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Abstract

Neuroinflammation has been implicated in multiple brain disorders but the extent and the 

magnitude of change in immune-related genes (IRGs) across distinct brain disorders has not 

been directly compared. In this study, 1,275 IRGs were curated and their expression changes 

investigated in 2,467 postmortem brains of controls and patients with six major brain disorders, 

including schizophrenia (SCZ), bipolar disorder (BD), autism spectrum disorder (ASD), major 

depressive disorder (MDD), Alzheimer’s disease (AD), and Parkinson’s disease (PD). There were 

865 IRGs present across all microarray and RNA-seq datasets. More than 60% of the IRGs had 

significantly altered expression in at least one of the six disorders. The differentially expressed 

immune-related genes (dIRGs) shared across disorders were mainly related to innate immunity. 

Moreover, sex, tissue, and putative cell type were systematically evaluated for immune alterations 
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in different neuropsychiatric disorders. Co-expression networks revealed that transcripts of the 

neuroimmune systems interacted with neuronal-systems, both of which contribute to the pathology 

of brain disorders. However, only a few genes with expression changes were also identified as 

containing risk variants in genome-wide association studies. The transcriptome alterations at gene 

and network levels may clarify the immune-related pathophysiology and help to better define 

neuropsychiatric and neurological disorders.
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Introduction

Multiple lines of evidence support the notion that the immune system is involved in 

major “brain disorders,” including psychiatric disorders such as schizophrenia (SCZ) 1, 

bipolar disorder (BD) 2, and major depressive disorder (MDD)3, and brain development 

disorders such as autism spectrum disorder (ASD)4, and neurodegenerative diseases such 

as Alzheimer’s disease (AD)5, and Parkinson’s disease (PD)6. Patients with these brain 

diseases share deficits in cognition, blunted mood, restricted sociability, and abnormal 

behavior to various degrees. Transcriptome studies have identified expression alterations 

of immune-related genes (IRGs) in postmortem brains of AD7, PD8, ASD9, SCZ10–14 

and BD10 separately. Cross-disorder transcriptomic studies further highlighted changes in 

IRGs15, 16. At the protein level, several peripheral cytokines showed reproducible disease-

specific changes in a meta-analysis 17. Since brain dysfunction is considered the major 

cause of these disorders, studying immune gene expression changes in patient brains may 

reveal mechanistic connections between immune system genes and brain dysfunction. Most 

previous studies were limited to the analysis of individual disorders. There has not been 

a comprehensive comparison of the pattern and extent of inflammation-related changes in 

terms of immune constructs (subnetworks), neuro-immune interaction, genetic contribution, 

and relationship among diseases.

Neuroinflammation, an immune response taking place within the central nervous system 

(CNS), can be activated by psychological stress, aging, infection, trauma, ischemia, and 

toxins 18, 19. It is influenced by sex 20, age21 and genetics 22, which are known disease 

risk factors for both psychiatric and neurological diseases. The primary function of 

neuroinflammation is to maintain brain homeostasis through protection 23 and repair 24. 

Abnormal neuroinflammation activation could lead to dysregulation of mood 25, social 

behaviors 26, and cognitive abilities 27. Offspring who were fetuses when their mothers’ 

immune system was activated (MIA) showed dopaminergic hyperfunction 28, cognitive 

impairment 29, and behavioral abnormalities 30 as adults. Alternatively, acute and chronic 

neuroinflammation in adulthood can also alter cognition and behavior31–33.

Researchers have explored the underlying mechanism to explain how the neuroimmune 

system is activated. In animal models, both adult and developmental maternal immune 

activation in the periphery can increase pro-inflammatory cytokines in the brain, like what 
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was found in humans with major mental illness14, 34. The interplay between CNS and 

peripheral immunity can be mediated in several ways. One way is inflammatory factors 

can increase permeabilization of the blood-brain barrier to enable the CNS to communicate 

with the peripheral immune system through two drainage systems, the glymphatic system35 

and the meningeal lymphatic system36. A second way is environmental stimuli, such as 

stress, trauma, ischemia, and toxins, can promote the brain to release small molecules (e.g. 

cortisol) which trigger immune activation in both CNS and peripheral systems37. These 

small molecules also can increase the blood-brain barrier permeability, which enhances the 

shared immunity activities between peripheral blood and CNS38.

Previous studies identified immune gene dysregulations in brains of patients with several 

major brain disorders. For example, Gandal et al.16 found that up-regulated genes 

and splicing isoforms in SCZ, BD, and ASD were enriched in pathways such as 

inflammatory response and response to cytokines. One brain co-expression module up-

regulated specifically in MDD was enriched for genes of cytokine-cytokine interactions, 

and hormone activity pathways15. The association of neurological diseases such as AD and 

PD with IRGs has also been reported7, 39. These studies examined the changes of immune 

system without going into details of specific subnetworks, the disease signature, or genetic 

versus environmental contribution.

The current boundary between neurological diseases and psychiatric disorders is primarily 

the presence of known pathology. The hypothesis of this study is that expression changes 

of specific subsets of IRGs constitute part of the transcriptome signatures that distinguishes 

diseases. Since tissue specificity, sex and genetics all could influence such transcriptome 

signatures, their effects were analyzed. Furthermore, the expectation is that neurological 

diseases and psychiatric disorders bear transcriptomic changes that may help to address how 

similar immunological mechanisms lead to distinct brain disorders.

To investigate immune-related signatures of transcriptome dysregulation in brains from 

patients with one of six neurological and psychiatric disorders, 1,275 genes known to be 

associated with neuroinflammation were selected and their expression across disorders was 

studied. Existing transcriptome data of 2,467 postmortem brain samples from donors with 

AD40–42, ASD43–46, BD43, 47–50, MDD49, 51, PD52–55, SCZ43, 47–50, 56, 57 and healthy 

controls (CTL) were collected and analyzed. Differentially expressed IRGs shared across 

disorders or specific to each disorder and their related co-expression modules were identified 

(Fig. S1). These genes and their networks and pathways provided important insight into how 

immunity may contribute to the risk of these neurological and psychiatric disorders, with a 

potential to refine disease classification.

Materials and Methods

Data description

Twenty-three studies of multiple brain disorders were obtained from the Gene Expression 

Omnibus (GEO), ArrayExpress, or directly from study authors (see Supplementary Table 

1). Raw microarray gene expression data was obtained from 1,007 postmortem cortical 

brain samples(microarray) and 1,460 postmortem brain samples (RNA-seq). Each study was 
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processed separately and analyzed according to the general workflow as described in Quality 

Control and Normalization.

Immune genes selection

Immune genes were collected from immune databases: Comparative Toxicogenomics 

Database58, ImmPort59, ImmunomeDB60, InnateDB61, ImmuneSigDB62, Gene Ontology 

database63, KEGG database64, and literature reviews65–67. The selected immune genes were 

included if they were found in more than two databases. Neuroimmunology and general 

immunology literature were consulted for the selection of immune genes. In total, 1,789 

immune-related genes (IRGs) were included for analyses and 1,275 of them were detected 

across all microarray expression data.

Supplementary Table 2 lists the immune genes categorized by their reference databases and 

pathway annotation programs. Because there is a high degree of overlap among biological 

immune responses, genes with roles in multiple immune functions were assigned to more 

than one group.

Quality Control and Normalization

Known covariates included available biological and technical covariates for each study from 

GEO. Unknown covariates were estimated by R package sva for each study68. The lm 

function in R was used to adjust all the covariates (see Figure. S1). Case and control samples 

were from the same brain region in each cohort, but different cohorts utilized tissues from 

different brain regions. To minimize the influence of brain regions from different cohorts, 

a stringent correction procedure was applied to account for any possible influence of brain 

region on the results. By regressing out the variations attributable to brain regions, our 

analysis focused on the expression changes that occurred consistently across brain regions. 

The information on the various brain regions tested was shown in sTable 1. Outliers were 

defined as samples with standardized sample network connectivity Z scores < −2 and were 

removed. Both within and between studies batch effects were corrected with the ComBat 

function of the sva package in R. All available biological, technical, and unknown covariates 

except for the diagnostic group were regressed using lm function in R.

For all RNA-seq data, the R package sva was used to estimate unknown factors68. Picard 

Tools v1.13169 was used for quality check after read alignment. A matrix of “sequencing 

statistics” was generated and the first and second main components of this matrix were 

estimated. In subsequent studies, these sequencing statistics were employed as covariates. To 

address all the covariates, R’s lm function was used. Outliers were identified as previously 

described for microarray analyses.

Differential Gene Expression Analysis

Differential gene expression analysis of microarray data was calculated using a linear 

mixed-effects model in the nlme package in R, with diagnostic group and study treated 

as fixed effects and the unique subject as a random effect Spearman’s ρ was used to compare 

dIRGs meta-analysis fold change signatures across all disease pairs. There were 440 controls 

shared by the studies of SCZ and BD. The total number of controls (1,178) provided in the 
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manuscript is after removing duplicates. To minimize the influence of overlapping controls, 

a statistical framework which collapsed results from multiple studies while accounting for 

any subjects overlapping between studies with a random effect term was used.

Differential gene expression of RNA-seq replication data was calculated using limma with 

empiric Bayes moderated t-statistics, including the all the known and unknown covariates 

based on log2(normalized FPKM) expression values.

Gene-level RNAseq Replication

The degree to which genes identified as differentially expressed in the discovery 

(microarray) datasets (FDR < 0.05) were replicated in the RNAseq data was evaluated 

as shown in Supplementary Table 4. For comparison, the background was restricted to the 

865 genes present across all microarray and RNAseq datasets. Fisher’s exact test was used 

to calculate odds ratios and the statistical significance of overlap between microarray DGE 

genes and the RNAseq replication set (all genes with P<0.05 and concordant direction). 

Regression coefficients for each gene were calculated for each group and Spearman’s 

correlation was used to assess disturbance concordance between microarray data and RNA-

seq data, as above.

Disorder Network Gene Co-Expression Network Mega-Analysis

Weighted Gene Co-Expression Network Analysis (WGCNA)70 was completed to place 

results from individual genes within their systems-level network architecture. Individual 

(covariate-regressed) expression datasets were combined using the 10,387 genes present 

across all studies. ComBat was used to mitigate batch effects, as shown in sFig. 1.

Disease-specific networks were generated by comparing networks constructed using patients 

from one of six brain disorders against networks constructed from healthy individuals. Then, 

a WGCNA integrated function was used to calculate module preservation statistics, and the 

Z summary score (Z score) was applied to evaluate whether a module was conserved or not. 

A disease-specific module was defined as z-score less than 10 in the all-expression matrix of 

controls and patients with other disorders.

Gene Set Enrichment

Gene set enrichment analysis was performed using clusterProfiler R packages71. Module 

functional enrichment of Gene Ontology pathways was assessed with GO-Elite v1.2.572 

as well as with the gProfiler73 R package. Cell-type specific expression analysis of genes 

within each module was performed using the pSI package74 specificity index in R. Cell-type 

specific gene expression data was obtained from an RNAseq study of purified populations of 

neurons, astrocytes, oligodendrocytes, microglia, and endothelial cells derived from the adult 

human cerebral cortex75.

GWAS Enrichment

A set of GWAS summary statistics was compiled for several brain disorders, cognitive, 

and behavioral traits (Table S1). Summary statistics from GWAS meta-analyses of ASD, 

schizophrenia, bipolar disorder, and major depression were downloaded from the PGC 

Chen et al. Page 5

Mol Psychiatry. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



website. GWAS of educational attainment, depressive symptoms, and neuroticism were 

obtained from the respective studies (Table S1). Gene-level analysis of GWAS results was 

performed by MAGMA v1.04, a gene-set annotation framework that accounts for linkage 

disequilibrium (LD) between SNPs76.

Code availability

The code of this work can be found at https://github.com/normacyyyyy/IRG-cross-disorder

Results

Expressions of immune-related genes were altered in brain disorders.

IRGs (1,789) were collected from curated databases including Comparative Toxicogenomics 

Database58, ImmPort59, ImmunomeDB60, InnateDB61, ImmuneSigDB77, Gene Ontology 

database with immune annotation63, KEGG database with immune annotation64, as well 

as additional literature reviews 65–67, followed by filtering based on expression profile 

in the human brains ( see Table S1, Fig. S1). Twenty-three transcriptomic datasets of 

multiple brain disorders from multiple brain regions from the Gene Expression Omnibus 

(GEO), ArrayExpress, or from the authors directly were compiled (see Table. S1). In total, 

transcriptome data of 2,467 postmortem brain samples from subjects with AD (n = 340 

individuals), ASD (n = 103), BD (n = 188), MDD (n =87), PD (n = 97), SCZ (n = 474) 

and matched-CTL (n = 1,178) were collected. Individual datasets were subjected to rigorous 

quality control and normalization. Matched controls were employed to reduce confounding 

effects from diagnosis and covariates including age, sex, and batch (Fig. S3). Data sets 

derived from microarrays (n=1,007) were used as the discovery set and data sets derived 

from RNA-Seq were used as an independent replication set (Table. S1). Out of the 1,789 

selected IRGs, 1,275 (71%) were detected across all the microarray data. The IRG curation 

procedure is summarized in a Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) workflow (Fig. S2). Table S2 lists the 1,275 detected IRGs categorized 

by their reference databases and pathway annotation programs.

After preprocessing the microarray data (methods and materials, Fig. S3), a whole 

transcriptome differential expression analysis was completed for each disorder using a 

linear mixed-effects model that accounted for sample overlap across studies. Filtering the 

differentially expressed genes (DEGs, FDR<0.05) for the 1,275 IRGs, dIRGs were identified 

in each of the six brain disorders (number of dIRGs in descending order of transcript 

identified as differentially expressed; AD: 638, ASD: 275, SCZ: 220, PD: 97, BD: 58, 

MDD: 27, Fig. 1A, Table S3). A conservative genome-wide threshold was used instead of 

study-wide threshold for significance to enable further evaluation of the relative enrichment 

of IRGs in all the DEGs under the same significance criteria. The dIRGs were significantly 

over-represented in the DEGs across disorders (adjust.p < 0.05, Table S3). The enrichment 

of IRGs in the DEGs supports the reported immune gene dysfunction in the transcriptomes 

of these six disorders, suggesting that inflammation-related changes may be a universal 

response to a variety of brain pathologies. Previous studies showed that drugs can also affect 

changes in gene expression78. To evaluate drug effect on gene expression of IRGs, Pearson 

correlation was used to assess the concordance of fold changes between case-control DEGs 
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in each disorder from our study and DEGs induced by ten different drugs in the mouse 

and rat models downloaded from the Kaleidoscope78, 79. The case-control differences of 

the IRGs have only weak correlation (r < 0.3) with some of the changes induced by drugs, 

suggesting limited effect of drugs in our findings (Table S3).

To replicate the findings, the independent RNA-seq datasets and processed data were used 

as detailed in the Methods and Materials. A significant overlap of dIRGs between discovery 

and replicate datasets was observed (Table S4). AD data achieved the highest replication 

rate (56%) while BD achieved the lowest (19%). Correlation effect sizes of case-control 

fold change between the microarray and RNA-seq results were compared without p-value 

cutoff to understand why some correlations between microarray and RNAseq data were low. 

High concordance of effect sizes of case-control fold change between the microarray and 

RNA-seq results for all IRGs was observed (R2 > 0.66, p.value < 2.2E-16, Fig. 1B, Table 

S4).

The changes of IRGs clustered by disorders and sex- and tissue-specific effects.

Hierarchical clustering was used based on the correlations of the fold changes of all 

the detected IRGs among different brain disorders, resulting in two distinct groups, 

one containing all psychiatric disorders (BD, SCZ, and MDD) and another containing 

neurological disorders AD and PD, plus ASD, which is considered a neurological disease 

(Fig. 2A, B, Fig. S4). The fold changes of IRGs were highly correlated between SCZ and 

BD (Spearman’s r = 0.75, p.value <0.001). When comparing the groups of psychiatric 

disorders and neurological disorders, a higher effect size (larger fold- change) in the 

expression of inflammatory related genes was detected in neurological disorders than 

in psychiatric disorders (t-test p.value < 2.2E-16, Fig. S4). RNA-seq data replicated the 

observation that larger immune-related dysregulation was present in neurological disorders 

than in psychiatric disorders (Fig. S4).

To test effects of sex on immune-related dysregulation, dIRGs were recomputed with the 

samples partitioned by sex. Comparing the effect sizes of the IRGs between male and female 

subgroups, significant sex differences were detected in ASD and MDD (Fig. 2C, Table S5; 

pASD = 0.003; pMDD = 4E-6), but not in other diseases. The IRGs showed larger magnitude 

of change in male ASD than in female ASD relative to corresponding controls, while the 

situation was the opposite for MDD with females having larger changes than males.

To investigate tissue specificity of IRG dysregulation, or more specifically, whether 

alterations of IRGs in the brain can be reflected in blood, the changes of IRGs in blood 

datasets of these six disorders were calculated (Table S1). The correlation of IRGs’ effect 

size showed negligible concordance (R2 from −0.24 to 0.11, P-value>0.05, Fig. S5), 

indicating that the majority of the changes of IRGs in the blood and brain do not overlap, 

implying distinct origins and/or cellular mechanisms. However, a few dIRGs showing 

consistent changes in brain and blood were identified (Table S6), such as S100A8 in SCZ. 

These genes may serve as candidates of disease peripheral biomarkers, which warrants a 

thorough investigation.
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Innate immune genes are the most shared changes across all brain disorders.

Comparing the overlap of dIRGs across disorders, 26% of IRGs were dIRGs in two or more 

disorders (shared dIRGs, Fig. 3 A, B). Alterations of both adaptive and innate IRGs were 

found in each disease (Fig. S6, Table S3), but 68% of the shared dIRGs were classified as 

genes involving innate immune functions. To avoid bias caused by the number of IRGs in 

the two categories, the enrichment of dIRG was calculated and it was determined that they 

were significantly enriched in only innate IRGs (Fisher Exact Test OR > 2, qvalue <0.05). 

In the RNA-seq replicate data, there was a better replication in innate IRGs than in adaptive 

IRGs (Fig. S6, Table S4).

The two most shared dIRGs are Corticotropin-releasing hormone (CRH) and Tachykinin 

Precursor 1 (TAC1), which were differentially expressed in five of the six diseases (Fig. 

2D). They are both involved in innate immunity according to the databases used and to the 

literature 58–61, 63, 64. CRH was downregulated in five of the six disorders; the exception 

was PD. CRH can regulate innate immune activation with neurotensin (NT), stimulating 

mast cells, endothelia, and microglia (57). TAC1 was down-regulated in five of the six 

disorders, the exception being MDD. TAC1 encodes four products of substance P, which can 

alter the immune functions of activated microglia and astrocytes 80. Independent RNA-seq 

data confirmed both findings of downregulated CRH and TAC1 in patient brains. These 

transcripts are also neuromodulators and have action on neurons, so they have roles in 

addition to immune functions.

To identify specific immune pathways that dIRGs are involved in, the enrichment of the 

dIRGs was tested in specific immune functions. Six dIRGs-enriched pathways were shared 

by all six disorders. “Regulation of innate immune response (GO:0045088)” was one of the 

six pathways (qvalue< 0.05, Table. S7, Fig. 3E). When a subset of the innate immune genes 

as defined by the GO database was used as input instead of all IRGs, hierarchical clustering 

resulted in the same clusters of psychiatric vs. neurological diseases (Fig. S7). This indicated 

that even though immune dysfunction was widespread in the six disorders, signature 

patterns in the subset innate immune genes were sufficient to differentiate neurological from 

psychiatric disorders.

Immune-related co-expression modules (IRMs) shared by diseases were related to brain 
development and aging.

To determine if neuroimmunity works in silos or co-operates with other functions, robust 

weighted gene co-expression network analysis (rWGCNA)70 was used to construct immune-

related co-expression networks on the whole transcriptome. Sixteen brain co-expression 

networks were shared across disorders (Fig. 4A, Fig. S7) after adjusting the batch covariate. 

Three of the 16 networks were enriched for IRGs and were called immune-related co-

expression modules (Fig. 4B, C; IRM4, IRG enrichment qvalue = 2.15E-2; IRM12, qvalue 

= 1.13E-04; IRM14, qvalue = 9.29E-12). These three IRMs were significantly associated 

with at least two disorders in the same direction (Fig. 4D). The Eigengene (hub gene) of 

IRM4 was negatively associated with all disorders (Fig. 4D). IRM4 was enriched for neuron 

markers (Fig. 4E). Two of the modules (IRM12 and IRM14) were enriched with microglia 

and endothelial marker genes (Fig. 4E), respectively, and were both positively associated 
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with IRGs in AD and ASD (Fig. 4D). AD had the strongest association with all three IRMs 

(Fig. 4D). The endothelial-related IRM14 and neuron-related IRM4 were both enriched for 

tissue development (qvalue= 6.69E-5, Fig. 4F, Table S8) and neuron development (qvalue= 

6.49E-11, Fig. 4F, Table S8). Additionally, the IRM4 was significantly enriched for late fetal 

cortical markers (qvalue= 1.921E-07, Table. S8).

The influence of age on the IRMs was also assessed, showing that the age trajectories 

of these IRMs in cases had distinct patterns across disorders (Fig. S7D), which further 

illustrated the disease-specific temporal dynamics of these IRMs. For example, the neuron-

related IRM-4 genes were continuously up-regulated in AD, with an inverted U-shaped 

curve peaking at age ~80, while PD showed a continuous downward trend in the same age 

range.

Disease-specific IRMs in AD, ASD, and PD imply distinct biological processes.

A search was completed for disease-specific IRMs for each disorder. rWGCNA was used to 

construct brain co-expression networks in the brains of each disorder and of controls, and 

they were compared against each other to identify disease-specific IRMs (Fig. 5A). Based 

on preservation results of one disease versus controls and against all other diseases (Fig. 5B, 

z-summary < 10), as well as immune gene enrichment results (Table S9; enrichment qvalue 

< 0.05), six disease-specific IRMs were identified, including one for AD, three for ASD, 

and two for PD. No disease-specific IRMs were detected for SCZ, BD, or MDD, which are 

considered psychiatric disorders.

The disease-specific IRMs were enriched for different functions (Fig. 5C, Table S9). 

The AD-specific IRM was enriched for neuron part (GO:0097458, qvalue= 4.57E-4) and 

presynapse (GO:0098793, qvalue = 4.57E-4). The PD-specific IRM was enriched for 

positive regulation of angiogenesis (GO:0045766, qvalue = 9.65E-06) and secretory granule 

(GO:0030141, qvalue= 6.31E-06). The ASD-specific IRMs were enriched for developmental 

biological processes such as negative regulation of cell proliferation (GO:0008285, qvalue= 

1.21E-4) and growth factor receptor binding (GO:0070851, qvalue = 1.27E-02).

Common SNPs have a modest contribution to neuroimmune changes.

