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Abstract 

Quality control (QC) is a critical component of single-cell RNA-seq (scRNA-seq) process-
ing pipelines. Current approaches to QC implicitly assume that datasets are comprised 
of one cell type, potentially resulting in biased exclusion of rare cell types. We introduce 
SampleQC, which robustly fits a Gaussian mixture model across multiple samples, 
improves sensitivity, and reduces bias compared to current approaches. We show via 
simulations that SampleQC is less susceptible to exclusion of rarer cell types. We also 
demonstrate SampleQC on a complex real dataset (867k cells over 172 samples). 
SampleQC is general, is implemented in R, and could be applied to other data types.

Keywords:  Single cell, Single-cell RNA-seq, Quality control

Background
Developments in single-cell RNA-seq (scRNAseq) technology have enabled experi-
menters to quantify transcriptional profiles for ever larger and more complex experi-
ments [1–3]. The transformational nature of single-cell RNA-seq is its ability to measure 
transcriptional expression from nanolitre volumes. However, these tiny volumes result 
in noisy measurement, and the cells themselves can be strongly affected by the process 
of measurement. Quality control (QC) is therefore a critical element of pre-processing 
scRNAseq data: experimenters wish to carefully remove “bad” cells, while minimizing 
both loss of healthy cell datapoints and any bias in the types of cells retained [4]. Cells 
can be “bad” due to either technical issues such as droplets with unsuccessful reactions, 
or biological perturbations such as apoptosis. As the size and complexity of experi-
ments increases, doing this for each sample individually becomes more challenging, and 
researchers require computational assistance to make the task feasible.

A fundamental issue with methods aiming to exclude poor quality cells is adequately 
defining “poor quality.” This is both challenging in itself and context-dependent. One 
approach to defining quality is in terms of the quantity of information provided by a 
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cell, i.e., the number of reads or features. We might then seek to exclude all cells with 
too few reads. However, if there are sufficiently many of these cells, the total information 
provided could be enough to perform useful tasks (e.g., using “pseudobulk” approaches 
to identify genes with differential expression between conditions [5, 6]). Similarly, high 
proportions of mitochondrial reads are associated with stressed and apoptotic cells [7], 
and excluding cells on the basis of high mitochondrial proportion (e.g., cells with greater 
than 5% mitochondrial reads in mice, or greater than 10% in human cells; [8]) is a rec-
ommended approach to QC [4, 9]. However, analysis of healthy tissue shows that the 
proportion of mitochondrial reads shows strong variation across both species and tissue 
type [8], suggesting that this fixed-threshold strategy may exclude healthy cells and fail 
to exclude relatively stressed cells. Users may prefer more sensitive approaches that do 
not give hard assessments of cell quality, but give them the power to decide which are 
the unwanted cells.

Based on the various tutorials available, the current industry standards for QC are 
scater [10] and Seurat [11], both of which are data-driven rather than based on a 
fixed threshold. In addition, a probabilistic method miQC was recently introduced [12]. 
All three of these are unimodal (scater and Seurat are also univariate in typical use). 
scater and Seurat function by calculating robust measures of center and scale (such 
as median and median absolute deviation, or MAD) for each QC metric, then discarding 
cells that are a specified number of deviations away from the centers. They are typically 
applied individually to each sample, which we find may introduce bias. Most impor-
tantly, where samples are composed of multiple cell types whose QC metric distributions 
differ (e.g., they have lower counts, or higher mitochondrial proportions), such filtering 
will preferentially exclude cells from the cell types with more extreme values, leading 
to a bias towards excluding cells from particular cell types. This was noted by Germain 
et al., who found that stringent filtering on all cells simultaneously led to exclusion of 
cells that have extreme QC metrics, but not poor quality cells [13]. miQC is multivariate, 
assuming that the relationship between features detected and mitochondrial proportion 
is different in healthy cells and in “compromised” cells. This approach is also unimodal 
and may therefore also suffer from a bias against extreme cell types. Germain et al. also 
found that filtering was necessary, as lenient filtering led to poorer downstream perfor-
mance (as measured by clustering). Taken together, these findings motivate the need for 
a QC filtering tool that allows for the presence of multiple cell types.

As the size of scRNAseq experiments increases, so does their complexity, resulting 
in ever-higher numbers of conditions and samples measured per experiment [14]. This 
increases the challenge of doing sensitive QC, e.g., by manually deciding a threshold for 
each sample. In addition, it is important to measure experimental quality at a sample 
and not just a cell level. An experimenter may wish to make comparisons between sam-
ples deriving from multiple experimental conditions; this requires establishing that there 
are sufficient high quality samples of each desired condition.

To address these problems, we have developed SampleQC, a computational method 
designed for QC of large scRNAseq experiments with complex designs. SampleQC is 
implemented as an R package based on a robust multivariate Gaussian mixture model 
(GMM). By fitting a mixture model in which each of the mixture components corre-
sponds to one “QC cell type,” SampleQC identifies the QC distributions for multiple 
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cell types simultaneously, removing the bias towards excluding healthy cell types with 
extreme QC metric values. We use a fitting procedure that is statistically robust, in the 
sense that it expects outliers to be present and inference is not distorted by them. By 
allowing each sample to have its own “sample shift” term, SampleQC fits simultane-
ously across multiple samples, which both increases statistical power and automates an 
otherwise tedious process. This addresses not only problems with sensitivity of outlier 
detection, but also provides sample-level QC outputs. Finally, SampleQC provides a 
comprehensive, automatically-generated report on cell and sample quality.

Results
SampleQC overview

Examining the distributions of QC metrics across many single-cell experiments, we 
observed that the values for a given sample would typically follow a multivariate Gauss-
ian mixture distribution, i.e., groups of cells concentrated around distinct mean val-
ues, with distances from these mean values following approximately ellipsoid densities 
(Additional file 1: Fig. S1). We also observed that multiple samples often showed approx-
imately the same distribution, subject to a sample-level shift in values, i.e., the individual 
values might be on average higher or lower than other samples, but the shapes of the 
ellipsoids and the relative distances between their means remained approximately the 
same (Additional file 1: Fig. S1). This motivated the following model to describe the met-
rics: for a cell i from sample j, which is a member of QC cell type k (k is not known), 
Xi ∼ N (α0 + αj + βk ,�k) , where Xi is the vector of QC metrics, α0 is the global mean, 
αj is the mean shift of sample j relative to the global mean, and (βk ,�k) describe mean 
and variance-covariance of mixture component k. Finally, we observed that across large 
experiments, not all samples would follow the same mixture distribution, but that the 
samples could be grouped into “sample groups” with similar distributions of QC metrics.

For the metrics to follow a Gaussian mixture model, it is important that the marginal 
distributions of unimodal data are approximately Gaussian. This is dependent on appro-
priate transformations of the data, that allow non-Gaussian metrics to be transformed 
into spaces where they are approximately Gaussian. Applying log transformations to 
library sizes and genes detected is common practice; in addition, we have found that 
applying the logit (inverse logistic) transform to mitochondrial proportions often 
results in approximately Gaussian distributions (Additional file 1: Fig. S2). These obser-
vations suggest that, after appropriate transformations, a Gaussian mixture model may 
be a reasonable description of the data.

We assumed that the components of the mixture model represent “QC cell types,” 
where cells at the centers of the distributions are good quality, and cells that are unu-
sually distant from these centers are cells with extreme QC metric values that should 
be discarded. In addition, we sought to identify entire samples that were very different 
from most samples, to flag these to the user for possible exclusion. This motivated an 
outlier detection algorithm based on the following two steps: (1) identifying groups of 
samples whose multivariate QC values approximately follow the same distributions; and 
(2) within each of these, fitting a multivariate GMM to identify cell-level outliers. These 
steps are outlined in Fig. 1.
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To identify groups of samples with similar distributions, SampleQC uses a non-
parametric statistical measure of dissimilarity between multivariate samples, maxi-
mum mean discrepancy (MMD: [15]), to estimate “distances” between samples. 
MMD takes two samples as input, which must have the same dimensions but may 
have different numbers of observations, and calculates a measure of distance/dis-
similarity that summarizes differences in means, (co)variances, and higher moments. 
We then use pairwise distances to construct a nearest neighbor graph that allows the 
identification of “sample groups,” i.e., groups of samples following approximately the 
same QC metric distributions. We use Louvain clustering to identify the groups [16]. 
The distances are also used as input to dimensionality reduction techniques, such as 
multidimensional scaling (MDS: [17]) and UMAP [18]. This gives low-dimensional 
embeddings where each point corresponds to a sample and permits users to check for 
batch effects or other issues with the data. For example, users can check the extent to 
which samples from the same batch are clustered together, potentially indicating sam-
ple quality problems with a batch.

The second step identifies cell outliers, i.e., cells with very different QC metric val-
ues to most other cells. Additionally, this step checks for outlier samples by estimat-
ing the mean shift in QC statistics for each sample. After SampleQC has identified 

Fig. 1  SampleQC methodology. A Cartoon of cells and samples with varying quality, and their 
corresponding QC metrics. B SampleQC estimates distributional distances between samples and uses this 
to identify groups of samples. C SampleQC fits a robust GMM to each group of samples. D Low likelihood is 
used to exclude poor quality cells. E SampleQC generates report of outliers and overall sample quality
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sample groups, the user then determines how many components are present in each 
sample group by inspecting the QC distributions within each group, i.e., how many 
components the GMM should have. SampleQC then fits a robust GMM to the cells 
in each sample group.

Our GMM makes two main assumptions: (1) the configuration of QC cell types (i.e., 
their covariance matrices and relative means) is constant across the samples in a sample 
group; and (2) each sample has a uniform shift in (transformed) QC metrics. Our justifi-
cation for these assumptions is the observation of distributions of QC metrics discussed 
above, and the empirical performance of the method, although reasonable biological 
arguments can also be made for them. The model allows the proportions of QC cell 
types (i.e., mixture components) to vary by sample; details of the mathematical model 
are discussed in the  Methods  section (see SampleQC method). This model structure, 
in which the same QC cell types are assumed to be present in every sample, has ben-
efits when identifying outlier cells. The model learns the parameters for the QC cell-type 
components across the whole sample group, so that even when a sample has only a small 
proportion of a given QC cell type, these cells are not regarded as outliers. These cells 
may in fact be of particular interest, being from a cell type with reduced proportion rela-
tive to other samples.

We fit this model to identify poor quality cells, namely those that are outliers with 
respect to the distribution of the bulk of cells. While the presence of outliers is known 
to affect the estimation of statistics, especially higher order moments such as covariance 
[19], accurate estimation of the covariance matrices is essential precisely for identifying 
those outliers. We therefore use a robust estimation of the mean and covariance matrices 
[20]: robust estimators (like the MAD) give good but slightly less than optimal results 
when the data do follow an assumed distribution, but are also guaranteed to give good 
results when the data is contaminated and MLEs may fail [19]. We explicitly assume that 
outliers may be present, making this approach necessary.

Once we have fit models to each sample group, SampleQC is able to describe all cells 
in the included samples in terms of mixture components, which we assume to represent 
good quality cells. We can then identify outlier cells by calculating a statistical measure 
of distance from the center of each QC cell type (Mahalanobis distance, which indicates 
how unlikely a particular observation is under a χ2 distribution), and exclude cells that 
are unlikely to be a member of any component.

Simulating QC data for a large experiment

With single-cell data, there is no ground truth regarding which cells or samples are poor 
quality, making assessment of the performance of QC methods challenging. To evaluate 
SampleQC against other approaches, we therefore developed a simulation framework 
that replicates the distributions of QC metrics observed in biological datasets (pseu-
docode provided in Methods section; see the Simulations section). The framework and 
parameters are derived from large and complex experimental designs, including outliers, 
and are based on a hierarchical model.

At the experiment level, we make the following assumptions: (1) the experiment is 
composed of a number of sample groups with similar QC distributions; (2) there are a 
small number of “QC cell types” present in the experiment. By “QC cell type,” we mean a 
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cluster of cells that is distinct within “QC space,” i.e., the selected QC metrics. We expect 
that multiple true cell types, i.e., clusters that are distinct in terms of expression, may 
have the same distribution in QC terms. These QC cell types are assumed to be common 
across all groups of samples, with a different subset present in each sample group. For 
each group, we randomly sample samples and cells, and which cell types are present. We 
also sample the means and covariances for the QC cell types, {βk ,�k}.

Within each sample group, we then model outliers and sample shifts at the level of 
samples. We assume that for each sample j, there is a uniform shift in the (transformed) 
QC metrics, αj . This affects all cells in a sample equally. We also assume that each sample 
has different proportions of the QC cell types, sampled from a Dirichlet distribution. 
Each sample has a different proportion of outliers, modeled as a beta distribution, which 
gives all samples from the same group outlier proportions that vary around a common 
mean value. Outliers are assumed to differ from “good” cells by having lower non-mito-
chondrial reads and numbers of features, and correspondingly higher mitochondrial 
proportions; we model this by a sample-level parameter corresponding to the propor-
tion of non-mitochondrial reads lost (modeled as a logistic normal).

For every cell, we have annotations of sample group (g), sample (j), and QC cell type 
(k), with corresponding values of global mean ( µg ), sample shift ( αj ), and QC cell type 
mean and covariance ( βk and �k ). We draw a healthy QC metric vector for a given cell 
via a multivariate normal with mean µg + αj + βk , and covariance �k . We then deter-
mine whether this cell is an outlier via a Bernoulli distribution, and if it is, we perturb 
this value by downsampling the non-mitochondrial reads and the QC metrics are 
updated accordingly.

This approach follows the model assumed by the GMM (SampleQC model), with two 
additional points to make the simulations more challenging. Firstly, the GMM does not 
include any outliers. To model these, we assume that each sample has a given proportion 
of outlier cells, selected at random. For each of these cells, the non-mitochondrial reads 
and the number of features are decreased by a given proportion, according to a beta dis-
tribution. This results in both a reduction in total counts and features, and an increase 
in mitochondrial proportion, consistent with outliers observed in real data. Secondly, we 
assume that the relative positions of the components, {βk} , are not identical in each sam-
ple, and vary by a small amount, δjk.

This results in simulated QC metrics for tens of thousands of cells across tens of sam-
ples, where the distributions of these metrics vary coherently across different groups of 
samples. The simulations provide two matrices of QC metrics: one that mimics the QC 
values we might see from experiments, and one for the QC values of the cells “before” 
they became low quality (such a matrix would never be observed in real life).

Benchmarking SampleQC against scater and miQC on simulated data

We generated simulated data for an experiment with 100,000 cells across multiple 
samples, resulting in 64 samples with a median of 1300 cells per sample, including 
outliers. We then ran SampleQC, scater, and miQC to compare performance: both 
in terms of excluding outliers, and retaining “good” cells. Inspecting the distributions 
of the outliers identified by the different methods, we observe that where multiple QC 
cell types are present, SampleQC identifies outliers correctly, while both scater 
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and miQC may preferentially exclude cells from one QC cell type as outliers (Fig. 2). 
Where only one QC cell type is present, SampleQC, scater and miQC show similar 
results (Additional file 1: Fig. S3), as expected.

When we assess performance in identifying good cells across the entire simulated 
dataset, we find that SampleQC has equal or better performance than both scater 
and miQC for both precision and recall (Fig. 3A, Additional file 1: Fig. S4). The rela-
tive performance on individual samples is affected by how many cell types are present 
in the sample. Where the data is multimodal, the multimodal model in SampleQC 
gives it equal or better performance than scater and miQC for both precision and 
recall (Additional file  1: Figs. S4 and S5). Where the data is unimodal (i.e., has one 
mixture component), scater and SampleQC show similar performance (Fig. 3B). In 
this case, performance of miQC is slightly worse, potentially because it assumes that a 
reasonable quantity of “compromised” cells must be present; when there are only few 
such cells, this may result in “good” cells reported as outliers.

