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Abstract

The apolipoprotein E (APOE) ε4 allele is strongly linked with cerebral β-amyloidosis, but its 

relationship with tauopathy is less established. We investigated the relationship between APOE 
ε4 carrier status, regional amyloid-β (Aβ), MRI volumetrics, tau positron emission tomography 

(PET), APOE mRNA expression maps, and cerebrospinal fluid phosphorylated tau (CSF ptau181). 
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350 participants underwent imaging and 270 had ptau181. Models evaluated the main effect of 

APOE ε4 carrier status on regional neuroimaging values and then the interaction of ε4 status and 

global Aβ on regional tau PET and brain volumes as well as CSF ptau181 values. A final model 

examined the additional interactive influence of sex. We found, for the same level of Aβ burden, 

APOE ε4 carriers showed greater tau PET signal relative to non-carriers in temporal regions, but 

no interaction was present for MRI volumes or CSF ptau181. This potentiation of tau aggregation 

irrespective of sex occurred in brain regions with high APOE mRNA expression, suggesting local 

vulnerabilities to tauopathy. There were greater effects of APOE genotype in females, although the 

interactive sex effects did not strongly mirror mRNA expression.

One Sentence Summary:

APOE ε4 genotype is associated with greater tau PET levels for the same level of Aβ PET in 

regions of high APOE mRNA expression, but not for CSF tau.
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1. Introduction

The apolipoprotein E (APOE) ε4 allele is the strongest genetic risk factor for late-onset 

Alzheimer disease (AD) (1). APOE has three alleles: ε3 is the most common, followed by 

ε4 and ε2. The ε2 allele is associated with a decreased risk of AD relative to ε3 whereas the 

presence of the ε4 allele increases the risk of AD dementia and is associated with an earlier 

age of symptom onset (2, 3). Moreover, the gene acts in a dose-dependent manner, with one 

ε4 allele increasing the risk of AD by ~3–4 fold and two ε4 alleles increasing the risk by 

~12 fold (2, 4).

Given its prominent role in AD, it is critical to understand the underlying mechanism of 

the APOE ε4 allele and its effects on AD pathophysiology. The apoe protein has long 

been linked with amyloid-β (Aβ) plaques, one of the hallmarks of AD, with early research 

showing that apoe binds to Aβ peptides (5, 6) and that individuals carrying the APOE ε4 

allele have greater Aβ plaque pathology compared to non-carriers in postmortem studies 

(7–10). Later in vivo work, utilizing positron emission tomography (PET) and cerebrospinal 

fluid (CSF) assays, mirror these postmortem observations. APOE ε4 carriers with the ε4 

allele have consistently been shown to have elevated Aβ PET levels relative to non-carriers 

in a dose-dependent fashion (11) as well as lower CSF Aβ1–42 levels (12–18) indicative of 

the presence of amyloid (19). Individuals with the APOE ε4 allele also begin accumulating 

pathology at an earlier age compared to non-carriers (14, 20).

Along with Aβ pathology, neurofibrillary tangles composed of hyperphosphorylated tau 

protein are a hallmark of AD. Previous work has shown that APOE ε4 carrier status is 

associated with tau pathology, but the underlying mechanisms of this relationship are still 

unclear. Specifically, individuals carrying the APOE ε4 allele have greater neurofibrillary 

tau pathology compared to non-carriers in postmortem studies when Aβ pathology is present 
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(10), but this association disappeared when Aβ pathology was not present (21, 22). Research 

utilizing CSF tau measures have reported both significant effects of the APOE ε4 allele (18, 

23) even when controlling for CSF Aβ1–42 levels (24), as well as weak or no effects (14, 

17, 18, 20). Using animal models, it has also been observed that APOE ε4 carrier status 

exacerbates tau pathology and tau-mediated neurodegeneration independent of Aβ (25). This 

finding is consistent within several PET studies that show the APOE ε4 is associated with 

greater levels of tauopathy (26–33), although a minority of work has found the opposite 

effect (34). These prior analyses have provided important contributions to the literature 

but have limitations. The PET analyses do not typically examine if there is an interaction 

between genotype and Aβ (32), rarely includes both CSF and imaging measures of tau 

(32, 33), and when multiple modalities are included they may come from different cohorts 

(33). These caveats limit the ability to detect a APOE mediated potentiation of tauopathy as 

predicted by animal work.