Tests were completed to determine whether IRGs, dIRGs, dIRG-enriched pathways, and 

IRMs were enriched for disease GWAS signals. A few dIRGs overlapping with genes that 

are in GWAS loci for all six diseases were detected, with AD having the largest number 

of genes (13 genes), and SCZ the second largest (5 genes), including C4A in SCZ (Table 

S10). However, none of these overlapping genes were significant after multiple testing. In 

contrast, a few dIRG-related pathways were significantly enriched in AD and SCZ GWAS 

signals and survived multiple testing corrections (Table S10). Among them, the amyloid 

precursor protein catabolic process was enriched in AD GWAS signals (qvalue= 3.9E-7). 

The leukocyte apoptotic process was enriched in SCZ GWAS signals (qvalue= 0.03). Only 

IRM-4 was enriched in SCZ GWAS signals (Table S10).

When two disorders have similar genetic risks, will they have similar changes of IRGs? In 

other words, is the genetic similarity between two disorders reflected by the similarity of 

expression changes of IRGs? The relationship between the effect-size correlation of dIRGs 
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and the genetic correlation from the same pairs of disorders was assessed15. The genetic 

correlation was obtained from the Brainstorm Consortium81. Combining all the pairs of 

disorders, the correlation of these two kinds of correlations was modest but insignificant. 

(Fig. S8, Pearson’ r = 0.46, p.value = 0.08). Despite a small sample size of pairs of 

disorders (N=15), this analysis suggested that genetic factors had a minor contribution 

through affecting the IRGs to general brain disorders. This analysis captures collective 

contributions from all six disorders and cannot resolve individual contributions.

Discussion

This study focused on the neuroimmune changes represented by gene expression in multiple 

neuropsychiatric and neurological disorders. Transcriptome data of more than 2,000 brains 

from healthy controls and patients of six major brain disorders were used. This study 

showed that brain disorders have both shared and disease-specific immune-related changes 

by studying individual IRGs and related pathways and co-expression networks. In addition, 

the effects of biological factors such as tissue, sex, age, and cell type were evaluated. 

Four major findings of the neuroimmune system in brains of different neuropsychiatric 

disorders were highlighted: 1) the innate immune system carries more alterations than the 

adaptive immune systems in the six disorders; 2) the altered immune systems interact 

with brain-related biological pathways and networks contributing to the risk of disorders; 

3) common SNPs have a limited contribution to immune-related disease risks, while the 

environmental contribution may be substantial; and 4) the expression profiles of dIRGs, 

particularly those of innate immune genes, clustered neurodevelopment disorder ASD with 

neurological diseases (AD and PD) instead of with psychiatric disorders (BD, MDD, and 

SCZ)

More than half of the shared dIRGs and dIRG-enriched pathways were related to the innate 

immune system. Dysregulation of the innate immune system is a common denominator 

for the six brain disorders in this study. Additionally, TLR1/2 mediates microglial activity, 

which could contribute to neuronal death through the release of inflammatory mediators82 

Furthermore, innate immunity is critical in maintaining homeostasis in the brain. For 

example, the innate immune system has been reported to function in the CNS’s resilience83 

and in synaptic pruning throughout brain growth84. When homeostasis is disrupted, 

abnormal innate immunity may impact a wide range of brain functions85.

The IRGs connected immunity with the neuronal processes and disease risk. The dIRGs 

were expected to be enriched for immune-related pathways since immune-related genes 

were selected as the focus in this study. However, these dIRGs cooperate with other brain-

related biological processes. Such cooperative networks were revealed by the coexpression 

networks involving IRGs. The coexpression network analyses indicated that IRGs in brains 

were involved in brain developmental processes. Three brain universal IRMs were enriched 

with functions related to development in neurons, microglia, and endothelia. IRM4 is 

of particular interest for connecting neuron, immune system, and development to all six 

disorders tested in this study. The contribution of neuro-immune-development to SCZ and 

ASD is well accepted. Previous studies discovered the role of the immune system in the 

development of the CNS83, 86, 87. Abnormal immune activation during brain development 
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can cause behavioral and neurochemical abnormalities relevant to disorders88–92. One 

additional disease-specific module, ASD-IRM6, is also associated with development, further 

implicating the importance of development in ASD risk. The connections between AD, 

PD, and neuro-immune-development through IRM4 remain unclear, as they are late-onset 

neurodegenerative diseases. The unique age trajectories of these IRM4 in AD patients 

suggested aging in the immune system was involved for the same set of genes. As another 

representative of the disease-shared module, IRM-14 was enriched with immune-related 

and tissue development-related pathways. This finding provides evidence supporting the 

hypothesis that immunity is involved in brain development93. The discovery of association 

of IRM-14 in these six disorders also suggests that a subset of immune-related genes of 

this specific network constitutes common ground for these different brain diseases. IRM-14 

was enriched for cell markers of endothelial cell. The endothelial cell is involved when the 

vascular blood–brain barrier becomes more permeable to solutes with increasing degrees and 

duration of innate inflammation94. These findings indicated the importance of endothelial 

cells in the neuroimmune system.

This study showed that the disease-specific IRMs may influence expression of networked 

non-immune genes and contribute to the pathology of these diseases specifically. Six 

disease-specific IRMs were detected in AD, ASD, and PD, including a presynaptic-related 

AD-specific IRM, growth factor receptors-related ASD-specific IRMs, and a secretogranin-

related PD-specific IRM. These disease-specific IRMs are supported by existing literature. 

Presynaptic proteins are known to be essential for synaptic function and to be related 

to cognitive impairments in AD95. Growth factor receptors96 and N-acetylcysteine97 are 

known to be involved in the etiology of ASD. Secretogranin may be a pivotal component 

of the neuroendocrine pathway and play an essential role in neuronal communication and 

neurotransmitter release in PD 98. Moreover, the immune system has been found to regulate 

presynaptic proteins99, EGFR100, and secretogranin98.

Microglia are highlighted in the immune changes in brains of AD and ASD in this study. 

Microglia are major participants in the brain’s immune system. This study showed that 

the IRM12 co-expression module was enriched for microglia genes and associated with 

inflammatory transcriptional change in AD and ASD but not the other four diseases. Does 

this suggest that microglial dysfunction contributes more to AD and ASD than to the other 

disorders? A PsychENCODE study showed the microglial module was upregulated in ASD 

and downregulated in SCZ and BD16, but the fold changes in SCZ and BD were much 

smaller than that in ASD. Larger sample size, or immune stratification may be needed to 

detect microglia contribution to other disorders such as SCZ and BD.

Debate exists over whether neuroinflammatory alterations in disorders are affected by 

genetics101, 102 or by the environment103, 104. This study offered support for both arguments. 

On the genetic risk side, the genetic contribution to neuroinflammation may be more 

relevant to AD and SCZ than the other four disorders. Several individual dIRGs are also 

GWAS signals such as IL6R in AD and C4A in SCZ. IL6R has been identified as a 

strong candidate gene of AD with both genetic and transcriptome supports105. C4A is a 

well-known SCZ GWAS locus and is up-regulated in SCZ (effect size=0.2, qvalue<0.05). 

Several dIRG-related pathways and co-expression modules were enriched in GWAS signals 
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of neurological diseases AD and SCZ, respectively. The enrichment for AD was particularly 

strong, involving the amyloid precursor protein catabolic process in AD. A previous study 

identified this pathway under genetic control in AD106. However, this study did not detect 

statistically significant correlation between overall genetic risk and IRG changes between 

pairs of disorders in general. This IRG-subset result is in contrast with previous results on 

the whole transcriptome15 where a significant correlation (Spearman’s ρ =0.79) between 

expression changes and genetic correlation in pairs of disorders was reported. The genetic 

connection with immunity detected in the current study was likely indirect because no 

significant enrichment of dIRG in GWASs of ASD, PD, BD, and MDD was detected. On 

the environmental side, the environmental contribution to neuropsychiatric disease risk is 

strongly implicated through the current study with data suggesting that these brain diseases 

are related to stress, an environmental factor.

Unexpectedly, ASD, thought to be a neurodevelopmental disorder, was grouped with 

neurological diseases (AD and PD) instead of with psychiatric disorders (BD, MDD, and 

SCZ) based on changes of IRGs, particularly innate immune genes. Previous studies have 

reported that ASD patients exhibited more neurological and immunological problems107–110 

compared to healthy people and to other brain disorders. As more etiologies are uncovered, 

the traditional classification of these diseases is increasingly challenged103. Furthermore, 

this study found that dIRGs change more in neurological diseases (AD, PD, and ASD) 

than in the psychiatric disorders (BD, SCZ, and MDD). This suggested that neuroimmune 

gene dysregulation was more severe in neurological diseases than in psychiatric disorders, 

led by AD. These findings suggest that different clusters of disorders may benefit from 

immune-related treatments strategies.

The two most shared dIRGs, TAC1 and CRH, have known effects on innate immune 

activation111, 112 and stress response113, 114. CRH is one of the most shared dIRGs across 

disorders. CRH has the core function of controlling the release of stress hormones. Studies 

have reported the relationship between immunity and stress115, 116 and showed patients 

with brain disorders had decreased cortisol responses to social stressors117. CRH and TAC1 

are both consistently shown reduced in our microarray data (discovery) and RNA-seq data 

(validation). The differential expression of these two genes implied the dysregulation of the 

stress response in these major brain disorders. Chronic stress is known to lead to increased 

inflammation in the periphery118–121. Why TAC1 and CRH showed reduced expression? 

