Skip to main content
IUCrData logoLink to IUCrData
. 2023 Jan 31;8(Pt 1):x230042. doi: 10.1107/S2414314623000421

(Z)-4,5-Di­bromo-3,3,6,6-tetra­methyl-2,3,6,7-tetra­hydro­thiepine-1,1-dione

Dieter Schollmeyer a, Heiner Detert a,*
Editor: M Bolteb
PMCID: PMC9912316  PMID: 36794058

The crystal of the title compound is formed from layers built from centrosymmetric pairs of mol­ecules. The mol­ecule adopts a twist conformation with the carbons next to sulfur above or below the mean plane.

Keywords: crystal structure, strain, bromine, heterocycles

Abstract

The crystal of the title compound, C10H16Br2O2S, is formed from layers built from centrosymmetric pairs of mol­ecules. The mol­ecule adopts a twist conformation with the carbon atoms next to sulfur above or below the mean plane. graphic file with name x-08-x230042-scheme1-3D1.jpg

Structure description

As part of our studies on the reactivity of angle-strained compounds (Krämer et al., 2009; Detert 2011), the addition of bromine appeared to be a challenging project (Chiappe et al., 2002; Detert et al. 1992). Whereas the addition of bromine to alkynes generally leads via bridged bromo­nium ions to trans-di­bromo­alkenes, the bromination of cyclo­octyne gives cis-1,2-di­bromo­cyclo­octene (Wittig & Dorsch, 1968). While this can proceed via isomerization of the initially formed trans isomer, the addition of bromine to cyclo­heptynes avoids cationic inter­mediates (Herges et al. 2005). The title compound (Fig. 1) was obtained within these studies via addition of bromine to tetra­methyl­thia­cyclo­heptyne-S,S-dioxide (Krebs et al. 1979). Two identical, non-symmetrical mol­ecules comprise the unit cell. The conformation of the seven-membered ring is similar to a twist form. The atoms C7,C1,C3,S5 are nearly coplanar with the largest deviation from planarity at C1 [0.056 (3) Å]. The atoms vicinal to sulfur adopt positions below [−0.789 (3) Å, C4] and above [0.785 (3) Å, C6] this plane. The tetra­substituted olefin is twisted, torsion angle C7—C1—C2—C3 is −13.7 (6)° and Br1—C1—C2—Br2 at −15.3 (3)° is even larger. Two mol­ecules are connected by a center of inversion, the packing appears as a layer structure (Fig. 2). Layers are parallel to the a axis, the minimal distance between bromine atoms (Br1⋯Br1′) of different layers is 3.4168 (6) Å.

Figure 1.

Figure 1

View of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2.

Figure 2

Partial packing diagram. View along the a-axis.

Synthesis and crystallization

The title compound C10H16O2Br2S was prepared from the cyclic alkyne (Krebs et al., 1979; Krebs & Colberg 1980) by addition of bromine at 203 K according to the procedure given by Herges et al. (2005). After evaporation of the solvent, the oily compound crystallized after standing for 15 years at ambient temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Table 1. Experimental details.

Crystal data
Chemical formula C10H16Br2O2S
M r 360.11
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 193
a, b, c (Å) 5.9685 (4), 8.9642 (6), 12.4927 (9)
α, β, γ (°) 94.804 (6), 102.448 (5), 99.356 (5)
V3) 639.09 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 6.49
Crystal size (mm) 0.67 × 0.39 × 0.08
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration (X-RED; Stoe et al., 2019)
T min, T max 0.088, 0.553
No. of measured, independent and observed [I > 2σ(I)] reflections 8129, 3038, 2686
R int 0.023
(sin θ/λ)max−1) 0.663
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.089, 1.14
No. of reflections 3038
No. of parameters 140
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.28, −0.89

Computer programs: X-AREA WinXpose, Recipe and Integrate (Stoe & Cie, 2019), SHELXT2014 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314623000421/bt4132sup1.cif

x-08-x230042-sup1.cif (282.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623000421/bt4132Isup2.hkl

x-08-x230042-Isup2.hkl (242.7KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623000421/bt4132Isup3.cml