Although genetic polymorphisms such as APOE genotype are often viewed holistically, 

the relative expression of genes including APOE varies in different brain regions (35, 36). 

The availability of gene expression data such as the Allen Human Brain Atlas (AHBA) 

now make it possible to relate AD pathology observed using neuroimaging to underlying 

topologies of genetic expression that they may reflect (35–40).

The goal of the current study is to evaluate whether APOE ε4 carrier status represents an 

additive or interaction effect with levels of Aβ in predicting tau PET. By comparing PET 

and CSF measures, we examined how APOE ε4 carrier status influences both soluble and 

insoluble forms of tau. Finally, we examined the relationship between APOE ε4 carrier 

status, regional Aβ and tau PET, and APOE mRNA expression patterns to relate APOE ε4 

carrier status with the spatial distribution of APOE mRNA expression, Aβ, and tau in the 

human brain.

2. Results

2.1 Demographics

In the three hundred fifty individuals, age, sex, education, and racial makeup did not differ 

between APOE ε4 carrier and noncarrier groups. APOE ε4 carriers had a greater percentage 

of CDR > 0 participants, lower MMSE scores, higher CDR sum of boxes, as well as 

higher frequencies of tau and Aβ PET positivity compared to noncarriers (Table 1). For the 

individuals that had a CDR>0, 14 individuals had a clinical diagnosis of uncertain etiology 

and 31 had a primary AD diagnosis. The median absolute interval between the Aβ PET scan 

and the tau PET scan was 28 days (range 1–365), the median absolute lag with the lumbar 

puncture was 36 days (range 1–688), and the median absolute lag with the clinical visit was 

121 days (range 0–562).

2.2 APOE ε4 carrier status, Aβ, tau PET, CSF ptau181, and MRI relationships

APOE ε4 carriers had higher Aβ PET throughout the cerebral cortex and in the amygdala, 

hippocampus, and putamen. (Fig. 1A, Table S1). APOE ε4 carriers had higher tau PET 

primarily in temporal, hippocampus, and amygdala regions (Fig. 1B, Table S2). When 
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APOE ε4 carrier status and Aβ summary measure were included concurrently in models 

of regional tau PET, we found that the Aβ summary measure, but not APOE ε4 carrier 

status, significantly predicted tau PET levels (Fig. 1C, Fig. 1D, Table S3). This result 

suggests shared variance between these measures. Notably, there was significant interaction 

between APOE ε4 carrier status and the Aβ summary measure, with the ε4 carriers having 

elevated tau PET relative to non-carriers for the same level of Aβ pathology. This effect was 

predominately observed in the bilateral entorhinal, parahippocampal, and amygdala regions, 

as well as the right hemisphere temporal regions, (Fig. 1E, Fig. S1A, Table S4). When the 

three-way interaction was modeled, a number of regions demonstrated significant interaction 

between sex, genotype, and Aβ PET levels (Fig. 1F, Fig. 2A). The relationship was such 

that females had a larger interaction between genotype and continuous Aβ PET values. Full 

regional results from the tau PET models are in Table S2, S3, S4 and Fig S2.

APOE ε4 carrier status (model 1: β = 0.51, p = 8.11E-6) and Aβ summary measure (model 

2: β = 0.60, p = 2.82E-28) separately predicted significant elevations in CSF ptau181. As 

with tau PET, in the concurrent model, Aβ (model 3: β = 0.57, p = 2.12E-24) but not APOE 
ε4 carrier status (model 3: β = 0.16, p = 0.11) predicted CSF ptau181 values. Unlike tau PET, 

there was no two-way interaction between Aβ PET levels and APOE ε4 carrier status on 

CSF ptau181 (model 4: β = −0.04, p = 0.65, Fig. S1B) or three-way interaction between sex, 

Aβ PET levels, and APOE ε4 carrier status (model 5: β = 0.02, p = 0.91, Fig. 2B).