Fig. 2  QC method comparisons on multimodal simulated data. A Biaxial plot of QC metrics for one 
simulated sample. Each point represents the QC metrics for one cell, with (known) simulated outliers in red 
and non-outliers in gray. B Multivariate density plot of data in A, annotated with models fit by SampleQC. 
The distinct clusters here are examples of what we term “QC cell types,” i.e., cells with similar distributions in 
their QC metrics, although their gene expression distributions may be distinct. C Mahalanobis distances to 
nearest cluster under the fit SampleQC model, with large values indicating low likelihood under multivariate 
Gaussian mixture model. D, E, F Outliers detected by SampleQC, scater, and miQC, respectively. These 
indicate the different assumptions on outliers made by the different methods: SampleQC calls droplets in 
low-density regions of the QC metric space as outliers; scater calls droplets with extreme values on at least 
one metric as outliers, in effect drawing a box around the central mode of the data; miQC identifies droplets 
with high mitochondrial proportion relative to the number of features observed, which may correspond to a 
good quality cell type with high mitochondrial proportion
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Fig. 3  Performance comparison of SampleQC , scater, and miQC on simulated data. Results from a 
simulated experiment of 100k cells with 3 QC cell types. A Precision-recall curve of identification of “good” 
cells. Solid lines show curve calculated over all cells. Transparent lines show curves for individual samples. 
Dots show default exclusion thresholds for each method ( < 1% Chi-squared likelihood under fitted model 
for SampleQC; > 2.5 MADs for scater; > 0.75 posterior probability of compromised cell for miQC). B Bias 
in number of cells reported by sample, samples split by whether one or multiple QC cell types present in the 
sample (i.e., whether samples is uni- or multimodal). y-axis is bias in reporting of good cells
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Importantly, SampleQC also shows better performance than the compared methods 
in terms of cell-type bias (Additional file 1: Fig. S6). As above, when one QC cell type is 
present in a sample, SampleQC and scater have very similar biases in excluding good 
cells at default settings. However, when multiple QC cell types are present in a sample, 
SampleQC excludes similar numbers of good cells and shows low bias towards any par-
ticular QC cell type. In this setting, the good cells mistakenly excluded by both miQC 
and scater are almost entirely comprised of one cell type, while SampleQC’s more 
flexible model better preserves rare QC cell-type proportions. We note that these results 
are dependent on the choices made in developing the simulation and that alternative 
reasonable choices may give different results.

We performed the same comparisons for simulations where the data is t-distributed 
and found similar differences in performance between the methods (see dashed lines in 
Additional file 1: Fig. S4).

Number of QC clusters

Determining the appropriate number of distinct clusters in a dataset is a well-studied prob-
lem in statistics that remains challenging [21]. To avoid this problem, SampleQC requires 
users to specify the number of mixture components for each group of samples. We simu-
lated experiments to test the sensitivity of our results to mismatches between the selected 
and true k. We simulated data with different true numbers of QC cell types, varying over 
1, 2, and 3 QC cell types (our observation over many studies has been that many samples 
have between 1 and 4 mixture components). For each value of k_true, we simulated data 
for 20,000 cells divided into samples, with an average of 2000 cells per sample. We then fit 
SampleQC to each dataset, with the assumed number of clusters k_fit varying between 1 
and 4. We found that a mismatch between k_true and k_fit could result in a reduction 
in performance (while SampleQC performed well when k_fit was correctly specified) 
(Additional file  1: Fig. S7). However, for multiple of the combinations where k_fit was 
misspecified, SampleQC was not able to fit; this provides some protection in itself. These 
results indicate that review of the diagnostic plots rendered by SampleQC is an important 
part of the QC process, allowing users to determine plausible values of k from the empiri-
cal distributions.

Applying SampleQC to complex biological datasets

We applied SampleQC to a large single-nuclei RNA-seq dataset comprising 867k 
cells over 172 samples (see Availability of data and materials), taken from human 
brain tissue, including samples from patients with neurodegenerative conditions. This 
illustrates an intended use case for SampleQC: a dataset with sufficiently many sam-
ples to make it challenging to adjust outlier thresholds for each sample individually, 
and where complex batch effects could be present. Here, we use log library size, logis-
tic transform of mitochondrial proportion, and log2(spliced reads/unspliced reads) as 
QC metrics. The motivation for using log splice ratio in single nuclei data comes from 
the difference in abundance of unspliced reads between the nucleus and the cyto-
plasm [22]. In principle, unspliced reads should only be present in the nucleus; high 
ratios of spliced to unspliced read counts therefore allow us to identify nuclei that 
were not successfully stripped of their cytoplasm and are likely to be contaminated. 
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In addition, this demonstrates the flexibility of SampleQC, which only assumes that 
multiple QC cell types are present, and does not require specific metrics to be used.
SampleQC first identifies samples with similar QC distributions, by calculating pair-

wise MMD distances between the samples. The principle reason for this is to allow 
SampleQC to fit separate models to each group of individual samples. Low dimensional 
projections of the resulting dissimilarities are shown in Fig. 4 (UMAP) and Additional 
file file 1: Fig. S8 (MDS), showing the groups identified by SampleQC (Fig. 4A), allowing 
investigators to assess whether sample source, sequencing run or other covariates might 
have influenced sample quality (Fig. 4B). Investigators can also check whether there are 
groups of samples that should be excluded entirely due to poor quality.