CCDC reference: 2236694

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C10H16Br2O2S Z = 2
Mr = 360.11 F(000) = 356
Triclinic, P1 Dx = 1.871 Mg m3
a = 5.9685 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.9642 (6) Å Cell parameters from 18448 reflections
c = 12.4927 (9) Å θ = 2.7–28.4°
α = 94.804 (6)° µ = 6.49 mm1
β = 102.448 (5)° T = 193 K
γ = 99.356 (5)° Plate, colourless
V = 639.09 (8) Å3 0.67 × 0.39 × 0.08 mm

Data collection

Stoe IPDS 2T diffractometer 3038 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 2686 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.023
rotation method, ω scans θmax = 28.1°, θmin = 2.7°
Absorption correction: integration (XRED; Stoe et al., 2019) h = −7→7
Tmin = 0.088, Tmax = 0.553 k = −11→11
8129 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0307P)2 + 1.4492P] where P = (Fo2 + 2Fc2)/3
S = 1.14 (Δ/σ)max < 0.001
3038 reflections Δρmax = 1.28 e Å3
140 parameters Δρmin = −0.89 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Hydrogen atoms attached to carbons were placed at calculated positions and were refined in the riding-model approximation with C–H = 0.95 Å, and with Uiso(H) = 1.2 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.15368 (7) 0.46873 (4) 0.40230 (3) 0.03826 (12)
Br2 0.21628 (8) 0.13145 (5) 0.44057 (3) 0.04584 (13)
C1 0.2846 (5) 0.3563 (4) 0.3004 (2) 0.0251 (6)
C2 0.2791 (5) 0.2074 (4) 0.3085 (3) 0.0265 (6)
C3 0.3191 (6) 0.0802 (4) 0.2281 (3) 0.0281 (7)
C4 0.2643 (5) 0.1158 (4) 0.1074 (3) 0.0266 (6)
H4A 0.115877 0.154728 0.094409 0.032*
H4B 0.235588 0.018273 0.058883 0.032*
S5 0.46965 (15) 0.24522 (9) 0.06328 (7) 0.02945 (18)
C6 0.5605 (5) 0.3987 (3) 0.1695 (3) 0.0254 (6)
H6A 0.674923 0.368072 0.229620 0.031*
H6B 0.645465 0.484410 0.140356 0.031*
C7 0.3767 (5) 0.4610 (3) 0.2221 (3) 0.0226 (6)
C8 0.5636 (6) 0.0428 (5) 0.2667 (4) 0.0401 (9)
H8A 0.586667 −0.036909 0.213729 0.060*
H8B 0.578609 0.006994 0.339500 0.060*
H8C 0.681643 0.134537 0.271694 0.060*
C9 0.1385 (7) −0.0676 (4) 0.2226 (4) 0.0396 (8)
H9A 0.155064 −0.144330 0.165629 0.059*
H9B −0.019675 −0.045063 0.204374 0.059*
H9C 0.165983 −0.106587 0.294348 0.059*
O10 0.6724 (5) 0.1800 (3) 0.0569 (3) 0.0434 (7)
O11 0.3486 (5) 0.2945 (3) −0.0361 (2) 0.0416 (6)
C12 0.1749 (6) 0.4981 (4) 0.1357 (3) 0.0300 (7)
H12A 0.238109 0.561693 0.085059 0.045*
H12B 0.078319 0.553061 0.172897 0.045*
H12C 0.079307 0.403256 0.093870 0.045*
C13 0.5228 (6) 0.6125 (4) 0.2895 (3) 0.0315 (7)
H13A 0.593338 0.675014 0.240333 0.047*
H13B 0.646160 0.589899 0.348092 0.047*
H13C 0.420881 0.668146 0.322457 0.047*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0480 (2) 0.0446 (2) 0.03061 (19) 0.01935 (16) 0.02005 (15) 0.00268 (15)
Br2 0.0666 (3) 0.0435 (2) 0.0296 (2) 0.00595 (19) 0.01546 (18) 0.01398 (16)
C1 0.0262 (14) 0.0332 (16) 0.0169 (13) 0.0094 (12) 0.0058 (11) 0.0003 (12)
C2 0.0254 (15) 0.0331 (16) 0.0230 (15) 0.0073 (12) 0.0064 (12) 0.0086 (13)
C3 0.0255 (15) 0.0251 (15) 0.0356 (18) 0.0066 (12) 0.0088 (13) 0.0062 (13)
C4 0.0242 (14) 0.0244 (15) 0.0296 (16) 0.0013 (12) 0.0075 (12) −0.0034 (12)
S5 0.0316 (4) 0.0281 (4) 0.0289 (4) −0.0004 (3) 0.0151 (3) −0.0049 (3)
C6 0.0250 (14) 0.0226 (14) 0.0285 (16) 0.0033 (11) 0.0083 (12) −0.0011 (12)
C7 0.0267 (14) 0.0217 (14) 0.0209 (14) 0.0066 (11) 0.0079 (11) 0.0008 (11)
C8 0.0314 (18) 0.0378 (19) 0.055 (2) 0.0150 (15) 0.0094 (16) 0.0136 (17)
C9 0.041 (2) 0.0278 (17) 0.052 (2) 0.0009 (15) 0.0191 (17) 0.0054 (16)
O10 0.0377 (14) 0.0372 (14) 0.0587 (18) 0.0019 (11) 0.0290 (13) −0.0124 (12)
O11 0.0546 (16) 0.0428 (15) 0.0247 (12) −0.0024 (12) 0.0133 (11) 0.0007 (11)
C12 0.0280 (16) 0.0327 (17) 0.0300 (17) 0.0070 (13) 0.0052 (13) 0.0087 (13)
C13 0.0373 (18) 0.0261 (16) 0.0291 (17) 0.0066 (13) 0.0053 (14) −0.0034 (13)