When examining regional volumes there were no significant main effects of APOE ε4 

carrier status. Higher levels of the Aβ summary measure predicted lower volumes in the 

left and right hippocampal volumes (Fig. S1C) as well as the right amygdala volume (Table 

S5). This effect of global Aβ levels in these regions remained significant even in the joint 

model that included additive main effects of ε4 status (Table S6). There were no significant 

two-way or three-way interactions (Fig. 2C, Table S7).

2.3 APOE mRNA expression and APOE ε4 carrier status spatial relationship

To analyze the spatial association between APOE mRNA and effects of APOE ε4 carriers 

status, we associated all regional beta weights estimates, non-significant and significant, to 

APOE mRNA gene expression (Fig. 3I) from the following terms: APOE ε4 carrier status 

beta weights predicting regional Aβ PET (Fig. 3B), APOE ε4 carrier status beta weights 

predicting regional tau PET (Fig. 3D), the beta weights for the APOE ε4 carrier status and 

Aβ summary measure interaction estimated using regional tau PET (Fig. 3F), and the beta 

weights from the three way-interaction (Fig. 3G). Interestingly, the APOE ε4 carrier status 

beta weight for regional tau PET (r2 = 0.53, p = 1.50e-04, Fig. 3C) and the interaction 

between Aβ summary measure and APOE ε4 carrier status beta weight for regional tau 

PET (r2 = 0.31, p = 0.0022, Fig. 3E) were both significantly associated with the spatial 

APOE mRNA expression pattern. The spatial pattern of APOE mRNA gene expression has 

a reduced, albeit still significant, association with the spatial pattern of the main effect of 

APOE ε4 carrier status estimated on regional Aβ -PET (r2 = 0.07, p = 0.016, Fig. 3A). 

There was no significant association between the spatial pattern of the three-way interaction 

between sex, genotype, and Aβ-PET (r2 = 0, p = 0.28, Fig. 3G). Although there were 

minimal significant main effects of either Aβ or genotype on regional volumes, the relatively 
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pattern of these non-significant effects was strongly related to the spatial pattern of APOE 

mRNA expression (Fig. S4). This suggests a structured, albeit weak, effect on volumes.

3. Discussion

Given that tau is more strongly associated with cortical atrophy and cognitive decline 

compared to Aβ pathology (53–55), understanding the mechanism underpinning tau 

pathology could be key to the prevention of AD. Furthermore, possession of the APOE ε4 

allele has been identified as posing the greatest genetic risk factor for developing late-onset 

AD. Therefore, it is imperative to investigate whether there is a relationship between APOE 
ε4 and tau deposition and to quantify what influence this relationship has above that of Aβ. 

While a strong association between the APOE ε4 allele and Aβ pathology is well-known 

(10, 12, 14), the ε4 allele relationship with tauopathy is less established with inconsistent 

findings from postmortem, CSF, or PET studies (10, 17, 18, 20, 26–33). The goals of this 

study were to examine the influence of APOE ε4 carrier status on PET and CSF measures 

of tau pathology, test if there was an interaction between Aβ pathology and APOE ε4 carrier 

status, and to compare how the spatial impact of this pathology relates to regional levels of 

APOE mRNA gene expression.

There exists an overwhelming body of literature describing the widespread effect of APOE 
ε4 on Aβ in postmortem (10), neuroimaging (56), biofluid (13, 16) studies. In contrast, the 

relationship between APOE ε4 and tau has been less consistent in the literature. Several 

postmortem studies have found the presence of the APOE ε4 allele increased tauopathy (10, 

57) revealing greater pathology in diffuse cortical areas in AD patients compared to APOE 
ε4 noncarriers (57), while other studies did not find this relationship (58). Studies using CSF 

measures of tau pathology reported no association with APOE ε4 carrier status (13, 14, 17, 

59), as well as significantly elevated levels of tau (23, 33, 60, 61). There are also mixed 

results on the relationship within PET studies where many have shown greater tau load on 

APOE ε4 carriers compared to noncarriers (27, 28, 30–32, 62), while others have not (34).

In the current study, we found a main effect where participants carrying the APOE ε4 allele 

had elevated levels of both CSF ptau181 and tau PET relative to non-carriers. However, 

when a summary measure of Aβ PET was included as a covariate in the model, the main 

effect of APOE ε4 carrier status was greatly reduced, suggesting much of the influence 

that the APOE ε4 carrier status has on tau pathology is mediated through its regulation of 

Aβ. This suggests minimal additive influences of APOE and Aβ levels. When examining 

the interaction between APOE ε4 carrier status and Aβ, we found a significant effect for 

tau PET but not CSF ptau181 levels, where the presence of an APOE ε4 allele potentiated 

the degree of tauopathy above the effects that can be ascribed to Aβ alone. This result 

is consistent with animal models where P301S tau transgenic mice expressing human 

APOE ε4 exhibited greater tau burden as well as neurodegeneration as compared to mice 

expressing APOE ε2 or APOE ε3 with the absence of APOE being protective (25).

In the current analyses the three-way interaction suggests a greater influence of the ε4 

allele in women. This result is consistent with prior work suggesting APOE genotype has 

a differential AD risk by sex (63, 64) and may have a sex-dependent effect on in vivo 
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measures of tau pathology (62). Although the size of our population is robust (n=350) it 

is still modestly powered to estimate the three-way interaction between genotype, levels of 

Aβ, and sex. As a result, replication of this interaction between sex and genotype using 

additional cohorts in future studies is warranted. Although there was a modest effect of Aβ 
levels on medial temporal volumes, we found no evidence of potentiation by ε4 status. This 

is consistent with prior human work (20), but a difference from mouse models (25).

The discrepancy between CSF and PET is not entirely unexpected given the modest 

correlations seen between these modalities in literature (55, 65–67) suggesting they capture 

unique properties of the disease. The APOE ε4 carrier status may only exert its influence 

selectively in insoluble, aggregated, forms of tau. There is also emerging evidence that tau 

phosphorylated at different sites such as ptau217 and ptau231 changes quite early in the 

diseases (68–70), while tau PET is relatively late (71). Increased levels of ptau181, ptau205, 

ptau217, ptau231 may reflect a response to amyloidosis more than the aggregation of tau 

into neurofibrillary tangles per se. As a result the difference may not be due to the soluble 

and insoluble distinction, but instead an erroneous conceptualization in the field about 

how strongly ptau reflects tauopathy as defined neuropathological and with PET. Future 

analyses of other ptau phosphorylation sites, as well as other candidate markers such as 

microtubule binding region (MTBR)(72), may provide important insight into how APOE 
genotype influences biofluid measures beyond ptau181.

The observed genotype effects on Aβ were prominent in medial parietal and frontal areas, 

although elevation was observed across the cortex. Elevated tau was most prominently 

observed in temporal, hippocampus, and amygdala regions. These spatial signatures (Fig. 

1) are highly consistent with the stereotypical patterns of these pathologies found in the 

literature (48, 55). While APOE is often viewed holistically, its mRNA expression levels 

vary across the brain and spatially resemble structural and functional networks (35, 73). To 

understand our findings in relation to genetic expression in the cortex, we utilized the AHBA 

APOE mRNA genetic expression data translated to FreeSurfer regions (50). We found that 

higher regional APOE mRNA gene expression levels in the brain are more associated with 

the APOE ε4 influence on regional tau, rather than regional Aβ. This suggests that the 

local levels of APOE expression in the tissue may regulate each region’s vulnerability to 

tauopathy.

