracy requirements of fine-grained power fingerprint

identification.

1 Introduction

Residential household customers’ electricity consumption continues to rise, and improving

residential electricity consumption is of great significance to improving the efficiency of elec-

trical energy utilization [1]. Providing residents with fine-grained energy usage information

through Non-Intrusive load decomposition (NILD) has become an important way to effec-

tively reduce energy waste [2]. NILD analyzes the operating status of each appliance from the
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total load data of residential customers which can guide customers to improve their appliance

usage habits and reduce household electricity consumption [3–5]. At the same time, it helps

the grid to build a more accurate model of household electricity consumption, enabling moni-

toring, control, management, and friendly interaction with electricity-using devices [6].

Power fingerprint identification is a hot issue in the field of Non-intrusive load monitoring

(NILM), which relies on power fingerprint features and classifiers to identify different types of

devices. Common power fingerprint characteristics typically include voltage, current, harmon-

ics, power, V-I trajectory, etc [7–9]. The V-I trajectory, as the most common power fingerprint

feature, represents the voltage and current waveforms of appliances in the image and has been

successfully applied to load identification with good results. In [10], the voltage and current

sampling data were plotted as two-dimensional V-I trajectories and then mapped to binary

gray images using a normalization method. Reference [11] used V-I trajectory features simpli-

fied by elliptic Fourier descriptors, and the classification algorithm was a random forest. Refer-

ence [12] used the gramian matrix(GM) color encoding method to construct load markers

with color-differentiated load signatures. In [13], a backpropagation (BP) neural network and

a convolutional neural network (CNN) are used to extract and fuse the features of the load

power and V-I trajectories, respectively. Fused composite features were introduced into the

classifier to complete load identification. Reference [14] color-coded the V-I traces to synthe-

size other load characteristics, but the transient power characteristics are missing and the

traces do not reflect the transient characteristics of the device. Research on classification mod-

els based on V-I trajectory features is becoming increasingly mature, but the following prob-

lems still exist: The original V-I trajectory can only convey trajectory shape information, but

cannot reflect other information such as the power of the appliance. Moreover, due to the sim-

ilarity between different kinds of appliances and working principles, the existing models can-

not fully extract the V-I trajectory feature information. Therefore, there is still room for

further improvement in the accuracy of its load identification.

Nowadays, scientists and researchers used machine learning (ML) and deep learning (DL)

models in several applications including agriculture [15, 16], environment [17–20], and power

fingerprint identification. Machine learning is often applied to feature extraction and classifi-

cation of power fingerprints, such as k-nearest neighbors, support vector machines, decision

trees, and random forests. These methods are less computationally intensive, but the identifi-

cation correct rate is lower. Recently, deep learning has achieved good results in the field of

power fingerprint identification, such as CNN, RNN, etc. Meanwhile, researchers propose to

construct V-I trajectory images with the help of color coding methods to convert power finger-

print identification into an image classification task in which deep learning excels. However,

compared to machine learning, deep learning-based classifiers rely on large-scale training data

and longer training time, which limits the application of deep learning.

For V-I trajectory classification, the small amount of load data for specific user results in a

poorly trained model with low accuracy or low generalization capability [21]. NILD does not

have sufficient computational resources to retrain a complex load appliance identification

model, which is costly and time-consuming. Training the model requires a large amount of

labeled data, which is difficult to achieve in reality. In recent years, transfer learning has been

widely used to overcome the limitations of traditional machine learning. Transfer learning

does not require the same distribution assumptions for training and test data as traditional

machine learning. This avoids the labor and material costs of relabeling the acquired data in

traditional machine learning [22]. The main idea of transfer learning is to use the knowledge

from the existing source domain and then transfer it to the target domain to complete its clas-

sification. Reference [23] introduced transfer learning to NILD and achieved good results for

appliance transfer for the same dataset and cross-domain migration for different datasets.
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Reference [24] used the AlexNet network for the load identification of V-I trajectory images

and improved the accuracy of load identification using transfer learning. Reference [25] follow

the pretraining to reduce the computation in modeling training, and enhance the transferabil-

ity of the model. V-I trajectories as a load feature that can be converted to image representation

are promising for use in load identification in NILD domains.