Geometric parameters (Å, º)

Br1—C1 1.927 (3) C6—H6B 0.9900
Br2—C2 1.923 (3) C7—C12 1.536 (4)
C1—C2 1.343 (5) C7—C13 1.556 (4)
C1—C7 1.536 (4) C8—H8A 0.9800
C2—C3 1.538 (5) C8—H8B 0.9800
C3—C8 1.535 (5) C8—H8C 0.9800
C3—C4 1.543 (5) C9—H9A 0.9800
C3—C9 1.552 (5) C9—H9B 0.9800
C4—S5 1.758 (3) C9—H9C 0.9800
C4—H4A 0.9900 C12—H12A 0.9800
C4—H4B 0.9900 C12—H12B 0.9800
S5—O11 1.438 (3) C12—H12C 0.9800
S5—O10 1.441 (3) C13—H13A 0.9800
S5—C6 1.758 (3) C13—H13B 0.9800
C6—C7 1.547 (4) C13—H13C 0.9800
C6—H6A 0.9900
C2—C1—C7 132.0 (3) C1—C7—C12 111.0 (3)
C2—C1—Br1 117.5 (2) C1—C7—C6 112.8 (2)
C7—C1—Br1 110.4 (2) C12—C7—C6 112.6 (3)
C1—C2—C3 130.6 (3) C1—C7—C13 109.7 (3)
C1—C2—Br2 118.0 (2) C12—C7—C13 108.7 (3)
C3—C2—Br2 111.4 (2) C6—C7—C13 101.5 (2)
C8—C3—C2 110.8 (3) C3—C8—H8A 109.5
C8—C3—C4 113.7 (3) C3—C8—H8B 109.5
C2—C3—C4 112.0 (3) H8A—C8—H8B 109.5
C8—C3—C9 107.6 (3) C3—C8—H8C 109.5
C2—C3—C9 110.2 (3) H8A—C8—H8C 109.5
C4—C3—C9 102.1 (3) H8B—C8—H8C 109.5
C3—C4—S5 119.1 (2) C3—C9—H9A 109.5
C3—C4—H4A 107.5 C3—C9—H9B 109.5
S5—C4—H4A 107.5 H9A—C9—H9B 109.5
C3—C4—H4B 107.5 C3—C9—H9C 109.5
S5—C4—H4B 107.5 H9A—C9—H9C 109.5
H4A—C4—H4B 107.0 H9B—C9—H9C 109.5
O11—S5—O10 116.84 (18) C7—C12—H12A 109.5
O11—S5—C4 107.11 (16) C7—C12—H12B 109.5
O10—S5—C4 110.42 (17) H12A—C12—H12B 109.5
O11—S5—C6 109.96 (16) C7—C12—H12C 109.5
O10—S5—C6 106.90 (16) H12A—C12—H12C 109.5
C4—S5—C6 105.01 (15) H12B—C12—H12C 109.5
C7—C6—S5 119.5 (2) C7—C13—H13A 109.5
C7—C6—H6A 107.4 C7—C13—H13B 109.5
S5—C6—H6A 107.4 H13A—C13—H13B 109.5
C7—C6—H6B 107.4 C7—C13—H13C 109.5
S5—C6—H6B 107.4 H13A—C13—H13C 109.5
H6A—C6—H6B 107.0 H13B—C13—H13C 109.5
C7—C1—C2—C3 −13.7 (6) C3—C4—S5—O10 70.2 (3)
Br1—C1—C2—C3 165.7 (3) C3—C4—S5—C6 −44.7 (3)
C7—C1—C2—Br2 165.3 (3) O11—S5—C6—C7 71.3 (3)
Br1—C1—C2—Br2 −15.3 (3) O10—S5—C6—C7 −161.0 (3)
C1—C2—C3—C8 102.4 (4) C4—S5—C6—C7 −43.7 (3)
Br2—C2—C3—C8 −76.6 (3) C2—C1—C7—C12 105.5 (4)