The mechanism through which APOE influences tau pathology are unclear but there is 

building evidence that it has an immunomodulatory function (74, 75). ApoE plays a role 

in regulating microglial metabolism which is tied to microglial activation (76). Removal of 

astrocyte-derived apoE reduces tau-associated neurodegeneration (77), and overexpression 

of low-density lipoprotein receptor, an apoE metabolic receptor, alters markers of microglial 

suppression (76). The apoE protein may be an important therapeutic target, and lowering 

apoE ε4 levels with antisense oligonucleotides has been shown to reduce tauopathy and 

neurodegeneration in mouse models. (78). The APOE ε4 allele has also been shown to 

lead to blood-brain barrier dysfunction in the temporal lobe (79) which may also impact 

inflammation.
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There are many strengths in this study. First, as there are discrepancies in literature on 

the APOE ε4 and tau relationship, we incorporated and compared both PET and CSF 

modalities. While there are suggestions that the effects of Aβ and APOE ε4 carrier 

status may be additive, we explicitly tested both additive and interactive effects. When 

performing these analyses Aβ was analyzed as a continuous variable rather than binarized 

into positive or negative. Such an approach avoids potential confounds such as genotype 

serving simply as a proxy of Aβ level or ε4 carriers on averaging simply having higher 

levels of Aβ. Our cohort contains over three hundred individuals, providing a robust sample 

for analysis. Finally, we integrated mRNA gene expression data from the AHBA to gain a 

more comprehensive understanding of the relationship. To our knowledge, this is the first 

study to compare the regional APOE mRNA gene expression patterns, tau PET, and Aβ PET 

effect to APOE.

There were also limitations. The current work focuses on the overall effect of the APOE 
ε4 allele without considering gene dosage as the analyses only had 18 ε4 homozygotes. 

The cohort is also primarily white, limiting the generalizability of APOE genotype effects 

to non-white cohorts. While the most comprehensive data of its kind, the AHBA mRNA 

dataset is derived from only a handful of individual brains that did not have AD. This 

means that it is only a rough approximation of mRNA expression and precludes the ability 

to examine whether mRNA expression varies as a function of demographic factors such as 

sex. There are also minimal samples available from the right hemisphere, resulting in the 

mRNA gene expression values being mirrored across hemispheres. This limits the ability 

to look at hemispheric specific effects. Additionally, AHBA data represents an aggregate 

expression in a bulk tissue sample. As APOE is primarily produced by astrocytes (80), the 

spatial association seen between APOE mRNA levels and tau pathology may be driven by 

the heterogeneity in cell distribution across the brain rather than the spatial distribution of 

APOE itself. The AHBA data has become an invaluable tool to the field. As comparing 

data from the AHBA to in vivo human imaging data is becoming common place (35–40), 

it would benefit the field if this data were expanded to provide opportunities to ask more 

in-depth questions. Given the strong animal work linking this gene to tau pathology (25, 74), 

we a priori looked at only APOE gene expression. Future research endeavors should expand 

analyses to consider additional genes or networks of gene expression. Finally, our cohort 

was comprised of individuals who were classified as either cognitively normal or who had 

mild dementia. Therefore, our results cannot directly assess how the influence of APOE may 

vary as dementia progressively worsens.

Conclusion

We found that presence of the APOE ε4 allele influences levels of Aβ PET, tau PET, 

and CSF ptau181. We additionally found that an interaction of APOE ε4 and Aβ PET is 

associated with elevated regional tau PET but not CSF ptau181 levels. The spatial pattern of 

the interaction effect on tau PET is mirrored by the levels of APOE mRNA gene expression 

in the cortex. Our results further elucidate the influence this prominent risk allele has on the 

pathogenesis of AD. Therefore, APOE ε4 carrier status needs to be considered for clinical 

trials targeting tau hyperphosphorylation or aggregation.
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4. Materials and Methods

4.1 Participants

Participants were enrolled in the longitudinal studies of memory and aging at the Charles 

F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC) at Washington 

University in Saint Louis. Dementia severity was defined by the global Clinical Dementia 

Rating© (CDR©) (41), where CDR 0 indicates cognitive normality and CDR > 0 indicates 

cognitive impairment. For this study, three hundred and fifty participants were included 

who had a tau PET scan, an Aβ PET scan, a clinical assessment, and an APOE genotype 

assessment between years 2014 and 2018. APOE genotyping was performed as previously 

described (42). Participants who had one or more ε4 allele were assigned a positive APOE 

ε4 carrier status, while those with no ε4 allele were assigned a negative APOE carrier 

ε4 status. To fulfill the study criteria, each participant’s Aβ PET and clinical assessments 

were required to have been completed within one year of their tau PET visit. Of the three 

hundred and fifty participants, two hundred and seventy of the participants had CSF ptau181 

within two years of Aβ PET. A summary table of demographic information for these 

individuals is provided in table 1. Data from the Knight ADRC can be freely requested 

(https://knightadrc.wustl.edu/professionals-clinicians/request-center-resources/).

4.2 Ethics Statement

All participants, or their caregivers, signed a standard informed consent document, and the 

Institutional Review Board at Washington University in St. Louis approved all procedures. 

ICMJE guidelines were followed in preparation of the manuscript.

4.3 Imaging Acquisition and Analysis

Structural T1-weighted scans were acquired on three Siemens MRI 3 Tesla scanners using 

a magnetization-prepared rapid gradient-echo sequence. The Siemens Biograph mMR (n = 

346) and the MAGNETOM Vida (n = 3) T1 scans were acquired with a 1 × 1 × 1.2 mm 

resolution, 2300 ms repetition time, 2.95 ms echo time, 9 degree flip angle, 176 frames, 

and a 240 × 256 field of view in sagittal orientation. Structural T1 scans for the Siemens 

TIM Trio (n = 1) were acquired with a 1 × 1 × 1 mm resolution, 2400 ms repetition time, 

3.16 echo time, 8 degree flip angle, 176 frames, and a 256 × 256 field of view in sagittal 

orientation. MRI images were processed through FreeSurfer v5.3-HCP (43) and were 

visually inspected. The FreeSurfer ROIs were subsequently utilized for PET processing. Tau 

PET imaging was performed on the Siemens Biograph PET CT using the 18F-flortaucipir 

tracer and Aβ PET imaging was performed on the Siemens PET/MR using 18F-florbetapir. 

All PET scans were processed through the PET Unified Pipeline (PUP, https://github.com/

ysu001/PUP) using an 80-to-100-minute post-injection window for 18F-flortaucipir and 

a 50-to-70-minute post-injection window for the 8F-florbetapir tracer. The standardized 

uptake value ratio (SUVR) was calculated relative to the cerebellar cortex using the derived 

FreeSurfer ROIs (44, 45). Partial volume correction was performed using a geometric 

transfer matrix (44, 46). To calculate the Aβ summary measure, we averaged the left and 

right hemisphere partial volume corrected SUVRs from the lateral orbitofrontal, mesial 

orbitofrontal, rostral mesial frontal, superior frontal, superior temporal, mesial temporal, and 

precuneus regions as previously defined (45). Aβ positivity was defined using a cutoff of 
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1.22 for AV45 (Centiloid value 22.2(47)). As previously reported (48) tau PET positivity 

was defined as a value >1.22 from using an arithmetic mean of partial volume corrected 

SUVR values from the entorhinal cortex, amygdala, inferior temporal gyrus, and lateral 

occipital cortex.

4.4 CSF Assays

CSF (20 to 30 ml) was collected via lumbar puncture after overnight fasting as previously 

described (19). Samples were analyzed using the automated Lumipulse assay platform 

(LUMIPULSE G1200, Fujirebio, Malvern, PA) to determine levels of tau phosphorylated at 

threonine 181 (ptau181).

4.5 APOE Gene Expression

To analyze the genetic spatial relationship, we obtained the AHBA APOE gene expression 

data (49). The APOE gene expression data was summarized from 58,692 measurements 

of gene expression from postmortem brains of six cognitively normal individuals and 

transformed onto the Desikan-Killiany cortical atlas built into FreeSurfer (50). In brief, 

mean averaged gene expression values were calculated for each gene from multiple probes 

and were spatially mapped from MNI152 space to FreeSurfer cortical regions. As there was 

limited data for the right hemisphere, gene expression data converted into FreeSurfer regions 

only included the 34 left hemisphere cortical regions. For the six individual brains, the 

median gene expression value for each cortical region was determined, and a summary brain 

map was created by calculating the median from the six median gene expression values for 

each region (50).

4.6 Statistical Analysis

All statistical tests were done in R version 4.0.3 (51). Demographics were compared 

between ε4 carriers and non-carriers using t-tests and Chi Squared tests as appropriate. To 

answer the main questions of interest first, we performed linear models to predict regional 

Aβ and regional tau PET levels, regional volume derived from MRI, and CSF ptau181 from 

APOE ε4 carrier status (model 1).

Models 1 and 2 were run for each region independently with regional SUVRs or regional 

volumes or CSF ptau181 as the dependent variable. P-values were corrected for multiple 

comparisons using the Benjamini-Hochberg procedure at a false discovery rate of 0.05. 

Subsequently, we ran additional linear models to examine the additive and interaction effects 

between the Aβ summary measure and APOE ε4 carrier status on regional tau PET, regional 

volumes, or CSF ptau181 (models 3 and 4). The final model included a three-way interaction 

between sex, the Aβ summary measure, and APOE ε4 carrier status (model 5). For the 

regional tau PET interaction models, only the regions that were found to be statistically 

significant in model 1 predicting regional Aβ PET or regional tau PET respectively were 

analyzed in model 4 and 5. For all models age at tau PET visit and sex were included as 

covariates, and all continuous variables were scaled in all linear models to aid interpretation.
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Regional tau PET (or CSF ptau181or regional volume or regional Aβ PET) =
β0 + β1(APOE ε4 carrier status) + β2(age) + β3(sex) + ϵ (1)

Regional tau PET (or CSF ptau181or regional volume) =
β0 + β1(Aβ summary measure) + β2(age) + β3(sex) + ϵ (2)

Regional tau PET (or CSF ptau1181or regional volume) =
β0 + β1(Aβ summary measure) + β2(APOE ε4 carrier status) + β3(age)

+β4(sex) + ϵ
(3)

Regional tau PET (or CSF ptau181or regional volume) =
β0 + β1(Aβ summary measure) + β2(APOE ε4 carrier status) + β3(age)
+ β4(sex) + β5(Aβ summary measure × APOE ε4 carrier status) + ϵ

(4)

Regional tau PET (or CSF ptau181or regional volume) =
β0 + β1(Aβ summary measure) + β2(APOE ε4 carrier status) + β3(age)
+ β4(sex) + β5(Aβ summary measure × APOE ε4 carrier status) + β6(Aβ
summary measure × sex) + β7(APOE ε4 carrier status × sex) + β8(Aβ
summary measure × APOE ε4 carrier status × sex) + ϵ

(5)

To examine the relationship between spatial APOE mRNA expression, APOE ε4 carrier 

status, and Aβ summary measure, we performed a spatial rotational permutation as 

previously described (52). In brief, this method defines a set of null correlations by 

comparing the empirical correlation against two spatial maps by randomly rotating the 

spherical projections of one spatial map before projecting it back to the brain surface. 