In addition, there is a class imbalance in the NILM dataset, which can have an impact on

the classification performance of the classifier. When the classifier is more biased toward

majority class samples, then the identification accuracy of minority samples decreases and the

model lacks generalization [26]. Usually, simple methods such as oversampling and undersam-

pling are often used to solve the problem of training unbalanced datasets [27]. However, the

oversampling methods for minority classes change the distribution characteristics of the

minority class samples [28]. The undersampling method for the majority class loses valuable

information about the minority class samples [29]. The above-mentioned methods are difficult

to deal with the data imbalance of the V-I trajectory image samples. Reference [30] used a data

balancing method based on PixelCNN++ and sample information entropy and used it for V-I

trajectories. However, PixelCNN++ has disadvantages such as random generation of wrong

images and long training time. Re-weighting [31] is a method that assigns different weights to

different classes during the training process. It not only improves the learning ability of the

model for a few classes but also reduces the learning ability of the model for most classes.

To solve these problems, this paper proposes a power fingerprint identification based on

the improved V-I trajectory with color encoding and transferred CBAM-ResNet34. Experi-

mental results on the PLAID [32] dataset show that the method in this paper improves the

accuracy of power fingerprint identification to over 97% compared to other methods. Overall,

our main contributions are as follows:

1. Use color encoding to add more feature information to the V-I trajectory and improve the

identification of similar electrical appliances. It solves the problem of insufficient feature

information in single feature recognition devices.

2. The transferred CBAM-ResNet34 model was constructed to fully extract V-I features and

was applied to small samples of V-I trajectory samples. The CBAM and model transferred

methods effectively improve the extraction capability of V-I trajectories and sufficiently

reduce the training time of the model.

3. For the first time, image-level CB loss is introduced to reweight the loss function to obtain

better V-I trajectory identification in unbalanced datasets.

The remainder of this study is organized into the following sections: The second part out-

lines the overall power fingerprint identification process and introduces the method of acquir-

ing color V-I trajectory. Section 3 explains the construction and improvement process of the

proposed model. The validity of the method is verified by the PLAID dataset in Sections 4 and

5. The last section summarizes the work of this paper.

2 Materials and methods

2.1 The power fingerprint identification process

The power fingerprint identification process includes data acquisition, data pre-processing,

feature extraction, and load identification. The specific process of power fingerprint identifica-

tion in this study is shown in Fig 1. First, collect high-frequency voltage and current data of

the appliance and extract the original V-I trajectory of the appliance from the voltage and cur-

rent data. Then, the construction of color V-I trajectory images using color coding. Finally, the
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color V-I trajectory images are fed into the transferred CBAM-ResNet34 for training. The

SoftMax layer classifies the new appliance categories and completes the power fingerprint

identification.

2.2 Raw data analysis

The primary function of data acquisition is to sample and store the voltage and current wave-

forms of various household appliances, including (fridges, air conditioners, fans, microwave

Fig 1. The process structure of power fingerprint identification.

https://doi.org/10.1371/journal.pone.0281482.g001
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ovens, etc.) using a collection system [32]. The collection system is usually composed of a cur-

rent clamp, voltage probe, and high-frequency oscilloscope. The sampling data for the fridge

model during the steady-state operation is shown in Fig 2. Therefore, the data are mainly inter-

cepted when the equipment is in steady-state and transient-state operation for feature extrac-

tion and energy use analysis.

Fig 2. One instance of a fridge in PLAID. (a)The instantaneous voltage of the Fridge over 1 s. (b)The instantaneous current of the Fridge over 1

s. (c)The instantaneous power of the Fridge over 1 s.

https://doi.org/10.1371/journal.pone.0281482.g002
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2.3 Construction of color V-I trajectory images based on color coding

The original V-I trajectory image is a single-channel, two-dimensional pixel matrix. Much

valuable information is lost in the original V-I trajectory images. In this section, the original

V-I trajectory image is combined with the color coding technique to construct a unique power

fingerprint label.

First, The V-I traces of different cycles vary slightly due to load fluctuations or noise. When

only one waveform cycle is used, this phenomenon inevitably leads to misclassification [24].

Therefore, in this paper, multiple cycles of data are extracted to plot V-I traces to accommo-

date the dynamic changes in the load.

Then, considering that pixel discontinuity may occur in the mapping process of V-I trajec-

tory images, it is not conducive to subsequent load identification. For this purpose, the tradi-

tional mapping method is improved using a bilinear interpolation technique in Fig 3. The

specific steps of the bilinear interpolation technique are as follows:

Dk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vkþ1 � vk
Dv

� �2

þ
ikþ1 � ik
Di

� �2
s

> 1 ð1Þ

v0kþt ¼ vk þ
vkþ1 � vk
Tk þ 1

t ð2Þ

i0kþt ¼ ik þ
ikþ1 � ik
Tk þ 1

t ð3Þ

where vk and ik represent the kth data point of v and i respectively. Tk = floor(Dk) is the num-

ber of interpolation points to be added between the kth and (k+1)th sampling points, floor(�)

represents rounding down. v0kþt; i
0
kþt

� �
is the tth interpolation point of the fill t = 1,2,� � �,Tm.

Fig 3. The binary V- I trajectory mapping for a fluorescent lamp(N = 32). (a) Linear interpolation. (b) Bilinear interpolation.

https://doi.org/10.1371/journal.pone.0281482.g003
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Finally, To cover the load identification information as much as possible with its character-

istic parameters, the current, instantaneous power, and trajectory momentum information are

added to the original V-I trajectory image using color coding to obtain a color V-I trajectory

image in the RGB color space. Each channel corresponds to a two-dimensional matrix, and

each matrix element can vary continuously from zero to one. V-I trajectories were plotted for

11 categories of electrical equipment randomly selected from the PLAID dataset as shown in

Fig 4. The specific steps of the color encoding method are as follows.

• Red channel: The shape of the V-I trajectory depends heavily on the load current that reflects

the physical characteristics of the device. The average current of the device during stable

operation is populated in the R channel, aiming to extract a more stable V-I trajectory and

ensure the classification effect.

R mð Þ ¼

$
im � imin

imax � imin
� N

%

;

$
vm � vmin

vmax � vmin
� N

% !

ð4Þ

Fig 4. Color V-I trajectory images of 11 types of appliance loads in the PLAID dataset (N = 32).

https://doi.org/10.1371/journal.pone.0281482.g004
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Where imax, imin are the maximum and minimum values of the current sampling values,

respectively; vmax, vmin are the maximum and minimum values of the voltage sampling

value, respectively; b c represents rounding down.

• Green channel: The V-I trajectory characteristics in the transient state are somewhat differ-

ent from those after the stable operation. Therefore, in this paper, the average instantaneous

power of the device in the transient state is filled in the G channel. The transient V-I trajec-

tory characteristics are also an important characteristic for different loads.

G mð Þ ¼
1

K
PK

1
Wk ð5Þ

Where K represents the number of cycles of the load in the transient state. Wk represents the

corresponding pixel value in the V-I trajectory feature at the kth instantaneous state point

value.

• Blue channel: the rate of change of voltage and current during the stabilization cycle varies

from device to device. V-I trajectory has a loop direction, reflecting the phase relationship

between current and voltage. To capture the motion information the of V-I trajectory, the

blue channel is plotted by the voltage and current of the appliance for continuous 20 cycles

in steady-state operation.

B mð Þ ¼
arg vmþ1 � vm

vmax
;
imþ1 � im
imax

� �

2p � 20
;m ¼ 1; 2; 3 � � � ;M ð6Þ

The above color coding steps fused the Red, Green, and Blue channels to obtain the corre-

sponding color V-I trajectory images in RGB spaces. Color encoding increases the unique-

ness of the V-I trajectory and provides better identification.

3 Power fingerprint identification based on transferred

CBAM-ResNet34

3.1 CBAM-ResNet34 model

The ResNet model effectively mitigates degradation and gradient disappearance during model

training by stacking the residual structures [33]. Networks with fewer layers lack certain fea-

ture representation capabilities. On the other hand, the increase in the number of network lay-

ers is accompanied by an increase in the number of parameters and computations, which

makes the network training slower. However, the residual structure in the ResNet34 neural

network has a limited ability to extract V-I trajectory features and cannot ignore irrelevant

information in the model training. By applying spatial attention and channel attention, the

CBAM module can amplify the weights of effective channels in the feature layer. This enhances

the feature representation of V-I trajectories and improves their saliency, laying the foundation

for accurate classification of subsequent load recognition.