C1—C2—C3—C4 −25.7 (5) Br1—C1—C7—C12 −73.9 (3)
Br2—C2—C3—C4 155.3 (2) C2—C1—C7—C6 −21.9 (5)
C1—C2—C3—C9 −138.6 (4) Br1—C1—C7—C6 158.6 (2)
Br2—C2—C3—C9 42.4 (3) C2—C1—C7—C13 −134.3 (4)
C8—C3—C4—S5 −48.3 (4) Br1—C1—C7—C13 46.3 (3)
C2—C3—C4—S5 78.3 (3) S5—C6—C7—C1 74.8 (3)
C9—C3—C4—S5 −163.9 (2) S5—C6—C7—C12 −51.8 (3)
C3—C4—S5—O11 −161.6 (2) S5—C6—C7—C13 −167.8 (2)

References

  1. Chiappe, C., De Rubertis, A., Detert, H., Lenoir, D., Wannere, C. S. & Schleyer, P. von R. (2002). Chem. Eur. J. 8, 967–978. [DOI] [PubMed]
  2. Detert, H. (2011). Targets in Heterocyclic Systems, vol. 15, edited by O. A. Attanasi & D. Spinelli, pp. 1–49. Rome: Italian Society of Chemistry.
  3. Detert, H., Anthony-Mayer, C. & Meier, H. (1992). Angew. Chem. Int. Ed. Engl. 31, 791–792.
  4. Herges, R., Papafilippopoulos, A., Hess, K., Chiappe, C., Lenoir, D. & Detert, H. (2005). Angew. Chem. Int. Ed. 44, 2–6. [DOI] [PubMed]
  5. Krämer, G., Detert, H. & Meier, H. (2009). Tetrahedron Lett. 50, 4810–4812.
  6. Krebs, A. & Colberg, H. (1980). Chem. Ber. 113, 2007–2014.
  7. Krebs, A., Colberg, H., Höpfner, U., Kimling, H. & Odenthal, J. (1979). Heterocycles, 12, 1153–1156.
  8. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  9. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  10. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  11. Stoe & Cie (2019). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.
  12. Wittig, G. & Dorsch, H.-L. (1968). Justus Liebigs Ann. Chem. 711, 46–54.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314623000421/bt4132sup1.cif

x-08-x230042-sup1.cif (282.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623000421/bt4132Isup2.hkl

x-08-x230042-Isup2.hkl (242.7KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623000421/bt4132Isup3.cml

CCDC reference: 2236694

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES