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The ability to align individual cellular information from multiple
experimental sources is fundamental for a systems-level understanding of
biological processes. However, currently available tools are mainly designed
for single-cell transcriptomics matching and integration, and generally
rely onalarge number of shared features across datasets for cell matching.
This approach underperforms when applied to single-cell proteomic
datasets due to the limited number of parameters simultaneously accessed
and lack of shared markers across these experiments. Here, we introduce
acell-matching algorithm, matching with partial overlap (MARIO) that
accounts for both shared and distinct features, while consisting of vital
filtering steps to avoid suboptimal matching. MARIO accurately matches
and integrates data from different single-cell proteomic and multimodal
methods, including spatial techniques and has cross-species capabilities.
MARIO robustly matched tissue macrophages identified from COVID-19
lung autopsies via codetection by indexing imaging to macrophages
recovered from COVID-19 bronchoalveolar lavage fluid by cellular indexing
of transcriptomes and epitopes by sequencing, revealing unique immune
responses within the lung microenvironment of patients with COVID.

Therapid developmentsinsingle-cell technologies have fundamentally
transformed the investigation of complex biological systems. The abil-
ity toindividually measure the genomic', epigenomic?, transcriptomic?,
and proteomic* states at the single-cell level marks an exciting erain
biology. Single-cell transcriptomics and targeted proteomics are the
two main approaches commonly used to delineate cell populations
and infer functionality or disease states. Single-cell transcriptomics
istheoretically able to assess the entire transcriptome of atarget cell,
with 5,000-10,000 unique gene transcripts captured on average for

each cell. Akey drawback of this method is the relative sparseness of the
datagenerated, particularly for less abundant genes. On the other hand,
antibody-based single-cell proteomics has gradually progressed over
the years, from the initial detection of a handful of protein targets>®,
to about 40 targets via mass cytometry’, over 100 protein targets via
sequencing®’ and, most recently, more than 40 protein targets spatially
resolved in their native tissue context'’ . Emerging sequencing-based
approaches such as cellular indexing of transcriptomes and epitopes
by sequencing (CITE-seq) and RNA expression and protein sequencing
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assay can simultaneously probe the RNA and protein levels for each
single cell, albeit with the tradeoff of dissociating cells from their origi-
nal spatial location.

Given the frequent overlap in proteins measured across dissoci-
atedsingle cells viasequencing, and intact tissues viaantibody-imaging,
anorthogonal approach would leverage information from one modality
toinformthe other.Such aneffort would use biological measurements
obtained onone modality (for example, CITE-seq) toinform cells meas-
ured using another modality (for example, codetection by indexing or
CODEX) for acomprehensive assessment of the localization of both
proteins and RNAs within tissue samples, hence it is vital to have the
ability to align individual cells across these experiments.

Several computational approaches for integrative analysis of
single-cell data across multiple modalities currently exist' ', However,
mostofthese methodsare tailored toward single-cell sequencing-based
analysis, such as single-cell RNA-sequencing (scRNA-seq) and
single-cell assay for transposase-accessible chromatin sequencing,
and are not designed for protein-based assays as the limited shared
features across proteomic datasets are orders of magnitude smaller
than those in single-cell sequencing datasets, and the signals within
these limited shared features alone are typically insufficient to pro-
duce high-quality and interpretable pairwise cell-matching results.
Inaddition, theintrinsically greedy (and thus at most locally optimal)
nature of the mutual nearest neighborhood (mNN) matching algorithm
routinely used in available methods limits the ability to fully use the
correlation structure within the distinct protein features. Thus, there
is an unmet need for a new strategy specifically designed for match-
ing and integrating single-cell datasets based on limited but robust
proteomic parameters.

Tomeet this need, we have developed matching with partial over-
lap (MARIO): the matching process leverages both shared and distinct
features between datasets, and is nongreedy by optimizing a global
objective. We additionally developed two quality control steps, the
matchability test and joint regularized filtering, to avoid suboptimal
matching and prevent uninterpretable over-integration. Benchmark-
ing of MARIO across various single-cell proteomic data generated from
different modalities (cytometry by time of flight (CyTOF), CITE-seq,
and CODEX) and from different species (human and nonhuman pri-
mates (NHPs)) demonstrated consistent outperformance of cell-
cell-matching accuracy over available methods. Finally, we matched
macrophages from a CODEX multiplex immunofluorescence lung
autopsy dataset to CITE-seq bronchoalveolar lavage fluid (BALF) mac-
rophage cells using MARIO to uncover a spatially orchestrated immune
conditioning by complement-expressing macrophages and neutro-
phils in COVID-19. To make MARIO freely available to the public, we
implemented the algorithmin the Python package MARIO, along with
anRversionavailable online at https://github.com/shuxiaoc/mario-py.

Results

Matching single cells using partially shared features

There are unique challengesin theimplementation of a cell-matching
algorithm using proteomic information. First, each study is often
bespoke and rarely shares identical antibody panels, although a por-
tion of the proteins measured is generally the same. Thus, the matching
process must be able to achieve stable pairing of cells with the limited
number of features; this is in contrast to transcriptomics data where
oftenseveral hundreds to thousands of shared features are available'*”.
Second, underlying correlations between shared and distinct features
often exist within and between datasets as aresult of panel design and
fundamental biological principles. It is therefore pertinent to incor-
porate information from both shared and distinct protein features.
Third, the matching problem corresponds to a well-defined objective
function. The mNN-type algorithms can be thought of solving this
objective function in a greedy fashion, but often a global optimum
is unattainable (see the Methods for mathematical details). As such,

the matching problem should be solved to attain the global optimum
rather than a local optimum. Finally, key quality control steps are
crucial to ensure the accuracy and interpretability of the postulated
cell-cell-matching results.

To address these challenges, we developed MARIO: a robust
framework that accurately matches cells across single-cell proteomic
datasets for downstream analysis (Fig. 1a,b). MARIO first performs a
pairwise cell matching using shared features. To do this, after proper
transformation, normalization and batching, we use singular value
decomposition on shared features to construct a cross-data distance
matrix based on the Pearson correlation of the reduced matrix. An
initial cell-cell pairingis then obtained by solving a linear assignment
problemthatsearches for adistance-minimizinginjective map between
the two collections of cells. The two datasets are next aligned using
this initial matching, and both shared and distinct features of the two
datasets are projected onto acommon subspace using canonical cor-
relation analysis (CCA)", as it incorporates the hidden correlations
between different proteomic features not shared between the datasets.
A cross-dataset distance is then obtained using the canonical scores,
and arefined matching is obtained via linear assignment on the new
distance. By taking the means of the top sample canonical correlations
asa proxy of matching quality, MARIO then finds the best convex com-
bination weight to interpolate the initial and refined matchings. This
allows users to data-adaptively backtrack toward the initial matching
when the refined matching becomes unreliable (Fig. 1c).

After obtaining the interpolated matching, MARIO next performs
amatchability test to determine whether or not the datasets selected
for integration by the user are suitable for such a joint analysis. The
matchability test is performed by flipping the sign of each row of the
two datasets with some flipping probability, so that most of underlying
inter-dataset correlations (if these exist) are abrogated. This process
is repeated several times to build a distribution of the background
canonical correlations of the samples with a low underlying correla-
tion. Comparison of the deviation of the sample canonical correlations
from the background distribution reveals whether strong underlying
information exists to connect the datasets (Fig. 1d).

Although datasets passing the matchability test are highly corre-
lated, the matching at theindividual cell level could stillbe erroneous.
To address this problem, we developed a process termed jointly regu-
larized filtering to automatically filter out low-quality matches without
a priori biological knowledge. The filtering process is carried out by
optimizing aregularized k-means objective. This objective is a super-
position of two parts, where the first part contains individual k-means
clustering objectives for both datasets and the second part penalizes
the Hamming distance between the two individual cluster label vectors
and a hypothesized ‘global’ label vector. Use of such a strategy stems
fromour hypothesis that although the populations being measuredin
two different experiments may contain modality-specific character-
istics (thus the existence of ‘individual’ cluster labels), both originate
fromabiologically analogous population (thus the existence of a global
cluster label that is close to the two individual cluster labels). If, for a
matched pair of cells, the individual labels obtained by joint regular-
ized clustering are not the same, this matched pair is likely spurious
and thus disregarded (Fig. 1d). After this filtering step, the resulting
individually matched cells are subjected to CCA, and the canonical
scores are used as the reduced components in the final embeddings.
Weimplemented generalized CCA to achieve joint embedding of more
than two datasets, and subsequently used the gCCA canonical scores as
dimensionally reduced componentsin the final embeddings (Fig. le).
Mathematical details can be found in the Methods.

