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Abstract

Optical coherence tomography angiography (OCTA) is an imaging modality that can be used for 

analyzing retinal vasculature. Quantitative assessment of en face OCTA images requires accurate 

segmentation of the capillaries. Using deep learning approaches for this task faces two major 

challenges. First, acquiring sufficient manual delineations for training can take hundreds of hours. 

Second, OCTA images suffer from numerous contrast-related artifacts that are currently inherent 

to the modality and vary dramatically across scanners. We propose to solve both problems by 

learning a disentanglement of an anatomy component and a local contrast component from paired 

OCTA scans. With the contrast removed from the anatomy component, a deep learning model that 

takes the anatomy component as input can learn to segment vessels with a limited portion of the 

training images being manually labeled. Our method demonstrates state-of-the-art performance for 

OCTA vessel segmentation.

Index Terms—

Angiography; OCT; OCTA; Variational autoencoder; vessel segmentation

I INTRODUCTION

Optical coherence tomography (OCT) angiography (OCTA) is an noninvasive imaging 

modality with applications in various retinal and neurological diseases. It provides detailed 

visualizations of the retina’s vascular structure [1]–[7] and foveal avascular zone (FAZ) [8], 

[9]. Although OCTA data are acquired as volumes, for a variety of reasons including the 

presence of so-called projection artifacts [10], [11], it is common to project selected slabs 

into en face images for analyzing macular OCTA images [5]–[7]. The resulting two standard 

OCTA en face images depict the superficial vascular plexus (SVP), which incorporates the 

ganglion cell layer (or lies within the ganglion cell layer and nerve fiber layers), and the 

deep vascular plexus (DVP), which incorporates the inner nuclear layer [12]–[15].

Quantitative studies of en face OCTA images usually require segmentation of the retinal 

vessels and capillaries. Different methods for segmenting OCTA images have been explored 

in recent years [16]–[24]. In particular, supervised trained deep learning methods have 

drawn a lot of attention, because of their success in many related applications. However, 

manually segmenting capillaries in OCTA images is extremely time-consuming and 

obtaining a sufficient number of such pixel-level annotations for supervised training of deep 

networks is impractical,1 especially when it must be done for different scanners. Moreover, 

for many scans identifying capillaries is impossible due to the limited image resolution 

1From our experience, manually delineating (1/64)th the area of one scan and verification with repeated scans requires at least 30 
minutes. Therefore, we estimate that 40 hours is needed to delineate an entire scan and complete an independent review by a second 
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and the presence of noise and artifacts. For this reason, existing publicly available datasets 

mainly focus on large vessels [23] with limited capillary delineation [25]. An example scan 

with its manual delineation from the ROSE dataset [25] is given in Fig. 1. Although, we can 

see numerous capillaries in the zoomed-in view of the image, most of them are not included 

in the manual delineation.

While vessel and capillary delineations require a great deal of manual labor and time 

to acquire, it is relatively easy to acquire multiple unlabeled OCTA images of the same 

subject’s eye from the same or different scanners [8], [18], [19], [21], [26]. In this work, 

we consider those repeated scans as paired data. Although there are inherent scanner 

differences, those repeated scans from the same eye should have similar anatomy but 

different artifacts and are corrupted by independent noise. When examining such paired 

scans, we can identify vessels and capillaries from their shared intensity pattern; conversely, 

inconsistent patterns are usually associated with noise and artifacts. For example, Fig. 2 

shows two Optovue scans and one Heidelberg scan from the same eye. The green boxes 

in the three scans, also shown zoomed up, cover the same region of the macula. Although 

different noise and artifacts are present, we can readily identify very similar capillary 

structures in the zoomed-up views; some of these are highlighted for clarity. Although we 

could not practically require such multiple scans to be available for each future subject, in 

this paper we show how to take advantage of such paired images, available for many past 

subjects, to help train a segmentation algorithm that requires only one scan as input and 

tends to ignore artifacts, noise, and contrast variations.

The proposed method, named Artifacts and Contrast Robust Representation for OCTA 

Semi-supervised Segmentation (ACRROSS), disentangles the anatomy and contrast in 

OCTA images for accurate segmentation of vessels and capillaries. ACRROSS is trained 

using two datasets: one dataset with unlabeled registered paired OCTA images and the 

other with a very limited set of manual labels. ACRROSS learns to disentangle an OCTA 

image into separate contrast and anatomy components by identifying shared structures in 

the paired OCTA images. While learning to do this, it also learns to segment capillaries 

and vessels from the anatomy component using a limited set of manual delineations. In 

experiments, we first use two publicly available datasets of OCTA images, ROSE [25] and 

OCTA-500 [23]; the manual delineations in both datasets focused on large vessels with 

limited capillary delineations. We show that ACRROSS trained with only patches of manual 

delinations (total area used was less than a single scan) can achieve comparable or even 

better accuracy than the comparison methods that trained on the entire dataset. We also built 

an in-house dataset with capillary level delineations and show quantitatively that detailed 

capillary segmentation can be achieved without a large amount of manual delineations. 

Since FAZ segmentation is closely related to the segmentation of capillaries, we also show 

that based on our segmentation results, a simple post-processing approach can segment the 

FAZ with close to state-of-the-art performance.

manual rater. Thus, manually delineating 39 scans (the number of scans in the ROSE-1 dataset [25]) would take more than 1,500 
hours.
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II. RELATED WORK

Several works have explored the use of deep learning methods for OCTA vessel 

segmentation. A U-net [27] architecture was used by Morgan et al. [28] for vessel and 

FAZ segmentation in SVP images from two scanners. Mou et al. [22], [29] proposed an 

attention module for vessel segmentation, and applied it to OCTA images. Pissas et al. 
[30] proposed an iterative approach for 8 × 8 mm SVP scans. Li et al. [23], [24] and [31] 

proposed to directly output 2D vessel maps and FAZ segmentations from 3D OCTA images. 

Hu et al. [32] investigated segmenting 3D vessels from the 3D OCTA volumes; Yu et al. [33] 

proposed a method for segmenting vessels from 2D OCTA images and estimated the depth 

information for the segmented vessels to facilitate 3D vessel analysis. All of the previous 

supervised methods require a significant amount of training data with corresponding manual 

delineations. More recently, Xu et al. [34] proposed a partially-supervised method that used 

3% to 5% of the training data compared with other supervised methods. In contrast, our 

method needs less than 2% of manually delineated scans used by supervised methods to 

achieve similar performance. Unlike our previous work [21], which uses a dedicated encoder 

and decoder structure for each scanner, the majority of the network weights in ACRROSS 

are shared across different scanners. Thus, ACRROSS requires less computational resources 

and can be easily extended to multiple scanners without additional computational overhead.

The design of a semi-supervised method usually depends on the availability of weak labels. 

For brain lesion segmentation, unsupervised image translation between healthy and disease 

subjects was used [35], [36]. Zhou et al. [37] used disease severity grading to learn 

lesion attention maps for semi-supervised segmentation. Semi-supervised learning based 

on disentanglement has been previously used for both classification and segmentation. 

Robert et al. [38] designed an autoencoder structure with two encoders to separate a 

class-specific component and a complementary component. The two components were 

combined by a decoder to reconstruct the unlabeled input image, and classification is 

learned from the class-specific component. For segmenting cardiac cine magnetic resonance 

(MR) images, a similar structure was used by Chartsias et al. [39], where the outputs 

of two encoders are interpreted as spatially and non-spatially dependent components. In 

both methods, a self-reconstruction loss is used for learning the disentanglement. However, 

self-reconstruction and segmentation may play contradictory roles in feature extraction [38]. 

This is crucial for segmentation tasks, because a self-reconstruction loss reinforces the 

noise and allows artifacts to be learned as part of the anatomy representation. Although our 

method also reconstructs the encoder’s input image, we avoid this problem by learning the 

disentanglement from paired images, which have different noise and artifacts.

Several methods for disentangled representation learning use autoencoders [40]. Zhang et al. 
[41] used the encoder to learn a label-irrelevant spatial component along with a non-spatial 

embedding code conditioning. Dewey et al. [42] and related works [43], [44] proposed 

an encoder-decoder network structure for disentangling MR image modality and anatomy. 

Although they did not explicitly use a conditioning network, the modality vector learned 

from the encoder feeds into their decoder as a condition, and therefore, their method can 

be interpreted as a modified conditional variational autoencoder (CVAE). In fact, the two-

encoder structure used in Chartsias et al. [39] is also a CVAE, where the spatial component 
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branch serves as the conditioning. ACRROSS is different from the above methods in two 

important aspects. First, all three methods in [39], [42], and [41] seek to disentangle a 

subject specific anatomy component that is spatially dependent from a scanner-specific 

contrast component that is non-spatially dependent. Because of the spatially-varying contrast 

in OCTA images, we chose to disentangle two spatially dependent components. This 

allows us to model the contrast and artifacts regionally. Second, in [41] and [42] the 

anatomical component is the latent representation of the CVAE, which requires sampling 

during training. On the other hand, we have chosen the anatomical component to be the 

conditioning. With this choice, we avoid independently sampling the anatomy representation 

at each pixel location, which produces less noisy anatomy representations and consequently 

is beneficial for the segmentation task.

III. METHOD

A. Overview

As shown in Fig. 3(a), our proposed model consists of four networks: an encoder, a decoder, 

a conditioning network (CN), and a segmenter. The CN and the segmenter branch performs 

the segmentation. During supervised training, a cross-entropy loss computed between the 

output of the segmenter and manual delineations can be back-propagated to both the CN and 

segmenter. However, when the number of training data samples is small, supervised training 

can lead to unsatisfactory results during test time. This is especially true for OCTA images, 

where different artifacts and contrast variations in unseen images cannot be fully covered 

in the training dataset. To address this problem, we introduced two additional networks: an 

encoder and a decoder. The encoder, decoder, and CN together form a CVAE that uses a 

second dataset of unlabeled, registered, paired OCTA scans for training. With the additional 

components, the CN learns to extract a contrast-disentangled anatomy representation for the 

segmenter to use. As a preview, a test time example result, which uses only the CN and 

the segmenter to generate, is shown in Figs. 3(b) and 3(c). Methodological details of our 

approach are provided in the following sections.

B. Conditional Variational Autoencoder

Consider xA1 and xA2 as an unlabeled pair of registered OCTA scans acquired from the same 

eye. These images could be from the same or different scanners, but to avoid anatomical 

changes they should be acquired within a few days of each other. The CVAE framework 

assumes that the encoder’s input x can be reconstructed by the decoder from a latent 

representation z given the conditioning c. Specifically for ACRROSS, an OCTA scan xA1 is 

reconstructed from zA1 given the conditioning cA2 (see Fig. 3). The superscript indicates that 

zA1 is learned from xA1 but cA2 is extracted from its paired scan xA2. In theory, the encoder 

and the decoder approximate the posterior and likelihood distributions q zA1 |xA1; cA2  and 

p xA1 | zA1; cA2  with a parametric encoder qϕ and a parametric decoder pθ, respectively. 

Similar to a variational autoencoder (VAE) [45], a CVAE can be trained using the negative 

variational lower bound given by
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ℒCV AE = − Eqϕ logpθ + DKL qϕ ∥ p z′ , (1)

where p(z′) is assumed to be a multivariate Gaussian. The first term in (1) is the expectation 

of the log posterior, which has a similar effect as a mean squared error loss that encourages 

reconstruction of xA1. The second term in (1) is the Kullback–Leibler divergence between 

the two distributions and can be thought of as a regularization term acting on the learned 

latent representation z.

The architectures of the encoder and decoder are shown in Fig. 4. The encoder with four 

max-pooling layers compresses xA1 by a factor of 16 in each spatial dimension. The outputs 

of the encoder are interpreted as the mean μA1 and standard deviation σA1 of a multivariate 

Gaussian that characterizes the distribution of the latent representation. Samples (zA1 ‘s) of 

this distribution are generated by following [45] for training the decoder. The number of 

channels in μA1 and σA1 is a hyper-parameter that determines the compression rate of the 

encoder-decoder branch. In this work, we use 10 channels, but we found the result to be 

similar when using between 4 and 32 channels. Accordingly, each 16 × 16 block from the 

input is represented by a vector of length 10.

C. Anatomy-Contrast Disentanglement

A CVAE is generally considered to be a generative model where diverse samples for 

a particular class can be generated from the decoder by sampling the learned latent 

representation and input the samples to the decoder with the class label as conditioning. 

In contrast, ACRROSS uses a CVAE to learn the disentanglement of an anatomy 

component and a contrast component from paired scans. For an OCTA image, the anatomy 

component captures the vessels and capillaries whereas the contrast component captures 

the representation of the vessels and capillaries that makes those anatomy distinguishable 

from noise or background. This is achieved by the novel training strategy we adopted: 

instead of manually assigning a conditioning, ACRROSS uses a feed-forward CN to learn 

a conditioning from xA2; thus, the decoder uses two sources of information— zA1 from 

the encoder and cA2 from the CN—to reconstruct xA1 Similar to the common autoencoder 

structure with a bottleneck, zA1 will be a lossy compressed representation of xA1 given its 

limited capacity. With the use of cA2, we can guide the encoder to focus on compressing 

local contrast information.

We designed the conditioning variable cA2 to have the same spatial dimension as xA1. 

Since zA1 can only encode limited information from xA1, if some of the information is also 

contained in cA2, then the full capacity of zA1 can be used for information specific to xA1. 

When we use registered paired OCTA images as input to the encoder and CN, respectively, 

then this information comprises the local contrast, noise, and artifacts of xA1. The encoder 

can confidently ignore the vascular structures in producing zA1 because the decoder can 

expect that information to come from cA2, which has a much larger capacity. Therefore, the 
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encoder and CN learn to cooperate for a better reconstruction of xA1. In particular, the CN 

learns to extract vessels and capillaries that xA2 shares with xA1 so that the encoder can 

focus on the local contrast, artifacts, and noise that are only accessible from xA1. Otherwise, 

the redundant information in zA1 further limits its representation power, which would result 

in a higher reconstruction loss.

Importantly, we did not design an architecture that would learn the conditioning information 

from xA1. If we were to try it this way, then the CN and decoder would simply learn an 

identity mapping to perfectly reconstruct xA1 without needing zA1. Methods with such an 

alternative design require constraints to achieve disentanglement, e.g., forced binarization 

for the conditioning [42] or an additional cycle-consistency loss [39].

Once trained, the CN can extract the vascular structures that are shared between xA1 and 

xA2, but in fact it predicts the intensity patterns from xA2 that are useful to reconstruct xA1

without actually observing xA1. This is beneficial at test time because the CN can remove 

the contrast, noise, and artifacts from xA2 that are irrelevant for reconstructing xA1 without 

the need of a paired scan as input to the encoder.

D. Semi-Supervised Segmentation

The representation learned by the CN greatly reduces the contrast variations from OCTA 

images caused by either the OCTA algorithms or contrast-related artifacts. This allows the 

use of a segmenter network with just two convolutional layers to segment vessels from the 

conditioning. For training, we use a dataset of OCTA images with manual delineations. An 

image xB goes through the segmentation path (the CN and segmenter) to produce pB, as 

shown in Fig. 3(a), and the cross entropy loss ℒCE is computed between pB and the manual 

delineation. This supervised training procedure injects our preference into the segmentation 

model, e.g., the thickness of the vessels to be segmented or the minimum intensity to 

be considered as foreground. As shown in Sec. IV, different manual delineations lead to 

different results, but the same CVAE training procedure is used.

During each forward pass, both ℒCV AE and ℒCE are calculated using the two datasets, 

then the combination of the two losses is back-propagated to update the parameters in all 

sub-networks. The ℒCV AE has effects on the encoder, decoder, and CN, whereas ℒCE has 

effects on the segmenter and CN. After training, only the CN and the segmenter—i.e. no 

paired images—are needed for segmentation of an OCTA image. Unlike other sub-networks 

in the proposed method, the CN is the most flexible component. Because it is used for 

generating the conditioning, the only requirement for the CN is to preserve the spatial 

dimension of the input. Therefore, any previously proposed dense prediction network can be 

used for the CN. In our experiments, we report the results of two versions of the proposed 

method using two previously proposed network structures for our CN: U-Net [27] and 

CS-Net [29].
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IV. EXPERIMENTS

A. Datasets

The performance of vessel segmentation was evaluated on two publicly available datasets, 

OCTA-500 [24] and ROSE [25], both with manual delineation of vessels, and a proprietary 

dataset, XJU [18]. All training and evaluations were carried out on OCTA scans representing 

the superficial vascular plexus (SVP). We constructed a subset of unlabeled registered paired 

OCTA scans from the XJU dataset for CVAE training; this subset is termed XJU-CVAE. 

Taking advantage of the paired data for reliable delineation of capillaries, we built a subset 

of manually delineated scans from the XJU dataset; this subset is termed XJU-MD. We also 

use the manual delineations for FAZ from both the OCTA-500 and the OCTAGON [46] 

datasets to demonstrate how our trained vessel segmentation model can be used for FAZ 

segmentation. The details of each dataset are provided below.

1) XJU: Scans from Angiovue (RTVue XR Avanti, Optovue, Inc. Fremont, CA), 

Angioplex (Cirrus HD-5000, Zeiss Meditec. Dublin, CA), Triton (Topcon DRI OCT Triton, 

Topcon, Japan) and Spectralis OCT2 module (Heidelberg Engineering, Germany) were 

included [18]. Each eye was scanned twice on the Topcon, Zeiss, and Optovue scanners and 

once on the Heidelberg scanner. For each eye, all seven scans were registered to a designated 

Optovue scan by a deformable transformation using ANTs [47]. The registered scans were 

manually reviewed and 138 out of 146 eyes were found to be successfully registered. The 8 

failure cases were caused by major artifacts or field of view differences between the scans.

2) XJU-CVAE: From the 138 successfully registered scans in the XJU dataset, we 

randomly selected 110 eyes for CVAE training in ACRROSS. Each training sample is a 

pair of different OCTA images randomly selected from the seven repeats.

3) XJU-MD: From the remaining 28 successfully registered eyes in the XJU dataset, we 

randomly selected four eyes (22 scans) for manual delineation. Each scan was divided into 

patches of size (1/64)th of the image and a set of such patches were randomly selected for 

delineation. To improve the delineation quality in regions with noise and artifacts, potential 

capillaries were verified by comparing with its repeated scans in the same location. All 

delineations were reviewed by a second person and corrected if necessary. In total 48 

patches were delineated (13 Heidelberg, 13 Optovue, 11 Topcon, 11 Zeiss), an example of 

which can be seen in Fig. 10. The total area of these 48 patches is approximately equal 

to 3/4 the area of a single scan. Despite the relative small total area finally delineated, 

the overall task–including initial labeling, verification with repeat scans, and independent 

review–was extraordinarily time-consuming; ultimately taking eight weeks to complete with 

rater fatigue also being a handicap.

4) OCTA-500: All 200 subjects (No. 10301—No. 10500) with 3 mm × 3 mm SVP scans 

from the OCTA-500 dataset [24] are included in our experiments. The data were collected 

using a commercial 70 kHz SD-OCT (RTVue-XR, Optovue, CA). We use the maximum 

projection map between internal limiting membrane (ILM) and outer plexiform layer (OPL) 

because it was used for vessel delineations. We followed the same training, validation, and 
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testing split as in [24] (No. 10301—10440 for training; No. 10441—10450 for validation; 

and No. 10451—10500 for testing). For each scan, a manual delineation of FAZ is also 

provided.

5) ROSE-1: All 39 scans in the ROSE-1 subset of the ROSE dataset [25] are included 

in our experiments. For each subject, we used the 3 mm × 3 mm SVP scans and their 

corresponding manual delineations. The ROSE-2 subset is not included, because it only 

contains centerline-level annotations of vessels. All 39 scans were acquired on a RTVue XR 

Avanti SD-OCT system (Optovue, USA). As specified in [25], 30 selected scans were used 

for training and 9 were used for testing.

6) OCTAGON: OCTAGON [46] is a publicly available dataset for FAZ segmentation; it 

includes 55 SVP 3 mm × 3 mm scans acquired from a Topcon device (DRI OCT Triton) and 

their manual FAZ segmentations.

B. Illustration of Disentanglement

In Fig. 5, we show some additional results for the same eye as in Fig. 3 produced by 

ACRROSS. In addition to the Optovue scan from Fig. 3, we also show its registered 

paired Heidelberg scan. To produce each contrast-removed conditioning result (cB in Fig. 

3(a)), an original scan is provided as input (xB in Fig. 3(a)) to the CN. With the contrast 

largely removed, we can easily see the capillary structure in this intermediate result. The 

segmentation result for each scan is produced from the conditioning using the segmenter 

followed by binarization at a 0.5 threshold. Because the CN is robust to contrast variations, 

the loss-of-signal-strength artifact that can be seen in the Heidelberg scan has minimum 

impact on the conditioning. This allows us to observe a very similar vascular pattern in the 

segmentation results even in the artifact-affected region.

Although typically not used after training is complete, it is instructive to see a reconstructed 

image (xA1 in Fig. 3(a)) from a registered paired set of scans. The reconstructed image 

shown in the bottom left of Fig. 5 is generated using the Optovue scan as xA1 and the 

Heidelberg scan as xA2 (i.e. the contrast component from the Optovue scan and the anatomy 

component from the Heidelberg scan.). The reconstructed image shown in the bottom right 

of Fig. 5 uses the opposite assignment. It is clear from these two reconstructed images 

that artifacts are encoded in the variable zA1, which comes from the image xA1. This 

visualization confirms the effect of disentanglement and reinforces our contention that 

ACRROSS segmentation results are not greatly affected by artifacts.

C. Metrics for Vessel Segmentation

To evaluate the performance of vessel segmentation algorithms, the following metrics are 

calculated between the manual delineation and the segmentation results produced by each 

algorithm:

• Area under the ROC curve: AUC;

• Accuracy: ACC = (TP + TN)/(TP + TN + FP + FN);
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• Kappa score: KAPPA = (ACC − pe)/(1 − pe);

• False discovery rate: FDR = FP/(FP + TP);

• G-mean score: GMEAN = sensitivity × sensitivity;

• Dice coefficient: DSC = 2 × TP/(FP + FN + 2 × TP),

where TP, TN, FP, FN represent the True Positives, True Negatives, False Positives, and 

False Negatives, respectively, and pe = ((TP+FN)(TP+FP)+(TN+FP)(TN+FN))/(TP+TN 

+ FP + FN)2. Sensitivity and specificity are computed as TP/(TP + FN) and TN/(TN 

+ FP), respectively. These metrics are also reported in [25]. All the p-values reported 

were computed using a paired, two-sided Wilcoxon signed rank test (null hypothesis: the 

difference between paired values comes from a distribution with zero median).

D. Implementation Details

Our model was implemented using Pytorch, and all networks were trained using the 

Adam optimizer with a learning rate of 4 × 10−4 and weight decay of 1 × 10−6. When 

there is a corresponding validation dataset available, the training terminates when the 

validation loss stops decreasing; otherwise the number of training epochs was determined 

empirically. Specifically, the OCTA-500 dataset has its own validation dataset, and for our 

semi-supervised ROSE-1 experiment the unused images serve as the validation dataset. 

Our other experiments use an empirically determined number of training epochs. During 

CVAE training, the CN may take scans from different manufacturers as input. To handle 

the contrast difference, the inputs of CN are processed by four convolutional layers (with 

LeakyReLU activation), which learn a different set of weights for each scanner. It has been 

shown previously that such dedicated sub-networks can improve network generalizability 

[50]. The source code for this work is currently proprietary while under review for potential 

commercialization.

In all experiments, ACRROSS used the XJU-CVAE for CVAE training (batch size of 8) 

and a dataset with manual delineations (OCTA-500, ROSE-1, or XJU-MD) for supervised 

training (batch size of 2). Because each loss term is calculated separately before the 

combined loss is back-propagated, scanners used in CVAE training are not required to 

be used for supervised training. For example, ACRROSS can be trained using XJU-CVAE 

with scans from four scanners together with OCTA-500, which only has Optovue scans. 

For each of our three datasets, the test time procedure for new unseen images is the same. 

This procedure is depicted as the yellow portion of our network in Fig. 3(a). First, we pass 

the unseen image, xB, through the condition network CN to generate the conditioning, cB. 

The conditioning is then passed to the segmentation network to generate, pB, which is then 

binarized to generate a segmentation (threshold at 0.5 intensity value). All the comparison 

methods were concatenated with the same segmenter network as in ACRROSS and trained 

using the same settings except for those methods that cannot use the unlabeled XJU-CVAE 

subset.
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E Supervised Vessel Segmentation on OCTA-500

We first used all 140 scans from the OCTA-500 training set to test the performance of the 

proposed method in a fully supervised setting. We provided two versions of ACRROSS 

using different network architectures as the conditioning network: ACRROSS(CS-Net) used 

CS-Net and ACRROSS (U-net) used U-net. For the comparison methods, we included U-net 

[27], nnU-Net [49], R2U-Net [48] and CS-Net [29]. For training U-net, R2U-Net, and 

CS-Net, we used the same hyper-parameters as our methods for fair comparison. nnU-Net 

was originally designed for 3D images with the ability to automatically determine its hyper-

parameters, we followed an example provided by the authors to make it work for 2D images. 

The results on the 50 test scans are summarized in Table I. Our methods (ACRROSS(CS-

Net) and ACRROSS (U-net)) produce comparable or better results when measured by AUC, 

and ACRROSS(U-net) is significantly better than all comparison methods in terms of DSC 

(p-value < 0.001).

F. Semi-Supervised Vessel Segmentation on OCTA-500

To test the semi-supervised setting when there are fewer training samples, we decreased the 

number of training data used for supervised training from N = 140 subjects to N = 20 and N 
= 4 in two additional experiments. Further reduction in the number of training samples may 

cause a high variance in repeated experiments where training samples with different quality 

and variety are selected. To address this problem, we divided the total area of each scan into 

8×8 square patches and treated one patch instead of one scan as a training sample. This is 

implemented by only computing the cross-entropy loss inside the selected patches. However, 

we still input the entire image into the network to make sure the normalization layers work 

properly. We first randomly select 4 scans, and then 32, 16, and 8 patches are randomly 

selected from each of the 4 scan as training data. As a result, the total number of patches 

used in this three additional experiments are P = 128, P = 64, and P = 32, equivalent to N = 
2, N = 1, and N = 0.5 subjects in terms of total area that is used. For example, the total area 

for P = 32 is (32/(8 × 8)) subjects, which is equivalent to half a scan.

To further reduce the randomness in the result, each experiment was run three times with 

different random seeds and the same set of random seeds were used for all methods. We 

evaluated the performance of U-net [27], CS-Net [29], and ACRROSS(U-net) on the 50 test 

scans. The results of the three repeats are combined (50 × 3 data points) and reported in Fig. 

6 (a) and (b). We can see that for AUC and DSC, ACRROSS consistently produces better 

results across all sets of experiments with different amount of training data. This can also be 

seen from the example shown in Fig. 7, where only large vessels were segmented because 

the manual delineations for OCTA-500 do not include capillaries. When measured by 

AUC, the proposed method ACRROSS(U-net) trained with 32 patches produces comparable 

results to the U-net trained with 20 subjects (p-value = 0.995) and CS-Net trained with 140 

subjects (p-value = 0.324). It is significantly better than CS-Net trained with 20 subjects 

(p-value < 0.001). We also observed that for all methods, N = 4 underperforms P = 128, 

although the latter case uses less area during training. This may be analogous to training 

using 2D slices outperforming training using 3D volumes, when the number of subjects is 

small [51].
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G. Ablation Study

We conducted ablation studies on the OCTA-500 dataset. We first trained ACRROSS 

without the Kullback-Leibler divergence loss in Eq. 1. The removal of this regularization 

reduced the CVAE to an autoencoder structure (AE). We also investigate the impact of using 

dedicated sub-networks as input layers for CN (see Sec. IV-D). In Fig. 8, we compared the 

DSC of these two methods against the original ACRROSS, where we denote the version 

without the use of dedicated sub-networks as “w/o DA”. In all experiments, the models 

were trained in the same way as described in Sec. IV-F. The results show that both the 

Kullback-Leibler divergence loss in Eq. 1 and the dedicated sub-networks improve the 

segmentation results, especially in the semi-supervised setting.

H. Reproducibility Test

We test the reproducibility of ACRROSS under different contrasts in supervised and 

semi-supervised settings. The training follows the strategy described in Sec. IV-F. The 

trained models were then applied to the XJU-MD dataset, in which seven repeated scans 

from four scanners were captured for each eye (see Sec. IV-A). Because all manually 

delineated scans in the OCTA-500 dataset come from Optovue scanners, we separately 

compared the segmentation results between the two Optovue scans (i.e. intra-Optovue) 

and the segmentation results between the first Optovue scan and other contrast scans (i.e. 
inter-Optovue), which include scans from Heidelberg, Topcon and Zeiss. We calculated the 

DSC and reported the averaged numbers in Fig. 9. The results from U-net and CS-Net 

were also included for reference. Since all the scans were registered, if the segmentations 

are consistent we would anticipate a higher DSC; which means better reproducibility 

of the algorithm across the various scanners. It can be seen from Fig. 9 that the intra-

Optovue experiments generally have a better consistency compared with the inter-Optovue 

experiments. This is expected because supervised training only include Optovue scans. 

For CS-Net and U-Net, we observed decreasing consistency—lower DSC scores—of their 

results as we reduce the amount of training data. In contrast, the results produced by 

ACRROSS are not affected by the amount of supervised training data.

I. Supervised Vessel Segmentation on ROSE-1

The ROSE-1 subset provides delineations for large vessels as well as some capillaries. We 

used the provided training and testing split where all 30 training samples in the dataset were 

used for supervised training and test results were computed on the 9 held-out scans. We 

observe that our method produces comparable or better results in terms of AUC (see Table 

II) and, when measured by the DSC, ACRROSS(U-net) results are significantly better than 

all comparison methods (p-value < 0.005).

J. Semi-Supervised Vessel Segmentation on ROSE-1

To test the semi-supervised setting where there are insufficient training samples, we 

randomly selected 4 subjects for training and, to further reduce the training data, we 

used the same patch sampling technique as in our OCTA-500 experiments. Specifically, 

4 subjects were randomly selected and then a total of P = 32, P = 64, and P = 128 patches 

were randomly selected from the 4 subjects (8, 16, and 32 patches from each) so that 
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the total areas used in training are equivalent to N = 0.5, N = 1, and N = 2 subjects. 

The performances were evaluated on the same 9 held-out scans. We compared with the 

results from U-net and CS-Net that were trained under the same setting. Each method was 

trained three times with different random seeds and the same set of random seeds were used 

for all methods. The results of the three repeats were combined (9 × 3 data points) and 

averaged performances were reported in Fig. 6 (c) and (d). In addition, we compared with 

three semi-supervised methods in Table III, including: 1) Mean teacher (MT), a consistency-

based semi-supervised learning approach [52] modified for the segmentation task [34]; 2) 

MixMatch, a data augmentation based semi-supervised method [53]; and 3) PSL, a recently 

proposed patch-based semi-supervised method that combined MixMatch and active learning 

[34]. These results were originally reported in [34]. For each method, the area of manually 

delineated data used for training relative to the total area of all scans in the training dataset 

was also reported in Table III. When using 3.3% of the manual delineation, our method 

outperformed MT [52] and MixMatch [53] and was comparable to PSL [34]. The minimum 

amount of training data PSL tested on was 3.3%, however, ACRROSS achieves comparable 

results with only 1.7% of the training data and without involving the iterative training and 

labeling process in PSL.

K. Semi-Supervised Vessel Segmentation on XJU-MD

Although ROSE-1 has 39 subjects with manual delineation, in many cases the delineation 

does not align well with the true capillaries, as shown in Figs. 1 and 10. Our experiments 

using the OCTA-500 and ROSE-1 datasets show that high accuracy results can be achieved 

with the proposed method using very few manual delineations for training. For accurate 

segmentation of OCTA images at the capillary level, the proposed method was trained on an 

in-house dataset with manual delineations (XJU-MD).

Given the limited number of manually labeled patches (48 patches), we used 47 patches 

(73.4% the area of one scan) for supervised training. We provide the qualitative result of the 

remaining patch in Fig. 10. To avoid potential data leakage issue, none of the other patches 

from this eye were used for training. Since XJU-MD contains scans from Heidelberg, 

Optovue, Topcon, and Zeiss, we were also able to apply the trained model on scans from 

both the OCTA-500 and ROSE-1 datasets without using any scans or manual delineations 

from those datasets during training. Qualitative results on scans from OCTA-500 and XJU-

MD are shown in the two additional rows in Fig. 10. Despite the site differences between the 

training (XJU-MD) and testing (OCTA-500 and ROSE-1) data, ACRROSS is able to provide 

detailed capillary segmentation that is previously not available in the manual delineation for 

OCTA-500 and ROSE-1.

L. FAZ Segmentation

The FAZ is the avascular region around the fovea. If the capillaries are accurately detected, 

a simple post-processing algorithms can be used to provide an accurate segmentation of the 

FAZ. Accordingly, we applied a morphological closing operation to our vessel segmentation 

result and found the FAZ as the largest connected component in the background (see 

Fig. 11). We compared our FAZ segmentation results to two FAZ segmentation methods 

[46], [54]. Despite the simplicity of our post-processing steps, we achieved similar results 
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in terms of Jaccard Index (see Table IV). The OCTA-500 dataset also contains manual 

delineations of the FAZ that we could compare to. Our post-processing based FAZ 

segmentation has a mean DSC of 0.954 ± 0.025 and a Jaccard Index of 0.912 ± 0.044, which 

is close to the performance of several supervised trained deep learning methods reported 

in [24]. Note that our training used the manually delineated patches from the XJU-MD, 

without any examples or FAZ masks from OCTAGON or OCTA-500. This result suggests 

that our vessel segmentation model can accurately detect the capillaries around the FAZ. 

We note that the current post-processing method is not suitable for many disease cases as 

non-perfusion areas can be falsely detected as the FAZ by our use of the largest connected 

component. However, it demonstrates the potential for achieving accurate FAZ segmentation 

in healthy controls without the need of extra manual delineations of the FAZ for supervised 

training.

V. DISCUSSION AND CONCLUSION

We proposed a deep network architecture called ACRROSS for disentangling local contrast 

and vascular structures from en face OCTA images so that retinal vessel and capillary 

segmentation can be learned with limited manual delineations.

ACRROSS is closely related to our previously reported method [21] called VICCE. The 

CVAE training in ACRROSS can be considered as the cross-scanner synthesis in VICCE 

but applied to the CN and decoder. Also, both methods can be interpreted as special cases 

of unsupervised representation learning [55] where similar anatomy representations are 

extracted from the paired scans. Without the negative samples that are commonly used 

in unsupervised representation learning, VICCE forces the representation learned from 

one scan to be able to synthesize its paired scan in order to avoid the model collapse 

problem. This, however, implicitly assumes that the underlying anatomical information is 

identical in both scans, which is generally not true since there are inherent hardware and 

software differences between different scanners. Alternatively, ACRROSS uses the extra 

input (z) during CVAE training to encode the scan-specific information, which includes 

the scan-specific anatomy. For example, a layer segmentation error can cause more vessels 

to be included in the SVP projection map, but this will not affect the segmentation result 

because those extra vessels are considered scan-specific and encoded in z. In contrast, 

scanner-specific anatomy is encoded in c, because it is shared by repeated scans from the 

same scanner.

Generally, supervised training with diverse data is a preferred way to learn the variability in 

a real data distribution. By learning the disentanglement from the unlabeled data, ACRROSS 

reduces the requirement of diverse training samples in labeled data. In particular, we found 

when using the OCTA-500 dataset that training using 128 patches selected from 4 scans 

(with 32 patches per scan) is comparable to using 128 patches selected from 32 scans (with 

4 patches per scan). The learned disentanglement also shows the potential for transferring 

the knowledge of manual delineations from one dataset to another. Our method trained 

using the OCTA-500 dataset and the XJU-CVAE subset can segment Topcon scans from 

the OCTAGON dataset without using any manual delineations from Topcon scans. Notice 
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that this is different from the concept of domain adaption because the CVAE training uses 

unlabeled Topcon scans to learn the disentangled representation.

Despite these advantages, ACRROSS and similar disentangled representation learning 

methods are limited to segmentation tasks where all structures are labeled. Otherwise, 

extra manual delineations are needed to separate the labeled structures from the unlabeled 

structures. Essentially, the labeled and unlabeled structures determined by the manual 

delineation become entangled components in the conditioning. In such tasks [39], the 

segmentation cannot take full advantage of the disentangling. Another limitation of our 

method is the over-segmentation problem, in which some noise is falsely recognized as 

capillaries. This is observed when applying our model trained on healthy subjects to disease 

cases. This phenomenon is related to the artifact-affected scans in the XJU-CVAE dataset. 

As paired scans are unlikely to be affected by the same imaging artifact, the CVAE 

training allows artifacts like loss-of-signal-strength to be disentangled from the anatomy 

representation and recover the capillaries in the affected area. This is undesirable, however, 

when the subject experiences a true loss of capillaries. Since the training dataset only 

consists of healthy subjects, ACRROSS may interpret missing capillaries in disease cases 

as an artifact. This problem can likely be solved by including paired disease cases in the 

CVAE training or excluding regions affected by artifacts in healthy subjects, though further 

investigation is needed.

Our experiments are limited to 3 mm × 3 mm SVP scans because we find it difficult 

to acquire consistent and reliable manual segmentations for the DVP; also 3D OCTA 

data with manual delineations are currently unavailable. In practice, acquiring repeated 

scans from one scanner is more common than repeat scans from different scanners. 

Therefore, we experimented with training ACRROSS using only Optovue scans. In this case, 

ACRROSS still outperforms the comparison methods, but including scans from another 

scanner can significantly improve the results. Whether the inclusion of multiple scanners 

helps disentangled representation learning or is simply a result of the fact that more scans 

prevent over-fitting is a subject for future research.
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Fig. 1. 
An example subject from the ROSE dataset [25]. The Optovue SVP scan is shown on the 

left, with its pixel-level annotation shown on the right. For each image, a zoomed-in view for 

the region inside the green box is shown in the bottom left corner.
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Fig. 2. 
Two Optovue scans (left and middle), and one Heidelberg scan (right) of the same eye 

are shown. In the upper right corner of each sub-image, we show the zoomed regions 

highlighted by the green box. A manual tracing for some capillaries are provided in the 

lower right corner of each image; not every recognizable capillary is highlighted for clarity 

in the figure. The three scans are not registered.
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Fig. 3. 
(a) An overview of the training process of the proposed method. The dimension of each 

variable are provided, with H and W being the height and width of the original scan. The 

blue and yellow paths indicate CVAE and supervised training flow, respectively, with the 

CN being shared by both. As a preview, an example of test time input (b) and segmentation 

result (c) are provided. The model was trained using the XJU-CVAE and the XJU-MD 

subsets (see Sec. IV for complete details).
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Fig. 4. 
Detailed architecture of the encoder and decoder. All convolutional layers used in this work 

have a kernel size of 3 × 3 and padding of size one.
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Fig. 5. 
An example of the inputs and outputs from ACRROSS. The two columns represent the 

processing of two different scanner manufacturers: Optovue and Heidelberg. From top to 

bottom, the rows are the original input OCTA images, the conditioning, the corresponding 

segmentation, and the reconstruction of the input. The two scans are registered. The XJU-

MD subset is used for supervised training.
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Fig. 6. 
The box plots of the area under the ROC curve (AUC) and Dice coefficient (DSC) for 

the segmentation results produced by CS-Net [29], U-net [27], and ACRROSS(U-net) 

when trained using different amounts of training data. The amount of training data used 

is indicated on the horizontal axes. Each plot is divided into two parts, with the left part 

shows the results when trained using patches as training samples and the right part shows 

the results when trained using scans as training samples. The total area used for training in 

P = 32, P = 64, and P = 128 are equal to N = 0.5, N = 1, and N = 2 subjects, respectively. 

For training with scans, the equivalent number of patches are also shown. The results for the 

OCTA-500 dataset are shown in (a) and (b) and the results for the ROSE-1 dataset are shown 

in (c) and (d).
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Fig. 7. 
Examples of test result from the OCTA-500 dataset when training with a different number 

of samples. Leftmost column shows the original image (top) and the zoomed-in region 

(middle), along with its corresponding manual delineation (bottom). The predicted vessel 

probability maps of CS-Net [29] (row 1), U-net [27] (row 2), and ACRROSS(U-net) (row 3) 

are shown in the right columns. See the text for an explanation of P and N.
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Fig. 8. 
The results of the ablation study using OCTA-500 dataset.
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Fig. 9. 
The results of the reproducibility test for CS-Net, U-net, and ACRROSS when trained with 

different amounts of training data from the OCTA-500 dataset. The DSC between the two 

Optovue scans are shown on the left (intra-Optovue) and the DSC between the first Optovue 

scan and scans from other scanners are shown on the right (inter-Optovue).
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Fig. 10. 
Examples of applying our model (trained on XJU-MD) on scans from XJU-MD, OCTA-500, 

and ROSE-1. The supervised training does not use any examples from OCTA-500 or 

ROSE-1. Our trained model can produce detailed capillary segmentation for scans from 

OCTA-500 and ROSE-1 that is previously not available in the OCTA-500 and ROSE-1 

manual delineations.
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Fig. 11. 
Examples of FAZ segmentations for a Topcon scan from OCTAGON dataset [46] and an 

Optovue scan from OCTA-500 dataset [24]. The corresponding vessel segmentations and 

FAZ segmentations are shown in the middle and right column.

Liu et al. Page 29

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 30

TA
B

L
E

 I

C
O

M
PA

R
IS

O
N

 O
F 

T
H

E
 V

E
SS

E
L

 S
E

G
M

E
N

TA
T

IO
N

 R
E

SU
LT

S 
FO

R
 5

0 
SU

PE
R

FI
C

IA
L

 V
A

SC
U

L
A

R
 P

L
E

X
U

S 
en

 fa
ce

 T
E

ST
 S

C
A

N
S 

(M
E

A
N

 ±
 S

T
D

. D
E

V
.)

 F
R

O
M

 T
H

E
 O
C
T
A
-
5
0
0

 D
A

TA
SE

T,
 U

SI
N

G
 A

L
L

 

T
R

A
IN

IN
G

 I
M

A
G

E
S 

(1
40

 S
C

A
N

S)
 F

O
R

 S
U

PE
R

V
IS

E
D

 T
R

A
IN

IN
G

. B
O

L
D

 N
U

M
B

E
R

S 
IN

D
IC

A
T

E
 T

H
E

 B
E

ST
 M

E
A

N
 V

A
L

U
E

M
et

ho
d

A
U

C
A

C
C

G
M

E
A

N
K

A
P

PA
D

SC
F

D
R

R
2U

-N
et

 [
48

]
0.

99
4 

±
 0

.0
05

0.
98

5 
±

 0
.0

03
0.

93
9 

±
 0

.0
20

0.
87

6 
±

 0
.0

27
0.

88
4 

±
 0

.0
26

0.
11

7 
±

 0
.0

59

U
-n

et
 [

27
]

0.
99

2 
±

 0
.0

06
0.

98
8 

±
 0

.0
02

0.
94

4 
± 

0.
01

6
0.

90
2 

±
 0

.0
21

0.
90

9 
±

 0
.0

20
0.

07
8 

±
 0

.0
29

nn
U

-N
et

 [
49

]
0.

98
0 

±
 0

.0
09

0.
98

7 
±

 0
.0

02
0.

94
0 

±
 0

.0
14

0.
89

6 
±

 0
.0

21
0.

90
2 

±
 0

.0
20

0.
08

2 
±

 0
.0

29

C
S-

N
et

 [
29

]
0.

99
5 

±
 0

.0
03

0.
98

7 
±

 0
.0

02
0.

94
1 

±
 0

.0
15

0.
89

2 
±

 0
.0

21
0.

90
0 

±
 0

.0
20

0.
09

2 
±

 0
.0

33

A
C

R
R

O
SS

(C
S-

N
et

)
0.

99
5 

±
 0

.0
04

0.
98

6 
±

 0
.0

03
0.

94
0 

±
 0

.0
18

0.
88

7 
±

 0
.0

22
0.

89
5 

±
 0

.0
21

0.
09

6 
±

 0
.0

44

A
C

R
R

O
SS

(U
-n

et
)

0.
99

7 
± 

0.
00

3
0.

98
8 

± 
0.

00
3

0.
94

4 
±

 0
.0

18
0.

90
6 

± 
0.

02
2

0.
91

2 
± 

0.
02

1
0.

06
9 

± 
0.

03
5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 February 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 31

TA
B

L
E

 II

C
O

M
PA

R
IS

O
N

 O
F 

T
H

E
 V

E
SS

E
L

 S
E

G
M

E
N

TA
T

IO
N

 R
E

SU
LT

S 
FO

R
 S

U
PE

R
FI

C
IA

L
 V

A
SC

U
L

A
R

 P
L

E
X

U
S 

en
 fa

ce
 S

C
A

N
S 

(M
E

A
N

 ±
 S

T
D

. D
E

V
.)

, U
SI

N
G

 A
L

L
 T

H
IR

T
Y

 S
C

A
N

S 
FR

O
M

 R
O
S
E
-
1

 T
R

A
IN

IN
G

 

SE
T

 F
O

R
 S

U
PE

R
V

IS
E

D
 T

R
A

IN
IN

G
. B

O
L

D
 N

U
M

B
E

R
S 

IN
D

IC
A

T
E

 T
H

E
 B

E
ST

 M
E

A
N

 V
A

L
U

E

M
et

ho
d

A
U

C
A

C
C

G
M

E
A

N
K

A
P

PA
D

SC
F

D
R

R
2U

-N
et

 [
48

]
0.

93
1 

±
 0

.0
38

0.
91

7 
±

 0
.0

26
0.

82
1 

±
 0

.0
62

0.
70

8 
±

 0
.0

69
0.

75
7 

±
 0

.0
54

0.
15

8 
±

 0
.0

42

U
-n

et
 [

27
]

0.
93

8 
±

 0
.0

37
0.

92
2 

±
 0

.0
25

0.
83

4 
±

 0
.0

61
0.

72
7 

±
 0

.0
67

0.
77

3 
±

 0
.0

52
0.

14
7 

±
 0

.0
42

nn
U

-N
et

 [
49

]
0.

93
5 

±
 0

.0
40

0.
92

4 
±

 0
.0

26
0.

83
6 

±
 0

.0
56

0.
73

4 
±

 0
.0

69
0.

77
9 

±
 0

.0
54

0.
14

1 
± 

0.
03

4

C
S-

N
et

 [
29

]
0.

93
2 

±
 0

.0
37

0.
92

0 
±

 0
.0

27
0.

83
2 

±
 0

.0
53

0.
72

4 
±

 0
.0

69
0.

77
1 

±
 0

.0
52

0.
15

5 
±

 0
.0

23

O
C

TA
-N

et
 [

25
]

0.
94

4 
±

 0
.0

31
0.

92
2 

±
 0

.0
27

0.
82

8 
±

 0
.0

48
0.

72
6 

±
 0

.0
67

0.
77

2 
±

 0
.0

51
0.

14
2 

±
 0

.0
23

A
C

R
R

O
SS

(C
S-

N
et

)
0.

93
7 

±
 0

.0
37

0.
92

1 
±

 0
.0

26
0.

83
0 

±
 0

.0
62

0.
72

1 
±

 0
.0

69
0.

76
8 

±
 0

.0
55

0.
15

1 
±

 0
.0

39

A
C

R
R

O
SS

(U
-n

et
)

0.
94

5 
± 

0.
03

3
0.

92
4 

± 
0.

02
6

0.
85

2 
± 

0.
05

3
0.

74
3 

± 
0.

06
7

0.
78

8 
± 

0.
05

1
0.

16
5 

±
 0

.0
30

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 February 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 32

TABLE III

COMPARISON OF SEMI-SUPERVISED VESSEL SEGMENTATION RESULTS FOR ROSE-1 DATASET

Method Training data % ACC DSC

U-net [27] 1.7% 0.877 0.660

CS-Net [29] 1.7% 0.818 0.616

U-net [27] 3.3% 0.891 0.712

CS-Net [29] 3.3% 0.883 0.695

MT [52] 3.3% 0.883 0.666

MixMatch [53] 3.3% 0.908 0.730

PSL [34] 3.3% 0.912 0.748

ACRROSS 1.7% 0.911 0.736

ACRROSS 3.3% 0.910 0.749
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TABLE IV

COMPARISON OF THE MEAN JACCARD INDEXES FOR 3 MM × 3 MM SVP SCANS (MEAN ± STD. DEV.). THE PREVIOUS METHODS HAVE 

NOT REPORTED THEIR STANDARD DEVIATIONS. BOLD NUMBERS INDICATE THE BEST MEAN VALUE IN THAT ROW

Díaz et al [46] Lu et al. [54] Ours

Healthy 0.82 0.87 0.83 ± 0.07

Diabetic 0.83 0.82 0.85 ± 0.08
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