One possible explanation for the reduced expression is that prolonged stressful environment 

leads to abnormal cortisol regulation as shown by reduced GR and increased FKBP5, which 

could in turn lead to excessive accumulation of inflammatory factors in the brain. Another 

possible explanation is that changes in brain gene expression are dynamic and change over 

time. The current study is limited to the observation of expression level in postmortem brain 

tissue from patients likely at later stages of illness. The expression of CRH or TAC1 may 

have different expression patterns earlier on and/or vary with disease stages. Both possible 

mechanisms should be explored in future studies. One thing should be clear: increased 

inflammation does not mean increased activities of every gene in the systems.

The difference in numbers of dIRGs among disorders might be related to the sample size 

of each disease dataset. Transcriptome data from bulk tissues were used in this study, 
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which did not reflect gene expression in specific brain cell types. The sva was used in this 

study to control hidden covariates, which minimized the cell type effects along with other 

covariates. The co-expression network analysis still suggested three cell types. Single-cell 

or deconvolutional data will be needed to uncover effects of subtypes of cells. Similarly, 

age and other factors were regressed out as well when detecting dIRGs. They could be 

studied specifically. Causal relationship between neuroinflammatory changes and disorders 

will need to be established.

In summary, this study provided a cross-disorder transcriptome study to explore 

neuroimmune system dysfunction in six neurological and psychiatric disorders. The fact 

that more than 60% of the IRGs had significantly altered expression in at least one of 

the six disorders indicated immune dysfunction widely exists in these brain disorders. The 

functional annotations of the dIRGs highlighted the shared dysfunction of innate immunity, 

and its ability to differentiate psychiatric disorders from neurological diseases. Disease-

specific dIRGs and their associated pathways and coexpression modules may explain the 

distinct clinical features of each disorder. Therapeutics targeting different components of 

the systems may lead to distinct effects; some are general for all brain disorders while 

others could help specific disorders. A subset of patients may benefit from immune-related 

treatments.
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Fig. 1. Differential expression of immune genes in six disorders.
A. Volcano plot for each disorder. B. Effect size correlation between microarray data and 

RNA-seq data.
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Fig. 2. Comparison of the effect size of differentially expressed IRGs among neuropsychiatric 
disease pairs.
A. Numbers of up-regulated and downregulated dIRGs in the six disorders. Red represents 

up-regulated dIRGs, blue represents down-regulated dIRGs. B. Cluster tree of scaled effect 

size for all disorders based on 1,275 IRGs for their fold changes. C. Significant sex 

differences by effect size in ASD and MDD. The dash line indicated mean value of 

effect size. D. dIRGs shared across disorders: CRH and TAC1. *: fdr qvalue<0.05; **fdr 

qvalue<0.01; ***fdr qvalue<0.001
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Fig. 3. Comparing dIRG-associated function across disorders.
A. UpSet plot of dIRGs overlap between pairs of disorders. Dark cells and lines indicate 

that the set participates in the intersection. B. The doughnut chart shows the percentages of 

different IRGs types. C. UpSet plot of differential immune pathways overlap. The black dots 

and the black line show the overlapping dIRG-pathways between pairs of disorders. Cells 

that are dark indicate that it participates in the intersection. D. The doughnut chart shows the 

percentages of overlapping dIRG-pathways. E. Gene ontology enrichment analysis results of 

six pathways shared by dIRGs of all six disorders.
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Fig. 4. Shared immune-related coexpression modules
A. Robust gene dendrogram obtained by WGCNA. B. The multidimensional scaling plot 

demonstrates the relationship between modules. Modules highlighted by stars are enriched 

in immune genes (enrichment qvalue < 0.05). Edges are weighted by the strength of 

correlation between eigengenes of modules. C. The top 20 hub genes are plotted for the 

three IRM4, IRM12, and IRM14. A complete list of genes’ module membership (kME) is 

provided in data Table S8. Edges are weighted by the strength of the correlation between 

genes. D. Relationships of module eigengenes and diseases. Numbers in the table report the 

correlations of the corresponding module eigengenes and traits, with the p.values printed 
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below the correlation coefficients r values. E. Cell marker enrichment of shared IRMs. F. 
Enrichment of the shared IRMs in pathways. Yellow: IRM4, Tan: IRM12, Cyan: IRM14
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Fig. 5. Disease-specific coexpression modules.
A. Workflow for identifying disease-specific IRMs. B. Module preservation plot of disease-

specific IRMs. The median rank and Zsummary statistics of module preservation of disorder 

modules in background modules (y-axis) vs. module size (x-axis). C. Pathway enrichment of 

disease-specific immune modules.
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