To verify the merit of MARIO in a ‘ground-truth’setting, we tested
the matching performance on simulated datawith high-granularity cell
types. We used Symsim? to simulate single-cell epitome-like datasets™:
datawith 20 cell populations from two different modalities, with atotal
of 60 features generated. To mimic scenarios of different antibody
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Fig.1|Schematic of the MARIO analysis pipeline. a, Single-cell proteomic
datasets can be acquired using various modalities, including CyTOF, CITE-seq
and CODEX, on different biological samples or species (for example, human or
NHP) with shared underlying biological information. Protein markers are divided
into two classes: (1) features captured within both datasets (shared features),

and (2) markers not shared between the datasets (distinct features). Both classes
of protein expression matrices serve as inputs to the MARIO algorithm. b, After
the MARIO pipeline, further downstream analysis can be conducted using the
combined information integrated across multiple individual experiments.

¢, Inthe first step of MARIO, individual cells are first subjected to matching
using the distance matrix constructed using the shared features describedina,
before further match refinement using the distance matrix constructed from
the distinct features such that all features are included. Thereafter, the best
interpolation of initial and refined matching will be performed. d, In the second
step of MARIO, the dataset then undergoes quality control steps (matchability
test and joint regularized filtering). e, In the MARIO third step, with the
matching information, cells across both datasets are jointly embedded into
aCCAsubspace.

panelsetup, 20 out of 60 features were shared across two datasets, with
afurther 20 distinct features each. Indeed, MARIO showed improved
matching capability in the simulated ground-truth case with limited
protein features available and shared across datasets (MARIO 81.54%,
second best Scanorama 63.3%) (Extended Data Fig.1).

Matching and integration of multimodal single-cell protein
datasets

We evaluated the performance of MARIO on two distinctive datasets
generated using individual cells isolated from healthy human bone
marrow. The first is a sequencing-based CITE-seq dataset consisting
0f 29,007 cells stained with an antibody panel of 29 markers"”, and
the second is a mass cytometry-based CyTOF dataset consisting of
102,977 cells stained with an antibody panel of 32 markers?. Twelve
markers were common to both datasets. MARIO successfully matched
and aligned these two datasets as shown by visual inspection (Fig. 2a).
Theintricate datastructures were preserved post-MARIO integration,
with clear separation of cells belonging to phenotypically distinctive
populationsin dimensionally reduced t-distributed stochastic neighbor

embedding (¢-SNE) plots (Fig. 2b). The original cell-type annotations
based on the shared low-level annotation (Fig. 2b, top left), and on
preexisting annotations from each dataset (Fig. 2b, top right and bot-
tom left) were highly conserved after MARIO integration. Subsequent
jointclustering of the post-MARIO integrated data using the canonical
correlationscores also corroborated highly accurate cell-type deline-
ation (Fig. 2b, bottom right).

We next designed three different scenarios to further charac-
terize the integration performance of MARIO and to compare its
performance against the single-cell integration methods Seurat",
fastMNN™ and Scanorama®. In the first case, shared protein markers
were removed from each dataset individually (in an accumulative
fashionandin alphabetical order) to simulate the distinctive antibody
panel designs across datasets. MARIO consistently outperformed other
methodsinterms of matching accuracy, independently of the excluded
protein targets (full 12-shared panel total accuracy MARIO, 96.01%;
second beset Scanorama, 91.46%; dropping eight shared antibodies
MARIO, 91.45%; second best Scanorama, 71.22%) (Fig. 2c and Extended
DataFig. 2a).
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We additionally evaluated the integration quality among these
methods, using metrics, including Structure alignment score, Sil-
houette F1 score, adjusted Rand index (ARI) F1, Cluster mixing
score, and lower dimensional embedding, based on each method’s
post-integration latent space scores (Extended Data Fig. 2a,b and
Supplementary Figs.1and 2). Inaddition, we removed shared protein
markers as previously tested, but in the order of importance score
(Methods), where less important markers were dropped first. This
process mimics the natural logic of building antibody panels, and in
suchadropping scheme, MARIO still consistently outperformed other
methods interms of matchingaccuracy (Supplementary Figs.3and 4).

In the second test, random noise was gradually spiked into the
datasets to simulate the variability of intrinsic signal-noise in real
world data. The matchability testimplemented in MARIO was able to
detect and alert the user when data quality was insufficient for confi-
dent matching (Fig. 2d). In contrast, the elevated noise resulted in an
increase in the number of cells being forcefully paired in other tested
methods (reaching close to 100%), albeit with low accuracy (ranging
from 50 to 80% in accuracy).

In the third scenario, an entire group of cell types was removed
from the destination dataset (that is, the set being matched to) to
mimic fluctuations of cell-type composition between datasets. MARIO
outperformed all other tested methods by successfully suppressing the
incorrect matching of these missing cell types (Fig. 2e).

Given that the matching accuracy for CyTOF to CITE-seq cell
pairs among all the main cell types with MARIO was consistently high
(Supplementary Fig. 5a); this allowed confident inference of the tran-
scriptome within the single cells measured using CyTOF from their
CITE-seq counterparts. We confirmed that the expression patterns
of celltype-specific markers were ingood agreement between CyTOF
proteins, CITE-seq proteins and CITE-seq RNA transcripts (Fig. 2f,g
and Supplementary Fig. 5b,c). Moreover, the expression patterns of
CD45RO0 proteinand S100A4 and CCR7RNAs from CITE-seq assisted the
delineation of memory and naive CD4 T cell subtypesin theintegrated
dataset, which was individually unavailable for manual annotation in
the CyTOF dataset alone. Therefore, this integrated analysis better
defines cell states than do these modalities individually.

We subsequently evaluated the performance of MARIO on two
healthy human peripheral blood mononuclear cell (PBMC) datasets
measured using CITE-seq and CyTOF. Fifteen proteins were common
across these two datasets. MARIO successfully integrated the two
datasets (Extended Data Fig. 3a) with high accuracy (Extended Data
Fig. 3b). Our results reveal that the expression of key genes on both
protein (CyTOF and CITE-seq) and RNA (CITE-seq) levels are in high
agreement with their corresponding phenotypic cell-of-origin assign-
ments (Extended Data Fig. 3c). Further benchmarking using the three
cases described above showed similar superior matching accuracy
for MARIO regardless of antibody panel setup (Extended DataFig. 4a;
for full15-antibody shared panel total accuracy, MARIO at 90.62% and
second best, Seurat 87.55%; for dropping eight shared antibodies, for
total accuracy, MARIO 86.34% and second best, Scanorama 81.03%).In
evaluation of suppression of over-integration due to poor quality data,
mNN methods force matched almost all cells with accuracy below 70%,
whereas MARIO alerted the user of poor data quality (Extended Data
Fig.4b). Third, integration with MARIO, but not withmNN methods, was

robust even with extensive cell-type composition changes (Extended
DataFig.4c,d and Supplementary Fig. 6).

Cross-species analysis reveals species and stimuli-specific
responses

We performed MARIO matching of four CyTOF datasets from studiesin
which (1) humanwholeblood cells were isolated from individuals chal-
lenged with HIN1virus®, (2) humanwhole blood cells were stimulated
with IFNy*, (3) rhesus macaque whole blood cells were stimulated
with IFNy and (4) cynomolgus monkey whole blood cells were stimu-
lated with IFNy (Fig. 3a). Dataset 1 was generated using 42 markers,
and datasets 2-4 were generated using 39 markers. We observed a
high degree of concordance between cell types when visualizing the
human-human and human-NHP datasets via --SNE using MARIO inte-
grated canonical scores (Fig. 3a). In contrast, datasets without MARIO
integration process showed an unhomogenized pattern in the t-SNE
visualization, indicating the necessity of performing MARIO integra-
tion for robust cross-comparisons across these four datasets (Fig. 3b).
MARIO cell-type assignment was accurate among different cell types
(Supplementary Fig.7a). There were minimal differences, as measured
using Euclidean distance, between paired cells calculated by canonical
scores (Supplementary Fig. 7b).