The projection conserves spatial continuity of the empirical maps as well as hemispheric 

symmetry. Specifically, the p-value is derived by comparing the empirical Spearman’s 

ρ to a null distribution of 10,000 correlations between one empirical map and the 

randomly rotated spherical projections using the total APOE mRNA expression values 

from the AHBA and the beta weights from the interaction term in model 4. The code 

used to perform spatial permutation testing can be downloaded here: https://github.com/

frantisekvasa/rotate_parcellation. The APOE mRNA expression data was only available 

for the left hemisphere, so the gene expression data was mirrored for the left and right 

hemisphere for these analyses.
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Fig 1. 
Significant beta weights predicting regional Aβ and tau PET for linear models 1–5. The 

associated linear model is displayed above each brain with the beta weight term in bold text. 

Red and blue color indicate a positive and negative value, respectively. Only the regions 

that were statistically significant in figures 1A and B (conjunction) were analyzed in E and 

F. Aβ PET is increased throughout the brain in APOE ε4 carrier (A). APOE ε4 carriers 

have higher tau PET in the temporal, amygdala, and hippocampus regions (B). When APOE 
ε4 carrier status and Aβ PET were both in a model predicting regional tau PET, the Aβ 
summary measure was associated with tau PET throughout the brain (C), but APOE ε4 

carrier status was not associated with tau PET (D). Importantly, the interaction between 

Aβ summary measure and APOE ε4 carrier status in predicting regional tau PET were 

significant in the entorhinal, temporal, and amygdala regions (E) and this potentiation varies 

by sex (F).
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Fig 2. 
Comparison between entorhinal tau PET SUVR (A), CSF ptau181 (B) and regional volume 

(C) relationship relative to Aβ summary measure levels, APOE ε4 carrier status, and sex. 

The green color represents females and brown color represents males. and blue non-carriers. 

Triangles and dotted lines represent the fit for APOE ε4 carriers while circles and solid lines 

represent the fit for APOE ε4 non-carriers.
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Fig 3. 
The spatial relationship between APOE ε4 carrier status and APOE mRNA gene expression. 

The regional beta weights estimates from the APOE ε4 carrier status beta weights estimated 

on regional Aβ PET (B), APOE ε4 carrier status beta weights estimated on regional tau PET 

(D), the APOE ε4 carrier status and Aβ summary measure interaction estimated on regional 

tau PET (F), and the weights from the three-way interaction between sex, Aβ, and regional 

tau (H). The relationship between each beta weight and APOE mRNA gene expression 

(A,C,E,G). In the regression plots, black circles represent the beta weight of distinct brain 

regions, the black line indicates the linear regression fit, and the r2 and p-values from spatial 

correlation tests are presented in the bottom right. APOE mRNA gene expression values for 

each region for reference (I).
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Table 1.

Demographic summary for included participants.

Participant Demographics APOE ε4 – (n=223) APOE ε4 + (n=127) p-value

Age, years 70.2 (7.9) 68.9 (8.3) t = −1.43, p=0.15

Male, n (%) 103 (46.2) 52 (41.0) χ2=0.70, p=0.40

Education, years 16.3 (2.4) 16.3 (2.3) t = −0.07, p=0.95

CDR > 0, n (%) 18 (8.1) 27 (21.2) χ2=11.42, p=0.0007

 CDR = 0.5 14 (6.3) 22 (17.3)

 CDR > 0.5 4 (1.8) 5 (4.0)

CDR Sum of Boxes 0.25 (1.04) 0.65 (1.52) t = 2.96, p=0.003

MMSE 29.0 (1.7) 28.5 (2.5) t = − 2.30, p=0.02

White, n (%) 200 (89.7) 110 (86.6) χ2 =0.48, p=0.49

Tau PET +, n (%) 85 (38.1) 64 (50.4) χ2 =6.34, p=0.01

Aβ PET +, n (%) 45 (20.2) 61 (48.0) χ2 =26.56, p<0.0001

Aβ Summary SUVR 1.12 (0.50) 1.49 (0.73) t = 5.56, p<0.0001

Tau Summary SUVR 1.24 (0.31) 1.38 (0.41) t = 3.47, p=0.0006

Mean (standard deviation) unless otherwise noted.

APOE = apolipoprotein E; CDR = Clinical Dementia Rating; Aβ = amyloid-beta.
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