The CBAM module represents the attention mechanism module of the convolutional mod-

ule, which is an attention mechanism module that combines spatial and channel [34]. Com-

pared to senet, which only focuses on channels, CBAMs achieve better results. They save

parameters and computational power and can be integrated into existing networks as plug-

and-play modules.

The details of the channel attention module (CAM) and spatial attention module (SAM)

are shown in Fig 5. The CAM focuses more on the more critical parts of the image and ignores
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extraneous information. First, the input features are processed in parallel by averaging pooling

and maximum pooling. Subsequently, the multilayer perceptron (MLP) forwards both types of

data with a hidden layer. Finally, the output features are merged by element summation.

The CAM can be expressed as follows.

McðFÞ ¼ s MLP AvgPoolðFÞð Þ þMLP MaxPoolðFÞð Þð Þ

¼ s W1 W0ðF
c
avgÞ

� �
þW1

�
W0ðF

c
maxÞ
�� � ð7Þ

where W0 and W1 are learnable weights and σ is an S-shaped function.

SAM is a complement to CAM and its main purpose is to discover the most meaningful

information after CAM processing. First, the input features are processed serially through the

mean and maximum pools. This information is then forwarded by the convolutional layer.

The final mathematical representation is as follows.

MsðFÞ ¼ s
�
f
�
AvgPoolðFÞ;MaxPoolðFÞ½ �

��
ð8Þ

where f denotes the convolution operation.

In this paper, the position of CBAM is added to each residual block to reduce the influence

of redundant features with the help of an attention mechanism and improve the accuracy and

timeliness of subsequent recognition. As in Fig 6(a) and 6(b), the activation function of ReLU

was used before each weighting layer. After extracting the CNN, the CBAM layer extracts the

most critical information through the channel and spatial dimensions. The attention mecha-

nism is more likely to learn effective features in shallow networks, and the improvement effect

Fig 5. The structure of the Convolutional Block Attention Module (CBAM) model.

https://doi.org/10.1371/journal.pone.0281482.g005
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of the attention mechanism module on the performance of deeper networks is less obvious,

and it is difficult for the attention mechanism to learn effective features.

3.2 Model transfer method

The ResNet model was initially designed to identify the ImageNet datasets. However, the

learned high-level abstract features can still be used to assist in identifying the V-I trajectories

of different types of appliances. We used a model-transferring method and added the CBAM

attention module for the ResNet networks, as shown in Fig 7. The specific training steps were

as follows:

• The ResNet34 neural network was pre-trained using the ImageNet dataset, and all layers

except the last fully connected layer were extracted from the pre-trained ResNet34.

• The Simple Attention module of CBAM was introduced, which was added to each residual

structure module of ResNet34. The last full connection layer was replaced with a new one,

and the layers were transferred to the new electrical equipment identification task.

• Input color V-I trajectory image. The color V-I trajectory image size was adjusted to the

same size as the input neuron of ResNet34.

• Output the categories of the electric loads. The new full connection layer is adjusted to the

same number of electrical equipment identification categories.

• All the parameters are retained until the termination condition is satisfied.

Fig 6. (a)The ResNet network residual structure. (b)The structure of the CBAM-ResNet model.

https://doi.org/10.1371/journal.pone.0281482.g006
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3.3 Class-balanced loss

In power fingerprint identification, data set imbalance is another issue of concern. The usage

frequency of household appliances varies greatly, which is reflected in the data set as a signifi-

cant variation in the sample sizes of different categories. To solve this problem, it is usually

necessary to expand some samples so that the number in different categories is the same. The

class-balanced loss is an image-level class-balanced loss function that can be implemented by

inverse weighting the loss function by the number of effective classes.

Therefore, to improve the identification accuracy of color V-I trajectory images, we rebal-

ance the loss by weighting the loss function using the number of valid samples per class to

improve the loss. A weighting factor is introduced in the class-balanced loss [35]. We apply it

to softmax cross-entropy loss as follows:

Assume that the predicted output of the model for all classes is z = [z1, z2, � � � zc]T, where C

is the total number of classes. The softmax function treats each class as mutually exclusive and

calculates the probability distribution of all classes as

pi ¼
expðziÞ

XC

j¼1
expðzjÞ

; 8i 2 1; 2; . . . ;Cf g ð9Þ

Given a sample with the class label y, the SM-CE loss for this sample is written as:

CE z; yð Þ ¼ � log
expðzyÞ

XC

j¼1
expðzjÞ

0

@

1

A ð10Þ

Suppose the class y has ny training samples, the class-balanced SM-CE loss is:

CB z; yð Þ ¼ �
1 � b

1 � b
ny log

expðzyÞ
XC

j¼1
expðzjÞ

0

@

1

A ð11Þ

The class-balanced cross-entropy loss uses a balancing factor ω to increase the weight of

minority samples in the target loss and decrease the weight of majority samples in the target

Fig 7. The experimental scheme of model transferring.

https://doi.org/10.1371/journal.pone.0281482.g007
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loss, which makes the classifier focus more on the features of minority categories in training,

thus improving the category imbalance problem in the dataset and increasing the accuracy of

recognition.

The 2 appliances in the PLAID dataset, Microwave (majority class) and Washing (minority

class), have different sample sizes as shown in Fig 8. The model trained based on these samples

is biased towards the majority sample (black solid line). The class balancing loss (Cbloss) is

introduced to reweight the loss by reversing the effective number of samples. The generaliza-

tion performance of the model can be improved when trained with the proposed class balance

loss (blue dashed line).

4 Experiments

4.1 Dataset selection

In the actual example, Python 3.8 and Pytorch 1.3.0 deep learning frameworks are used in the

actual arithmetic example. The hardware platform was GeForceRTX3090, and the software

Fig 8. The schematic diagram of the reweighted optimal classifier model.

https://doi.org/10.1371/journal.pone.0281482.g008

Table 1. The PLIAD dataset of appliance types and instance statistics.

Appliance Type Appliances Instances

Air Conditioner 21 208

Compact Fluorescent Lamp 40 220

Fan 30 210

Fridge 30 90

Hairdryer 37 248

Heater 13 85

Incandescent Light Bulb 30 148

Laptop 41 207

Microwave 37 229

Vacuum 15 73

Washing Machine 18 75

Total 312 1793

https://doi.org/10.1371/journal.pone.0281482.t001
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platform was Linux OS Ubuntu 18.04. Hardware acceleration using GPUs when training deep

learning models. The proposed load identification method was tested using the PLAID dataset.

The dataset recorded 1793 sets of voltage and current data of 312 appliance loads in 11 catego-

ries from 55 households at a sampling frequency of 30 kHz [32]. The number of class samples

and examples of the 11 classes of appliance loads are listed in Table 1. 20% of the data were

randomly selected as the test set, and 80% were selected as the training set.

4.2 Parameter optimization

The number of iterations and pixels of the color V-I trajectory image was optimized to obtain

the best parameters for load identification. When analyzing the influence of one parameter on

the identification result, the other parameter was fixed. After determining the input and output

of the model transfer, the new network model was trained until the termination condition was

reached. The cross-entropy function was chosen as the minimum loss function, and the opti-

mizer was chosen as Adam. The initial learning rate was configured as 1 × 10−4 to reduce the

learning rate of the transferred layer. Meanwhile, the learning rate of the new fully connected

layer was increased to 1 × 10−3.

To quantitatively analyze the effect of the number of iterations on the method, the variation

curves of the identification accuracy and loss value with the number of iterations during a spe-

cific test were plotted, as shown in Fig 9. The number of iterations for the entire test was set as

300. It can be seen that as the number of iterations increases, the identification accuracy

increases rapidly, and the loss value decreases. When the number of iterations reaches 200,

both the loss value and the identification accuracy stabilize, and the classification performance

of the method no longer changes significantly. Based on the above analysis, the number of iter-

ations was set to 200, and a more satisfactory identification result could be obtained in a rela-

tively short period.

Fig 10 shows the training process of the CBAM-ResNet34 model and the transferred

CBAM-ResNet34 model that was used to validate the feasibility and effectiveness of the model

transferring method. It can be seen that the convergence rate of the transferred CBAM-Res-

Net34 model is faster than that of the CBAM-ResNet34 model. The pre-trained model main-

tains a high accuracy at the beginning of training. When the number of iterations reaches

around 10, the identification accuracy exceeds 90% and increases slowly in subsequent train-

ing. The method of model transferring improves the training speed and accuracy of power fin-

gerprint identification while retaining prior knowledge, as the abstract feature extraction

capability of the pre-trained model can be shared across image identification.

A box plot of the load identification accuracy at different resolutions is shown in Fig 11 to

select the appropriate pixel size for the color V-I trajectory image. It can be seen that the overall

identification accuracy of load recognition is best when the resolution N of the color V-I tra-

jectory image is 128. However, with increasing image resolution, N, the identification accuracy

gradually decreased. When the image resolution is small, the color V-I trajectory image is not

clear enough, and there is insufficient information about the features. When the resolution of

the image is increased to a specific range, more feature information is contained, and CBAM--

ResNet34 can extract the feature information. In addition, an image resolution that is too high

can also increase the effect of random noise and perturbations, resulting in sharp color V-I tra-

jectory images that are not conducive to subsequent feature extraction. This causes the accu-

racy of the load identification to decrease rather than increase. Given this, the resolution N of

the color V-I image was set to 128.
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5 Result and discussion

5.1 Evaluation metrics

To analyze the classification results of this method more comprehensively rather than simply

using classification accuracy for judgment, a confusion matrix [36, 37] is adopted as the evalu-

ation standard for the classification results. The confusion matrix of each comparison classifi-

cation result through visual analysis of the data is shown in Fig 12. The numbers in the graph

represent the current sample size, and the percentages represent the current sample size as a

percentage of the total sample size. The evaluation index Pre represents the precision (shown as

a green percentage in the last column in Fig 12). The evaluation index Rre represents the recall

(shown as a green percentage in the last row in Fig 12). Fscore represents a reconciled average

assessment indicator for precision and recall. These are calculated as follows [38, 39]:

Pre ¼
Tp

Tp þ Fp
ð12Þ

Fig 9. The comparison of several iterations.

https://doi.org/10.1371/journal.pone.0281482.g009
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Rre ¼
Tp

Tp þ FN
ð13Þ

Fscore ¼
2PreRre

Pre þ Rre
ð14Þ

where Tp means that the actual values are valid and classified as positive, Fp means that the real

value is false and is classified as positive, and FN means that the actual values are valid and

unfavorable.

5.2 The performance of V-I trajectory with color encoding and CBAM

Fig 12(a) and 12(b) show that when color V-I trajectory images were used for load identifica-

tion simultaneously, the accuracy rate before the model transfer was only 94.4%. In

Fig 10. The training and validation accuracy of CBAM-ResNet34 and transferred CBAM-ResNet34 models are illustrated for comparison.

https://doi.org/10.1371/journal.pone.0281482.g010
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comparison, the accuracy rate after the model transfer was as high as 97.5%. The strategy of

model transfer is to realize the transfer from the multi-classification of large datasets in the

source domain (such as the ImageNet dataset) to specific learning tasks in the target domain

by adjusting and optimizing the structure and parameters of the pre-trained model. Applying

the underlying features learned by ResNet34 on large datasets to the V-I trajectory image clas-

sification problem reduces the complexity of the model optimization. This enables the network

to perform well even in small sample datasets, improving the accuracy of load identification

and reducing the training time.

As shown in Fig 13, the F-scores of the air conditioner, washing machine, and heater are

lower than Fmacro (the average of all F-scores of appliance loads). The fridge, air conditioner,

and washing machine are multi-state appliances with limited working modes [40]. For exam-

ple, air conditioners have a variety of working conditions, such as heating and ventilation

Fig 11. The selection of parameter N.

https://doi.org/10.1371/journal.pone.0281482.g011
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Fig 12. The confusion matrix for appliance loads of the PLAID dataset. (a) Confusion matrix based on color V-I trajectory image before model

transfer. (b) Confusion matrix based on color V-I trajectory image after model transfer.

https://doi.org/10.1371/journal.pone.0281482.g012

Fig 13. The F-score (%) for appliance loads of the PLAID dataset.

https://doi.org/10.1371/journal.pone.0281482.g013
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modes, which are easily confused with hairdryers and heating machines. The fridge has a cool-

ing fan and compressor motor, easily be confused with washing machines and fans. Because

these appliances switch between multiple operating modes, their electrical characteristics are

complex, making load identification more difficult.

To verify the effectiveness of the CBAM module, the classification results of transferred

ResNet34 and transferred ResNet34-CBAM are compared on the PLAID dataset. It can be

found that the transferred ResNet34 CBAM has better results than the transferred ResNet34 in

all five evaluation metrics as shown in Fig 14. The transferred ResNet model with the CBAM

module can better classify the images of V-I trajectories formed by 11 different classes of elec-

trical devices compared to the model without CBAM.

Fig 14. The evaluated metrics between transferred ResNet34 models with and without CBAM.

https://doi.org/10.1371/journal.pone.0281482.g014
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5.3 Performance comparison of different models

Different models differ in their accuracy of power fingerprint identification. To further illus-

trate the advantages of the proposed method, AlexNet, VGG16, and GoogLeNet were selected

for comparison. The experimental objects all used the color V-I trajectory image of 128 × 128

pixels. As shown in Table 2, the transferred CBAM-ResNet34 improved the power fingerprint

identification accuracy significantly, and the training time was shorter than that of the above

model. The comparison of the identification accuracy of the above-mentioned three models

verifies the validity of CBAM-ResNet34 and the model transfer in power fingerprint

identification.

5.4 Performance comparison of different data balancing algorithms

From Table 1, in the PLAID dataset, Class 5 has 248 samples, while Class 10 has only 73 sam-

ples. To solve this problem, it is usually necessary to expand some samples so that the number

in different categories is the same. To solve the data imbalance problem in V-I trajectory iden-

tification, Class-Balanced(CB) loss is introduced, which is achieved by inverse weighting the

loss function by the number of effective classes. Using transferred CBAM-ResNet34 as the

base model, the methods in this paper were compared with the original data, random oversam-

pling, SMOTE [41], and SVMSMOTE [42] data balancing algorithms on the PLAID dataset,

respectively. Use the F1-score as an evaluation criterion. The experiment was repeated five

times to take the mean value and the experimental results are shown in Table 3.

Table 2. Comparison of identification accuracy and training time between different training models on the

PLAID dataset.

Training Model PLAID Dataset

Accuracy (%) Time(min)

AlexNet 92.86 27

VGG16 93.50 23

GoogLeNet 94.29 20

ResNet34 95.48 17

CBAM-ResNet34 96.38 18

Transferred CBAM-ResNet34 97.49 13

https://doi.org/10.1371/journal.pone.0281482.t002

Table 3. The F1 for different data balance algorithms using transferred CBAM-ResNet34.

Original data SMOTE Oversampling SVMSMOTE CBAM-ResNet34

AC 0.896 0.901 0.871 0.939 0.940

Bulb 0.976 0.956 1.000 1.000 1.000

CFL 0.933 0.926 0.921 0.946 0.993

Fan 0.946 0.955 0.963 0.913 0.989

Fridge 0.895 0.912 0.984 0.986 0.914

Hairdryer 0.926 0.936 0.961 0.967 0.980

Heater 1.000 0.988 0.908 0.985 1.000

Laptop 0.932 0.947 0.935 0.965 0.988

Microwave 0.951 1.000 0.983 0.985 0.978

Vacuum 0.939 0.942 0.962 0.964 1.000

Washing 0.928 0.930 0.926 0.929 0.965

Ave F1 0.938 0.944 0.946 0.961 0.977

https://doi.org/10.1371/journal.pone.0281482.t003
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From Table 3, we can see that the other three methods can effectively improve the F1-score

compared with the original data for training. The method in this paper can significantly

improve the F1-score of a few sample categories, such as washing machines and vacuum clean-

ers, compared with the other three methods, the class-balanced loss is used to weight the Soft-

max maximum cross-entropy loss (SM-CE) function to increase the weight of minority class

samples in the target loss, which makes the classifier focus more on the minority class features

in training.

5.5 Performance comparison of different methods

To compare the proposed method with existing methods, the critical differences in the load

signature, training model, identification accuracy, and other aspects are listed in Table 4.

Experiments were conducted on PLAID datasets. Experiment 1 used V-I trajectory features

simplified by elliptic Fourier descriptors(EFD), and the classification algorithm was a random

forest. Experiment 2 uses color V-I trajectory as loading features, and the classification algo-

rithm is AlexNet. In Experiment 3, the color V-I trajectory features and power features of the

loads were fused to form composite features by feature fusion, and the classification algorithm

adopted was BPNN. Experiment 4 color encoded the V-I trajectories using the gramian matrix

with the improved AlexNet classification algorithm.

As can be seen from Table 4, Experiment 1 only relied on harmonic characteristics for clas-

sification and failed to use other features for auxiliary identification. Its identification accuracy

was the worst despite the short training time. The color V-I trajectory image adopted in Exper-

iment 2 has a low resolution, and many details are lost. Its identification effect on heaters and

other multi-state loads is poor. The load characteristics used in Experiment 3 include the

power characteristics of the load, which solves the drawback of losing the power characteristics

of the V-I trajectory, but the recognition accuracy and training time is to be further improved.

The physical information used in Experiment 4 is the loading characteristics at stable cycles

and does not include the loading characteristics at non-stable periods. In the case of color cod-

ing using the gramian matrix, each element of the matrix needs to be operated once, which is a

relatively large computational effort. Compared to the above experimental methods, the

method in this study was improved by feature extraction and model training. Color-encoded

V-I trajectory images and transferred CBAM-ResNet34 were used as the load feature and

training model, respectively, which significantly enhanced the identification ability of the algo-

rithm and reduced the model training time. Therefore, the load identification effect of the

method in this study was better than those of the other four methods.

6 Conclusions

This paper proposes power fingerprint identification based on the improved V-I trajectory

with color encoding and transferred CBAM-ResNet34. The performance of the algorithm was

Table 4. The comparison of the proposed method and other power fingerprint identification methods.

Load Signature classification algorithm Accuracy(%) Fscore(%) Time(min)

EFD Simplified V-I trajectory RF 77.30 77.60 2

Color V-I trajectory AlexNet 92.86 93.02 27

Power + color V-I trajectory BPNN 94.06 94.40 23

GM-V-I trajectory Improved AlexNet 95.08 95.36 20

Improved color V-I trajectory Transferred CBAM-RestNet34 97.46 97.69 13

https://doi.org/10.1371/journal.pone.0281482.t004
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verified with the PLAID dataset. Compared with the traditional method, the new method has

the following advantages:

• The color encoding is used to construct color V-I trajectory images with different channels

in high-dimensional space with higher differentiation. The current, instantaneous power,

and trajectory momentum information comprehensively and three-dimensionally reveal the

essential properties of various types of electrical equipment and improve the identification

accuracy of power fingerprints.

• The CBAM module is introduced and combined with the model transfer method to con-

struct the ResNet34-CBAM model. The CBAM module can amplify the weights of effective

channels in the feature layer and fully extract the relevant features of V-I trajectories. The

model transfer reduces the training time required for model training and better improves

the accuracy of power fingerprint identification in the case of small load data of specific

customers.

• The CB loss is introduced to reweight the SM-CE loss function to solve the problem of data

imbalance in V-I trajectory identification. Compared with other data balancing methods,

the improved class-balanced CBAM-ResNet34 in this paper has better classification perfor-

mance in small-sample unbalanced NILM datasets.

The experimental results show that the method can better improve the accuracy of power

fingerprint identification on small sample imbalanced datasets and reduce the time of classifi-

cation compared with other advanced identification methods. This validates the effectiveness

of the method proposed in this paper.

However, the method proposed in this paper still has some problems to be solved. The iden-

tification effect of multi-state load in this paper can be further improved, and more advanced

power fingerprint identification models are needed to solve the problem in the future. In addi-

tion, the actual engineering implementation faces difficulties in constructing sample libraries

and high data sampling frequency requirements. Therefore, a lot of related research work is

still needed.
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