Successful application of MARIO for robust matching and inte-
gration across three species and two stimulation conditions granted
the opportunity to visually observe subtle changes in expression pat-
terns across different cell types and datasets (Fig. 3c and Supplemen-
tary Fig. 7c). We observed an increase in proliferation of CD4 T cells
in human blood cells after both influenza viral challenge and IFNy
stimulation, as marked by the upregulation of Ki-67, but no increase
in proliferation was detected after stimulation of NHP blood cells.
We also observed the upregulation of pSTAT3 in the natural killer cell
population within human and NHP samples treated with IFNy com-
pared to human participants challenged with influenza, although
overall pSTAT3 expression was higher in the influenza group. These
results are consistent with previous observations* . Finally, there
was an increased p38 expression in all cell types across all samples,
reflective of the conserved functionality of p38 during cell inflamma-
tory and stress responses®?. In contrast, using the ¢-SNE plots from
preintegration data proved hard to visually identify such an effect
(Supplementary Fig. 7d).

Our benchmarking results showed superior matching accuracy
using MARIO regardless of antibody panel setup. When using 39 shared
antibodies, the total accuracy was 93.26% for MARIO and 86.20% for
the second best method (Seurat); when eight shared antibodies were
dropped, the total accuracy for IFNy treatment was 86.79% for MARIO
and 82.23% for the second best method (Scanorama) (Extended Data
Fig.5). The mNN methods forced matching of almost100% of the cells
withanaccuracy less than 70% with increased spike-in noise, whereas
MARIO alerted the user of insufficient information for matching (Sup-
plementary Fig. 8a). MARIO, unlike the mNN methods we tested, was
robust in resisting cell-type composition changes (Supplementary
Figs. 8b, 9 and 10). Additionally, we removed shared protein markers
aspreviously tested inthe order of theirimportance score, with MARIO
consistently outperforming other methods in matching accuracy
(Supplementary Figs.11and 12).

Fig.2|Matching and Integration of CyTOF and CITE-seq bone marrow data.
a, t-SNE plots of individual cells colored by assay modality, either preintegration
or MARIO integration. IFNG, interferon gamma. b, t-SNE plots of MARIO
integrated cells colored by clustering results from (top left to bottom right):

high concordance in shared cell types based on annotations from both original
datasets; annotation from Levine et al.; annotation from Stuart et al. and the
clustering result based on CCA scores from MARIO high cell-type resolution
using information from both assays. c-e, Benchmarking results of MARIO against

other mNN-based methods. ¢, The matching accuracy (left) and the proportion of
cells being matched (right) are tested by sequentially dropping protein features.
d, The matching accuracy (left) and the proportions of cells being matched
(right) are measured with increasingly spiked-in noise. e, The error avoidance
score (higher is better) is calculated after dropping each cell type sequentially
from the dataset. f, Heatmap of cross-modality protein expression levels for the
matched cells. g, t-SNE plots of the matched cells with protein or RNA expression
levels overlaid based on each of the assays.
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We similarly applied this strategy to data from IL-4-stimulated
human and NHP whole blood cells, and compared them to human
influenza viral challenge blood cells (Supplementary Fig. 13a,b).
On IL-4 stimulation, we saw an upregulation of Ki-67 in human
CD4 T cells but not NHP cells, much akin to IFNy stimulation, and
high expression of pSTAT3 in the natural killer of IL-4-stimulated
blood cells, but not in PBMCs from humans challenged with influ-
enza (Supplementary Fig. 13c). In line with IFNy stimulation, the
p38 response was consistent across species and treatments. Our
results consistently showed that, regardless of antibody panel setup,
MARIO had superior matching accuracy (Supplementary Fig. 14),
prevented over-integration (Supplementary Fig. 15a), was robust
to cell-type composition changes (Supplementary Fig. 15b) and
generated accurate lower dimensional embedding (Supplementary
Figs.15cand16).

Accurate tissue architectural reconstruction viamatching
Matching cells from sequencing modalities on to multiplex proteomics
imaging datahasbeen previously attempted using existing integration
algorithms (for example, STVEA using Seurat v.2)*°. We reasoned that
a highly accurate cell matching and integration from MARIO could
infer the spatial localization of transcripts within individual cells. We
performed MARIO on spatially resolved data from murine splenic cells
collected using antibody-based CODEX imaging (28 protein markers)"
and datafrom dissociated murine splenic cells assayed using CITE-seq
(206 protein markers)®'; 28 protein markers (all the markers in the
CODEX dataset) were shared.

We first visually verified successful MARIO matching and inte-
gration using dimensionally reduced ¢-SNE plots (Fig. 4a). Cell-cell
matching was accurate across different cell types (Extended Data
Fig. 6a). Thisenabled accurate single-cellinformation transfer between
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boxis showninthe bottom row. Scale bars, 400 pm (upper) and 200 um (lower).
Dotted line, T cell zone; white line, B cell zone. ¢, Heatmap of differentially expressed
genes (frommatched CITE-seq cells) among subpopulations of CODEX B cells,
gated based on CODEX proteins. Four subpopulations of B cells were identified:
transitional type 1B cells (T1), marginal zone B cells (MZ), mature B cells (M), and
follicular/germinal center B cells (FO/GC).
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cellsmeasured using CITE-seq and CODEX spatially resolved cells. We
visually observed highly concordant spatial organization of cell types
annotated using CODEX or CITE-seqinformation and further observed
aclear distribution pattern of single-cell transcript expression levels
(based on matched individual CITE-seq cells for CODEX cells) corre-
sponding to their expected spatial localization in the spleen (Fig. 4b
and Extended Data Fig. 6b). For example, /[7r is concentrated in the
T cell zone as expected®’; Myc and CxcrS are localized to activated and
proliferating T and B cells within the germinal center®**; Ms4al and
Bhlhe41 are highly expressed inthe B cellzone and B cellsin the red pulp
region®**and /ll1bis expressed outside the B cell zone*. ¢-SNE (visual-
ized using CODEX proteins alone) overlays of the matched proteinand
RNA expression confirmed expected RNA expression profiles within
given cell types (Extended Data Fig. 6¢).

We next sought to further refine cells from the B lymphocyte
lineage by gating the B cell population from the CODEX dataset. Four
subpopulations of B cells were identified: transitional type 1B cells,
marginal zone B cells, mature B cells and follicular/germinal center B
cells. Visual inspection of the spatial location of these four subtypes
of B cell confirmed localization within mouse spleens consistent with
previous observations (Extended Data Fig. 6d)***'. MARIO matching
thus enabled a detailed examination of the differentially expressed
transcripts within these B cell subtypes resolved by CODEX, reveal-
ing a distinctive transcriptional program reflective of their pheno-
type (Fig. 4¢)****. These genes were significantly upregulated (P
adjusted < 0.05, Wilcoxon Test, two-sided) in the corresponding gated
populations of CODEXB cells. Inaddition, we also confirmed the B cell
subtypes as originally annotated by transcriptomic information from
Gayaso et al. successfully localized to corresponding spatial niches
after MARIO matching (Extended Data Fig. 6e).

For this CODEX to CITE-seq matching, MARIO had matching accu-
racy superior to mNN methods (Extended Data Fig. 7a). For the full
28-antibody shared panel, the total accuracy for MARIO was 87.76%
and the second best method (fastMNN) was 87.40%. Dropping eight
shared antibodies resulted in total accuracies of 85.31% for MARIO
and the second best method (fastMNN) was 82.01%. MARIO prevented
over-integration due to poor quality data, whereas the mNN methods
forced matching (Extended Data Fig. 7b). MARIO was also robust in
resisting changes to cell-type composition (Extended Data Fig. 7c,d
and Supplementary Fig.17). Additionally, we removed shared protein
markers as previously tested, butinthe order ofimportance score, and
MARIO still consistently outperformed other methods in matching
accuracy (Supplementary Fig.18).

Generation of a multi-omic COVID-19 lung molecular atlas

We reasoned that the ability to performintegrative and inferential
analysis across biologically analogous clinical cohorts, measured at
different institutions with varying technologies, would further our

understanding of the facets of COVID-19 biology, including a study
in which BALF samples were subjected to CITE-seq*. We additionally
profiled 76 lung tissue regions from 23 individuals who succumbed
to COVID-19 using CODEX imaging with 54 markers (Supplementary
Tablel) and observed the abundance of macrophagesinboth CITE-seq
(15.8% of total cells) and CODEX (31.3% of total cells) cohorts. The large
overlap in antibody panels of both studies allowed the robust matching
and subsequent functional interrogation of macrophages with high
granularity (Fig. 5a).

We were able to stratify the macrophages into two populations
based ontheir transcriptional signatures of complement pathway activ-
ity (Fig. 5b; CIQlow and high). Such stratificationis challenging without
using MARIO matching and solely relying on macrophage-related
protein markers, including canonical M1 and M2 markers (Supple-
mentary Fig. 19). However, protein expression of these two classes
of macrophages partially corresponded to an M1 phenotype for CIQ
low macrophages, and an immunosuppressive M2 phenotype for
C1Q high macrophages (Fig. 5b). We further observed that the CIQ
high transcriptional programwas enriched in antigen processing and
presentation, whereas that of the C1Q low population consisted of
several immune chemotaxis and migration pathways including that
of neutrophil chemoattractants (Extended Data Fig. 8a). The top dif-
ferentially expressed transcriptsincluded CXCL8, CCL7,and TMEM176B,
with previously described roles in regulating neutrophil recruitment
and migration***®, The roles of proteins encoded by /L1B, SIO0AS, and
CCL2inthe recruitment of aberrant neutrophils have beenrecently elu-
cidated in NHP and mice models of SARS-CoV-2 lung pathology*’, and
arealsoreflected by elevated transcriptlevelsin CIQlow macrophages
(Extended DataFig. 8b).

Inthefive previously established functional clusters of interferon
stimulated genes (ISG)**"', we observed distinctive ISG transcriptional
programs in CIQ low and high macrophages (Extended Data Fig. 8c;
P adjusted <0.05, Wilcoxon Test, two-sided) across all clusters
(Extended Data Fig. 8c, ISG clusters 1-05). Our results indicate the
activation of theinnate immunological pathway, including several pre-
viously characterized genes (SERPINB9, CKAP4, CCL2 and SPHK1)**™,
in C1Q low macrophages to inhibit SARS-CoV-2 replication and entry.
Thefailure tosubsequently regulate and dampen thisinnate response
resulted in unchecked host immune responses and collateral tissue
damage for C1Q low macrophages, while C1Q high macrophages have
elevated complement cascade activation (for example, LGALS3BP*°)
and express genes correlating with mild rather than severe COVID-19
symptoms (for example, SIGLECI, ref. 57).

In line with the transcriptional signatures for aberrant neutro-
philinfiltration, we noted a correlation between the presence of CIQ
low macrophages and increased infiltrating neutrophils (Fig. 5c-e;
p=-0.453, P<0.01). This elevated neutrophil presence was also con-
firmed visually (Fig. 5f,g and Extended Data Fig. 9a). Spatial cell-cell

Fig. 5| Spatial multi-omic analysis of macrophages in patients with COVID-19.
a, Schematic of the experimental and MARIO analysis on BALF and lung tissues
from patients with COVID-19 were measured from two independent studies via
CITE-seq (from VIB/Ghent) and CODEX (University Hospital Basel/Stanford).
Macrophages from the CODEX were matched to those in CITE-seq. b, Heatmaps
of C1IQhigh and low macrophages identified from CITE-seq, and their matched
CITE-seq and CODEX expression patterns. ¢, Aranked plot (median + 1.51QR)
for macrophages from each patient (n =23) in the CODEX data, as a percentage
of CIQhigh proportions. d, Proportion of neutrophils (of all cell types) in each
patient from the CODEX data, ranked by the same sequence asin ¢ (Pvalue and
correlation calculated by a two-sided Spearman-ranked test). e, A dot plot with
95% Clshowing the relationship between C1Q high macrophages (y axis) and
neutrophil percentage (xaxis). Each dot represents a tissue core (n = 76). Colors
represent patients. f, A representative pseudo image of two tissue cores colored
with the locations of C1Q high and low macrophages. g, The CODEX images of
the same two tissue coresin f, with CD163, CD68 and CD15 antibody staining.

Scale bars, 400 um (left) and 100 pm (right). h, An experimental schematic of
PANINI to validate the spatial localization of CIQ macrophages on Basel/Stanford
COVID-19 tissues. Slides were costained with probes detecting CIQA mRNA and
antibodies targeting CD15 and CDé68 proteins. i j, A dot plot with 95% Cl showing
the relationship between the proportion of C1IQA high macrophages (to all
macrophages) from the PANINI validation (y axis) versus the MARIO prediction
(xaxis) per patient (i) or per tissue core (j). Pvalues and correlations were
calculated using a two-sided Spearman-ranked test. k, Anchor plots of
neutrophils as a function of distance from CIQA high or low macrophages

in MARIO-predicted (above) or PANINI-validated (below) experiments.

I,m, Arepresentative tissue core with MARIO-predicted CIQA expression levels
inmacrophages (left), and PANINI-validated CIQA and CD68 signals (right). Scale
bar, 400 pm. n, Dot plot with 95% Cl of spatial-correlations of CIQA between
validation and prediction experiments (Pvalue and correlation calculated by a
two-sided Spearman-ranked test). Each dot represents aregion in the core.
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interaction analysis showed differences in these two subclasses of
macrophages and their proximity to other cell types, such as high fre-
quency of C1Q high macrophages proximal to CD4 and CD8 T cells, B
cells, myeloid cells and other macrophages (Extended Data Fig. 9b). We
next centered CI1Q high and low macrophages for an anchor analysis™
tounderstand the microenvironmentas a function of distance around
these two groups of macrophages. Our analysis confirmed the distinc-
tive microenvironments around these macrophages, as evident from
the differential organization of macrophages, plasmacells, vasculature
and CDS8T cells (Extended Data Fig. 9¢).

We finally performed protein and nucleic acid in situ imaging
(PANINI)*® to visualize the messenger RNA of a complement marker,
CIQA, the neutrophil marker CD15 and the macrophage marker
CD68 on COVID-19 tissue microarray sections to experimentally
validate the spatially resolved gene-expression patterns predicted
by MARIO (Fig. 5h). We confirmed the robust expression patterns of
CIQAmMRNA, CD68 and CD15 proteins inthe tissue sections (Extended
Data Fig. 9d). We observed a significant correlation between the per-
centages of experimentally validated CIQ High macrophages and
MARIO-predicted CIQ High macrophages percentage, both at the
patient level (P=0.019, p = 0.574) and at the per tissue core level
(P<0.01,p=0.521, Spearman-ranked test, Fig. 5i,j). Inline with anchor
analysis from MARIO-inferred data, we confirmed a significantly
decreased neutrophil density around CIQ high macrophages in the
PANINI validation experiment (Fig. 5k). The RNA spatial pattern from
our PANINI experiment, performed on a separate, nonadjacent sec-
tion of the same patient tissue core, recapitulated the prediction from
the MARIO-matched data (Fig. 51, m). The spatial correlation between
MARIO-predicted and PANINI-validated expression levels of CIQA in
macrophages was highly consistent (CIQA signal per region P<0.01,
p =0.597,Spearman-ranked test, Fig. 5n). This p value was close to the
maximum possible spatial correlation of the tissue structure as deter-
mined using cell density per region (P < 0.01, p = 0.602, Extended Data
Fig.9e), validating the highly accurate inferential capabilities of MARIO.

Parameter choices, computational resource usage and
algorithmic alternatives

MARIOQ is generally highly robust with respect to different parameter
choices for running (Supplementary Figs. 20 and 21). Given the glob-
ally optimal nature of the core matching algorithm implemented in
MARIO, the time required to run the MARIO pipelineis cubically related
to the number of cells. To circumvent this, in the actual implementa-
tion of the pipeline matching is automatically performed in batches,
thus the time and memory usage is linear rather than cubic, inrela-
tion to the dataset size. We also further developed a sparsification
technique that reduces the search space to accelerate the matching
process. Empirically, we found that MARIO canbe run on datasets with
moderate sample sizes within reasonable time and memory usage
(Supplementary Fig. 22). We also observed that the distance matrix
constructed in MARIO (using Pearson correlation) is computationally
efficient and generally produces better matching outcome compared
tomore complicated distance matrices (Extended DataFig.10). We also
tested alternative algorithms, such as optimal transport (SpaOTsc*)
asanother potential approach for matching of cells beyond the scope
of this work (Supplementary Fig. 23).

Discussion

MARIO is a powerful matching and integration framework for single
cellsthatallows the retention of distinct features. Itis particularly suit-
able for the integration of single-cell proteomic datasets with limited
antibody panel overlap. The analysis pipeline builds on several rigorous
mathematical advances. First, the matching is constructed by glob-
ally (rather than locally) optimizing over a new distance matrix that
incorporates both the explicit correlations in shared features and the
hidden correlations among distinct features. Second, the accuracy and

robustness of the matching are ensured by two theoretically principled
quality control processes: the matchability test and jointly regularized
filtering®®. Third, the integrated embeddings are obtained via CCA
or gCCA, which incorporates the information in both the shared and
distinct features.

In spite of the clear advantages of MARIO, it has some technical
limitations. First, the accuracy and robustness may come at the cost of
longer analysis times compared to mNN-based approaches. Second, the
prerequisite of performing such matching across datasetsis that these
datasets should be very similar, thus if certain cell types or cell states
aremissing in one modality, the matching and integration performance
can potentially be affected. Third, although in all the benchmarking
scenarios tested in the paper MARIO showed better tolerance of the
antibody panel difference between datasets being matched compar-
ing to mNN-based methods, the matching accuracy will still eventually
drop below a biologically relevant level when too little information
is shared across datasets. Thus, the exact minimal requirement for
matching will depend on each dataset itself, marker panels and the
biological goal the user wants to achieve. Fourth, while the distance
matrix constructed in MARIO defaults to using Pearson correlation,
to better accommodate specific requirements from future users, we
supplied the option to use nonlinear kernels (Laplacian) instead of
Pearsonto construct the distance matrix, per user’s choice. Last, linear
assignment (MARIO), mNN (for example, Seurat, Scanorama, fastMNN
and more) and various other recent methods (for example, SpaOTsc)
areall capable of matching cells across modalities. Future iterations of
these approaches will be of broad interest to the field.

Theneedto study biological processes within their tissue context
isincreasingly evident, with direct relevance to the physiological con-
text of health and disease. The ability to match similar biological sam-
ples measured using distinctive single-cell assays will be paramount
for hypothesis generation and guidance for experimental design.
We are confident that MARIO will serve as a useful methodology and
resource for the community with direct applications to a plethora of
experimental platforms and biological contexts.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods

Complete methods, including details of the data analysis process and
extensions of the method summarized below, are availablein the Sup-
plementary Notes.

MARIO pipeline

Before theinput of MARIO, data were encouraged to go through stand-
ard preprocessing pipeline (for example, normalization and scaling)
suggested by their originated modality. Suppose the two datasets are
denoted as X and Y, where X € R%*®Psaetpy) consists of n, cells and
(Penare + Px) features and Y e Ro*Pswetpy) consists of n, cells and
(Psnare + Py) features. The matching implemented by MARIO is a linear
assignment problem, thereforerequires n, < n,. If datasizeinput does
not fulfill such a requirement, X can be randomly segmented into
equal-sized batches, and matching will be performed on each batch,
as per the user’s request. Among all the features, n,,,.. features are
shared acrossboth datasets, whereas the rest of the features are distinct
toeither Xor Y. Thus, we can write both datasets as horizontal concat-
enations of ashared part and a distinct part:

X' = (Xonare Xaist)s Y=(Yinare Yaise)-

The cell matching between X and Yis defined as an injective map /7,
represented as a binary matrix of dimension n, x n,, such that 17;;, =1
ifand only if the ith cell in X shares a similar biological state to the i'th
cellinY.

Initial matching with shared features. We first construct an initial
estimator of /7using shared features alone. The procedure starts by
denoising the shared parts via thresholding their singular values.
Consider the singular value decomposition of the vertical concatena-
tion of X,,...andY,

share share:

Xshare Ushare A ~T

= ~ Dshare Vshare’

yshare Ushare
where the vertical concatenation of Usg,. € R%*Pstareand U, € R *Peraze
collects theleftsingular vectors, D,,,, € RPs=>Paceis a diagonal matrix
that collects the singular valuesindescending order, and V... collects
the right singular vectors. Let 7., < Psnare D€ the number of compo-
nents to keep. We then compute the denoised version of X,,,,.
andY,,,..by

Xenare = (Ushare).,l;;v

N T
Vabace). 17,
Yenare = (Ushare).,1;f

~ T
(Vonare). 1:,

5
share

Dgnare)r:r

Daparo)r:,

share

share

share

respectively, where foramatrix A, weletA_ ;. denoteits firstrcolumns
and for adiagonal matrix D, we let D,,, denote the submatrix formed by
taking its first r rows and columns. We then construct a cross-data
distance matrix 2,,,, € R**%, whose entries are given by

(@share),‘,i/ =1- Cor[(xshare)f,.’ (yshare)i/’.]’

where cor[(Xguare);.» (Yenare)r..] is the Pearson correlation coefficient
betweentheithrowof X,...and the i'throw of ¥,,... The initial estima-
tor of [Tis given by:

1T ghare € ArgMIn(IT, Do)
I

n,xn

subjectto IT €{0,1} LI, =1,

where for two matrices A and B, we let (4,B) = ¥, A;;B;;, denote the
Frobeniusinner product. This optimization problemis an instance of
minimal weight bipartite matching (also known as rectangular linear

assignment problem) in the literature®. We refer readers to ref. 62 for
the optimality of this procedure.

Refined matching with distinct features. Given the initial matching
IT are» We can approximately align cells in X and Y: the rows of X and
IT 40,0 Y correspond to pairs of cells with similar biological states, up
to mismatches induced by the estimation error of /71,,,,.. Such an
approximate alignment opens up the possibility of estimating the
latent representations of Xand Y by CCA.

Let 1 <7, < Popare + Min(p,, p;) be the number of components to
keep. Collecting top #,,; sample canonical vectors into matrices

W, = (0 ... ),

= () 0

the latent representation of X can be estimated by XW,, the sample
canonical scores of X. The same projection can be done on Y data by
computing YW,

We can now compute the cross-data distance matrix 9,,, directly
onthe latent space, whose entries are

(Da)iy = 1 - cON[XW,), . (YW,), 1.

We finally solve for arefined matching by

IT,,, € argmin(I1, 9,,,)
" @

n.xn
e

subjectto IT € {0,1 i, =1,.

Interpolation of initial and refined matchings. The quality of the
refined matching /T,,,is highly contingent on the quality of the distinct
features. If the distinct features are extremely noisy, incorporation of
them may hurt the performance, in which case it is more desirable to
revert back to theinitial matching /7 ,.... We developed a data-adaptive
way of deciding how much distinctinformation shallbeincorporated
when we estimate the matching from the data.

Tostart with, we cut the unitinterval [0, 1]into grids (for example,
{0,0.1, ...,0.9,1}). For each A on the grid, we interpolate the two kinds
of distance matrix by taking their convex combination

D=0~ A)@share + A@an-

from which we can solve for the A-interpolated matching

I1, € argmin(II, 2,)
m (3)

n,xn,
>

subjectto IT € {0,1} mn, =1,.

Note that I1,_¢ = IT,,..and IT,_; = IT,,,. After aligning Xand Y using
I1,, we compute top k-sample canonical correlations (in the MARIO
package, defaulted to 10), whose meanis taken as a proxy of the quality
of I1,. We then select the best Aaccording to this quality measure and
use 7, afterward.

Quality control

Test of matchability. In extreme cases, the two datasets X and Y may
not have any correlation at all, and thus any attempt to integrate
both datasets would give unreliable results. For example, some
methods, when applied to uncorrelated datasets, would pick up
the spurious correlations and hence resulting in over-integration.
A robust procedure should be able to warn the users when the
resulting matching estimator might be of low quality. We develop
a rigorous hypothesis test, termed matchability test, for this
purpose.
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The matchability test starts by repeatedly drawing B independ-
ent and identically distributed copies of n,-dimensional (potentially

B
asymmetric) Rademacher random vectors {¢},_, and another B

independent and identically distributed copies of n,-dimensional

B
Rademacher randomvectors {&,”}, . Thatis, for each1< b <B,wehave

e =", ..., e, )and £”)is +1with probability 1- py, andis - 1other-
wise for any 1 <i<n, where is the placeholder for either mathttx or
mathtty. The parameter pg;, (denoted as flip_prob in MARIO package
and defaulted to 0.2) controls the ‘sensitivity’ of the test—a lower value
of pg;, means that a more accurate matching is needed to pass the
matchability test. For every b, we generate a fake pair of datasets by
flipping the signs of each row of Xand Y:

X® = diag(eP)x, Yo = diag(egb))Y.

After such a sign-flipping procedure, most of the correlation
between Xand Y (if exists) is destroyed, but the intra-dataset covariance
structures of both Xand Yare preserved. Asaresult, if we run any match-
ingalgorithmwith X and Y¥ as the input, the resulting estimator /T
would be of low quality, in the sense that if we align X©, Y® using /1
andrun CCA, theresulting sample canonical correlations will be small.
Inourimplementation, we calculate the mean of top_k (and defaulted

B
t010), which we denote as {cor®}, _,.

The matchability test proceeds by running the same algorithm on
thereal datasets X, Y, aligning them using the estimator /7, and calcu-
lates the mean of top_k sample canonical correlations, which we
denote as cor. The final P value for testing the null that Xand Y are

B
uncorrelated s given by the proportion of {cor® }p_thatarelarger than
the observed cor.

Jointly regularized filtering of low-quality matched pairs. Even if
the two datasets Xand Yare highly correlated (and thus the matchability
test gives a small Pvalue), the estimated matching T might still be
error-prone. Forexample, consider the case where some cell type exists
in Xbut is completely absent in Y. We developed an algorithm that
automatically filters out the low-quality matched pairsin 77.

Assumethereare K cell types presentin either Xor Y.Inthe MARIO
package we default K to 10. Let z,,z, € {1,...,K}™ be the unknown
ground-truth cell-type labels of Xand 11V, respectively. The fact that
Xand Yhave passed the matchability test tells that z,and z,should agree
on most coordinates. However, it is possible that there exists a sparse
subsetof{l, ..., n,}onwhich z,and z, disagree, and our goal is to detect
this sparse subset and disregard them in downstream analyses. To
achieve thisgoal, we consider the following regularized k-means clus-
tering objective:

(Zxr2x,2y) = argmin
U,k}’,le C RPsare+Px
K Agnare +11.
{vk}kZI C Rtsnaret1y
ZyZ 2z, €L, K}
n,
1 2 2
23 (X =z 15+ 1Y = vz 13)

i=1

+I0g( ) Z (1 {zi # Zug} + 1 {2y # Zai)) s

pl(K-1)

where || - ||,isthe #,normand 1 {-}is the indicator function. The above
objective function is composed of two parts. The first part is the clas-
sical k-means objective for Xand Y, and the second partis aregulariza-
tionterm that penalizes when the estimated Xlabel Z,and Ylabel z,are
too far away fromaglobal label z,.

After solving the above objective function, if 2,; # Z, ;, then there
is evidence that the matched pair (X; ., (/1Y), ) is spurious, and is thus
disregardedinthe downstream analyses. The parameter p controls the
strength of regularization:if p =1-1/K, thenthereis noregularization
atall, whereasif p = 0, we effectively require z, = Z, = Z,. Thus, we can
naturally control the ‘intensity’ of such afiltering procedure by choos-
ingasuitable p. Under a hierarchical Bayesian model, the parameter p
hasaratherintuitive interpretation as the probability of disagreement
between individual labels and global labels®°

We solve the regularized k-means clustering objective via a
warm-started block coordinate descent algorithm. The algorithmstarts
by computing initial estimators A(O)ofzx,z viaspectral clustering®:
we compute the sample canonrcal scores of Xand 7Y, average them,
and apply the classical k-means clustering on top K eigenvectors of the
averagedscoretoget z € {1,...,K}. We thenlet 2 A0 A( ) =z

Suppose atiterationt, the current estlmators ofzx, z,aregivenby

ff), (0 ,respectively. We run block coordinate descent as follows

(1) Given 22, A(‘ , the current estimators of {y,}, {v,} are given by

n
(O _ 1 5 [ :
b= e 1z =k x X,
NG 1 ny I{ZA_(t) — k} « Y,
YR IR = ’

foranyl<k<K.
(2) Given {p([)} {#%}, the next estimators of z,, z,, z, are given by

( (t+1) A([+1) A(t+1))

Zyi 2Ze % argmin .
Zy 2, 2y €{L, ... K}
1 NG NG
S (0, =215+ 1 v, = 92115)

10g< pl(K— 1))(1{sz #Zob+ 1{zy; # 24))

foranyl<i<n,. Theabove problemissolved viaan enumeration pro-
cedure. We first hypothesize that z A““) =k forsome1<k<K. We
then solve for the best z(“u by enumeratmg all K possible choices of
labels. The same thing can be done to solve for the best ;”1) Hence,
we can compute the best value of the above objective function under
the hypothesis that z A(”D = k.We canthensolve for the global optimal

”(‘“ by enumeratmg and comparing the objective values under
every possible hypothesized value of ‘(’fl) ,K. Given the global
optimal 2{*”, the global optimal “,(f”)and ”(”l)can be extracted.

In our implementation, we run the above procedure for 20

iterations.

The objective function of MARIO. In this subsection, we formulate
the whole MARIO pipeline into a single optimization problem. Let X
and Ybe the two datamatrices (rows as cells and columns as features).
Withoutloss of generality, we assume that X has at most as many rows as
Y.Thus, there are more or asmany cellsin Y compared with X. Suppose
therearenrowsinXand mrowsinY,thenn <m.MARIOisanalgorithm
aimed at solving the following optimization problem:

maximize Tr(ATXT ITHYB)
subjectto IT € S(n,m),
ATXTXA=1B"YTYB =1

Here H=1, - 11, 17 is the centering matrix, and S(n, m) is the
collection of all blnary n-by-m matrices such that there are (m - n)
zero columns and each of the remaining m columns has one and only
entry equal to one, and each row has one and only one entry equal
to one. That is, MARIO aims at simultaneously finding the cell-cell
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correspondence matrix and two linear transformations A and B such
that after projecting the datamatrices Xand Ytoacommon latent space
using A and B, and selecting a subset of rows of YBand matching them
to the rows of XA in a one-to-one fashion, the trace inner product
between XA and YBis maximized. By the definition of S(n, m), the matrix
selects n rows of YB and then finds a bijection between the selected
rows of YBand rows of XA.

Suppose both A and B are of rank k. The objective function of the
optimization problem is a combination of the top k CCA objective
function and the (unbalanced) linear assignment problem objective
function:

(1) Whengiven, solving for optimal A and B means simultaneously
solving for top k canonical correlation loading vectors for the
pair (X, V);

(2) When A and B are given, solving for means exactly solving a
linear assignment problem.

Downstream analysis after cell matching

Joint embedding. After running jointly regularized filtering on the
best interpolated estimator 7;, we get a pair of aligned datasets
X* € R*Paaretp:) y* e RP¥PaartPy), whose rows correspond to cells of
similar types and nis the number of remaining cell-cell pairs after fil-
tering. Then, werun CCAon X*, Y*and collect the first n pairs of sample
canonical scores (scaled within dataset) as the final embeddings. Note
that other standard methods for joint embedding that take row-wise
aligned datasets can also be applied.

Label transfer via k-nearest-neighbors matching. The interpolated
distance 2, can be used to do label transfer via k-nearest-neighbors.
Suppose we know the cell types for all cellsin Ybut the corresponding
labels in X are missing. Then for the ith cell in X, we can predict its
label by finding the k-nearest cells in Y according to ; and taking the
majority vote.

Systematic benchmarks
Benchmarking on the matching quality. Three scenarios were tested
during the benchmarking process:

(1) Sequentially dropping shared features between datasets, to test
the robustness of the algorithm regardless of the antibody panel
design. There are two dropping sequence used: first scheme is
dropping antibodies based on their names, in alphabetical order
(for example, CD1c is dropped before CD3); the second scheme is
dropping by importance score, where less important antibodies
were dropped first, mimicking real world antibody panel design.
Toroughly assess the order of importance of the antibodies at
distinguishing cell states, a random forest model for each dataset
was trained to predict cell types from marker expression, with
the function randomForest in R package randomForest, with
default parameters. Then a permutation feature importance test
was performed to determine the effects of variables in the model,
using function varlmp with default parameters in R package
caret, hence getting a score for each protein. The importance
scores for the protein (shared) were then averaged between
the datasets for matching, and ranked from low to high. For
the cross-species and murine spleen dataset, only the top 50%
important shared markers were considered.

(2) Stimulating poor quality data by adding increasing levels of
random noise to both datasets, to test the robustness of the algo-
rithmin terms of over-integration. Gaussian random noise with
mean 0 and standard deviations of 0.1,0.3,0.5,0.7,0.9,1.1, 1.3 and
1.5 were added to the normalized values of all protein channels.

(3) Intentionally dropping cell types in the dataset being matched
against, to test the robustness of the algorithm regardless of the
cell-type composition difference between datasets.

Inallthree scenarios described above, all other compared methods
used the exact same set of cells tested by MARIO. For cross-species
data(related to Fig. 3 and Supplementary Fig. 7) only HIN1 challenged
human and X-species cynomolgus monkey were benchmarked.

The following metrics were used in the benchmarking process:

(1) Matching accuracy: this was calculated by the percentage of
cellsin X that have paired correctly with the same cell typein Y,
based on the individual dataset’s cell-type annotations.

(2) Matching proportion: this was calculated by the percentage of
cellsin Xthat had a match in Y after quality control steps.

(3) Structure alignment score: this measures how much structural
information is preserved after data integration. Let Dy, be the
matrix whose (i,j)th entry is the Euclidean distance between
the ith row and the jth row of X. Similarly, let D,,,.,;, be the
matrix whose (i, j)th entry is the Euclidean distance between
the ithrow and the jth row of the embedding of X. The structure
alignment score for the ith cell in Xis defined as the Pearson
correlation between the ith row of Dy, and the ith row of D ;.
The structure alignment score for Xis then defined as the
average of the scores over all cells in X. The structure alignment
score for Y can be similarly obtained. The final structure
alignment score is the average of the scores for Xand Y.

(4) Silhouette F1score: this has been described inref. 64 and is an
integrated measure of the quality of dataset mixing and
information preservation. In brief, two preliminary scores
slt_mix and slt_clust were obtained, and the Silhouette F1score
was calculated as 2 - slt_mix - slt_clust/(slt_mix + slt_clust). Here,
slt_mix is a measure of dataset mixing and is defined as one
minus normalized Silhouette width with the label being dataset
index, this is a measure of mixing; slt_clust is a measure of
information preservation and is defined as the normalized
Silhouette width with label being cell-type annotations.

All Silhouette widths were computed using the silhouette()
function from R package cluster.

(5) ARIF1score:thisisanintegrated measure of the quality of
dataset mixing and information preservation®*. The definition
is similar to that of Silhouette F1score, except that we
compute ARl instead of the Silhouette width. All ARI scores
were computed using the function adjustedRandIndex()
in R package mclust.

(6) Average mixing score: this is a measure of dataset mixing
based on the Kolmogorov-Smirnov statistic. For each
cluster, the subsets of cells corresponding to that cluster
were extracted from the embeddings of Xand Y, respectively.
For each coordinate of the embeddings, one minus the
Kolmogorov-Smirnov statistic was computed. The mixing
score for that cluster was then computed by taking the median
of one minus the Kolmogorov-Smirnov statistic for each
coordinate. The average mixing score is defined as the
average of mixing scores over all clusters.

(7) Error avoidance score: this measures the performance of the
quality control process and is specific to the benchmarking
scenario 3 (intentionally dropping cell types). For each cell type
dropped, the corresponding error avoidance score is defined as
va/b, where ais the number of cells in X that are of that type and
have survived the quality control process (that is, amatch
involving that cell type has occurred), and b is the total number
of cells of that type X. A higher value of this score indicates
that erroneous matching toward deleted cell types has been
better avoided.

Duringbenchmarking, all datasets were downsampled. The bone
marrow dataset (Fig. 2) was downsampled to 40,000 cells (8,000
and 32,000 for X and Y); the PBMC dataset (Supplementary Fig. 3)
was downsampled to 25,000 cells (5,000 and 20,000 for X and V);
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the X-Species HIN1/IFN-gamma dataset (Fig. 3) was downsampled to
40,000 cells (8,000 and 32,000 for X and Y); the X-Species HIN1/IL-4
dataset (Supplementary Fig. 7) was downsampled to 40,000 cells
(8,000 and 32,000 for Xand ¥) and the murine spleen dataset (Fig. 4)
was downsampled to 25,000 cells (5,000 and 20,000 for Xand ). All
methods used the same set of cells.

Parameters used for benchmarking are as follows. For bench-
marking of MARIO, we used a consistent set of parameters across all
datasets: n_components_ovlp =10 (or the maximum number available);
n_components_all = 20 (or the maximum available), sparsity = 5,000,
bad_prop =0.10r0.2,n_batch =1.For other methods, the input of data
were all values normalized per feature within each dataset (Same as
MARIO input data, except Liger/UINMF where their own custom nor-
malizationis required). Only mNN-based methods (Scanorma, Seurat,
fastMNN) were included in the comparison of matching accuracy
and matching proportion. For Seurat, three versions were compared
(principal components analysis (PCA), CCA and reciprocal PCA). For
computation of SAM, ASW, ARl and avgMix, the first 20 (or maximum
available) components of MARIO CCA scores or reduced values from
other methods were used. For visualization, t-SNE plots were produced
using the first ten components for all methods. In some rare cases,
certainmethods produced NAs (Not Avaliable) in the integrated values
for limited number of cells, whichwere replaced with O for downstream
analysis. Detailed information of the benchmarking process can be
retrieved from the deposited code in our GitHub repository.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Publicly available datasets used were: Levine et al. Human BMC CYTOF
at: https://github.com/Imweber/benchmark-data-Levine-32-dim;
Stuart et al. Human BMC CITE-seq (from the R package SeuratData,
‘bmcite’) at https://satijalab.org/seurat/articles/weighted_nearest_
neighbor_analysis.html; Zainab et al. Human HIN1 challenged whole
blood CYTOF at flow repository ‘FR-FCM-Z2NZ’; Bjornson et al. Human
and NHP wholeblood CYTOF at flow repository ‘FRFCM-Z2ZY’; Goltsev
et al. Murine Spleen CODEX at https://data.mendeley.com/datasets/
zjnpwh8m5b/1 (raw images per reasonable request from the Nolan
Laboratory); Gayoso et al. Murine Spleen CITE-seq at https://github.
com/YosefLab/totalVI_reproducibility/tree/master/data; COVID-19
Cell Atlas. COVID-19 patient BALF CITE-seq (VIB/Ghent) at https://www.
covidl9cellatlas.org/index.patient.html; Hartmann et al. Human PBMC
CyTOF at flow repository ‘FR-FCM-Z249’, HDO6_runl; 10X Genom-
ics. Human PBMC CITE-seq at https://support.10xgenomics.com/
single-cell-gene-expression/datasets/3.0.2/5k_pbmc_protein_v3?.
Newly generated data used came from COVID-Lung CODEX imaging
expression files (macrophage related) at: https://github.com/shuxi-
aoc/mario-py/tree/main/Manuscript_Archive_Code/data/COVID-19.
Full dataset information, including raw images of the CODEX and
PANINI validation experiments, is available on reasonable request.
All data mentioned above are also summarized and deposited (with
related preprocessing scripts) at https://github.com/shuxiaoc/
mario-py.

Code availability

MARIO and related tutorials are freely available to the public at GitHub
https://github.com/shuxiaoc/mario-py. For reproducibility, code to
regenerate the main and supplementary figures have also been depos-
ited to GitHub repository.
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Simulated High Granularity Groundtruth Data Benchmark
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Extended Data Fig.1| MARIO Benchmarking on Simulated Ground Truth Data using Symsim. A total of 20 cell populations were simulated from two modalities,
eachwith 20 shared features and 20 distinct features, using Symsim. Matching accuracy (cell type) was compared across methods (Mario, Seurat-PCA/CCA/RPCA,
Scanorama, and FastMNN).
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Extended Data Fig. 4| Matching and integration of cross-modality CyTOF matched to X were quantified. (C) Testing algorithm stringency among different
and CITE-seq PBMC data. MARIO integration of human PBMCs as measured methods. Single-cell typesin Y were completely removed before matching to X.

by CyTOF and CITE-seq. (A) Performance of matching and integration during The proportion of cells belonging to the deleted cell type in matched X cells was
the sequential dropping of shared protein features. (B) Testing algorithm used to calculate the erroneous avoidance score. (D) t-SNE plots visualizing pre-
stringency between different methods. Increasing amounts of random spike-in integation and post-integration results across different methods.

noise was added to the data, and the matching accuracy and proportion of cells
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Extended Data Fig. 6| MARIO integrative analysis of CODEX and CITE-seq
for spatial multi-omics. (A) Confusion matrix with MARIO cell-cell matching
accuracy (balanced accuracy) across cell types for matched CITE-seq or CODEX
cells. (B) A pseudo-colored murine spleen section showing the localization
oftranscripts (/l1b and Bhlhe41) inferred from CITE-seq. The white outline
demarcates the white pulp. (C) t-SNE plots (calculated from CODEX protein

alone) of MARIO integrated murine spleen CITE-seq and CODEX cells, overlaid
withmatched CODEX protein and CITE-seq RNA expression levels. (D) A pseudo-
colored murine spleen section colored by the annotation of CODEX B cell
subpopulations, via expert manual gating. (E) A pseudo-colored murine spleen
section colored by MARIO label transferred annotation from the CITE-seq dataset
annotation.
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Extended Data Fig. 9| MARIO analysis on COVID-19 lung tissue and BALF
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Accuracy of Initial Matching with Different Distance Matrices
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Extended Data Fig. 10 | MARIO distance matrix construction method benchmarking. The initial matching accuracy (mean + sd, n =5 batches) by MARIO using
distance matrix constructed by different methods: pearson correlation, distance correlation; non-linear kernels: gaussian; laplacian; polynomial and sigmoid, on
different datasets presented in the manuscript.
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scanpy 1.9.1
spaotsc 0.2
numpy 1.20.1
pandas 1.2.1
scipy 1.6.2
scikit-learn 0.23.2
matplotlib 3.3.4
seaborn 0.11.1
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For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Publicly available datasets:

Levine et al. Human BMC CYTOF: https://github.com/Imweber/benchmark-data-Levine-32-dim

Stuart et al. Human BMC CITE-seq (From R package SeuratData, "bmcite"): https://satijalab.org/seurat/articles/weighted_nearest_neighbor_analysis.html
Zainab et al. Human H1N1 challenged whole blood CYTOF: flow repository FR-FCM-Z2NZ

Bjornson et al. Human and non-human-primate whole blood CYTOF: flow repository FRFCM-Z2ZY

Goltsev et al. Murine Spleen CODEX: https://data.mendeley.com/datasets/zjnpwh8m5b/1 (Raw images per request from Nolan Lab)

Gayoso et al. Murine Spleen CITE-seq: https://github.com/YosefLab/totalVI_reproducibility/tree/master/data

COVID-19 Cell Atlas. COVID-19 patient BALF CITE-seq (VIB/Ghent): https://www.covid19cellatlas.org/index.patient.html

Hartmann et al. Human PBMC CyTOF: flow repository FR-FCM-Z2249 :HDO6_runl

10x Genomics. Human PBMC CITE-seq: https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_protein_v3?

All data mentioned above are also available at: https://github.com/shuxiaoc/mario-py
Data generated in this study:

Goltsev et al. COVID-19 patient Lung tissue CODEX dataset: Subset of data used in this study is deposit at: https://github.com/shuxiaoc/mario-py. Separate
manuscript in preparation, full dataset will release after manuscript submission.

Simulated data generated with Symsim (Zhang et al. 2019) for ground truth analysis: method and parameters described in the Material & Methods section. Code
used submitted.

Figures with associated data list:
Deposited at: https://github.com/shuxiaoc/mario-py/blob/main/Manuscript_Archive_Code/data/readme.md
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size For computational benchmarking of MARIO and other methods, we selected sufficient number of cells that is manageable in terms of time
and computational power for all methods, generally ranging from 5k cells to 80k cells, dependent on the scenario. We the cell numbers are
sufficient here since it is the same size or larger than most of the datasets from the same modality. Additionally, the occurrence of lower
frequent cell types are still sufficiently represented during testing. Further increase of the cell number for testing will not change the
conclusion presented in the manuscript.

For experiments related to COVID-19 CODEX data, all tissue cores acquired from the collection site was used in this analysis.

Data exclusions  No sample was excluded in this study.

Replication A total of 13 different datasets (6 matching & integration cases) were described in this manuscript, confirming the effectiveness of the
method.
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Randomization  Randomization was performed if cells were subsampled from the original dataset. For COVID-19 related experiments presented in the
manuscript, no randomization was performed we do not have multiple experimental groups or conditions.

Blinding All data presented in the manuscript was analyzed with standardized quantitative algorithms and no qualitative measurements would be
affected by observer bias.
When conducting and performing analysis of the COVID-19 ISH validation experiments, the researcher was blinded with the tissue core
information intended for validation.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [] chip-seq
[] Eukaryotic cell lines [ ] Flow cytometry
|:| Palaeontology and archaeology |:| MRI-based neuroimaging

[ ] Animals and other organisms
Human research participants
[ ] clinical data

|:| Dual use research of concern

NXOXXX[O S

Antibodies

Antibodies used The antibody information is described in the Material and Methods section of the manuscript.
primary
anti-CD15 (1:100 dilution, clone: MC480, Biolegend, 125602)
anti-CD68 (1:100 dilution, clone: D4B9C, Cell Signaling Technology, 76437T)

secondary
Anti- Mouse-Cy7 (1:250, Biolegend, 405315)
Anti-Rabbit- Alexab47 (1:250, Thermo Fisher Scientific, A-21245)

Validation All primary and secondary antibody used in this study has been validated by the manufacturer.

CD15:

Verified reactivity in:

Human, Mouse;

Verified application:

FC - Quality tested

IP, WB, IHC-F, IHC-P - Reported in the literature, not verified in house

Validation studies listed by vendor:

Solter D and Knowles BB. 1978. Proc. Natl. Acad. Sci. USA. 75:5565. (IHC, IP, WB)
Tempest N, et al. 2018. Hum Reprod. 6:e00392. PubMed

Wu W, et al. 2017. Sci Rep. 7:44481. PubMed
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CD68:
Verified reactivity in:




Human;

Verified application:

IHC, IF, Flow

Validation studies listed by vendor (first two papers):

Wang, Qirui, et al. "Vascular niche IL-6 induces alternative macrophage activation in glioblastoma through HIF-2a." Nature
communications 9.1 (2018): 1-15.

Mullen, Peter J., et al. "SARS-CoV-2 infection rewires host cell metabolism and is potentially susceptible to mTORC1 inhibition."
Nature communications 12.1 (2021): 1-10.

Human research participants

Policy information about studies involving human research participants

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.
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Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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