Fig. 4  Sample-to-sample distance embedding (UMAP). UMAP embedding, based on sample-sample 
similarities calculated with MMD, resulting in samples with similar QC metrics being plotted close to 
each other. A Sample group, i.e., clusters of samples with similar QC metrics distributions, as estimated 
by SampleQC. Remaining plots show sample metadata and statistical summaries: B Sequencing 
batch, C mitochondrial proportion (categorized), D number of cells (categorized), E median counts per 
cell, F median log2 splice ratio per cell
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Applying SampleQC to this dataset shows similar results to those for the simula-
tion: where a cell population is present in the whole dataset but only makes up a small 
proportion of a sample, SampleQC is better able to preserve these cells than scater 
and miQC (Fig. 5). The Mahalanobis distances calculated under the SampleQC model 
also follow the expected distribution, i.e., most points follow a Chi-squared distribu-
tion with degrees of freedom equal to the number of dimensions, plus an outlier com-
ponent with larger distances (Additional file 1: Fig. S9).

An alternative approach to QC for single-cell data is to apply only a minimal filter 
on QC metrics (to remove droplets that contain very little information and/or con-
tain only lysed cells), cluster the cells as is normal for single cell, then remove clus-
ters that show poor QC metrics. This approach works for some datasets, however it 
may become difficult to apply in more challenging samples. Applying this approach 
to single-cell data from ovarian cancer tissue [12], we found that while some of the 
clusters should clearly be excluded, other clusters showed a wide range of QC metrics 
(Additional file 1: Fig. S11). For example, clusters K06, K07, and K08 all include sub-
stantial numbers of cells with mitochondrial percentages both above 25% and below 
10%, showing that this approach to excluding poor quality cells may be more difficult 
in samples not comprising healthy cells.

Fig. 5  QC method comparisons on complex biological data. A Biaxial empirical density plot of QC metrics for 
single nuclei data, showing one selected sample, annotated with models fit by SampleQC. Color indicates 
density of cells with the same QC metrics. B Mahalanobis distances to nearest cluster under fit SampleQC 
model, with large values indicating low likelihood under multivariate Gaussian mixture model. C, D, and E 
Outliers detected by SampleQC, scater, and miQC, respectively. SampleQC outliers include user 
specification that QC cell types with mean splice ratio > 3 should be excluded
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Although SampleQC is a more complex model than other approaches to QC, this 
does not substantially decrease speed. As an illustration, we timed SampleQC on the 
simulated dataset in Fig.  3, comprising 100k cells over 64 samples. The three steps of 
SampleQC took the following times: 44s to calculate pairwise MMDs; 70s to fit the 
SampleQC models; and 104s to render the report.

The methodology underlying SampleQC is general and not specific to scRNAseq. 
The example above demonstrates its application to single nuclei RNAseq, and in princi-
ple, it can identify outliers in any dataset comprising a small set of mixture components 
described by a small set of variables. This includes other single-cell technologies, such as 
CITE-seq, which is similar to scRNAseq but also quantifies protein expression via oligo-
tagged antibodies [23], and scATACseq, which quantifies chromatin accessibility in sin-
gle cells [24]. To demonstrate this, we ran SampleQC on CITE-seq data from PBMCs 
[25], using similar QC metrics to scRNAseq: log RNA counts; log RNA features; logis-
tic transform of mitochondrial proportion; log ADT (protein) counts; log ADT features. 
The models fit by SampleQC successfully converged to the modes of the data and could 
be used for outlier detection (Additional file 1: Fig. S10).

Discussion
We introduced SampleQC, an approach for quality control of scRNAseq experiments 
that improves on the current industry standard and is designed for large and complex 
experimental designs. We show that our model simultaneously allows flexibility and 
sensitivity and reduces bias. Grouping samples by similarity of QC metric distributions 
allows a different model to be used for each sample group, which then increases sensi-
tivity by borrowing strength across samples. However, SampleQC (as with other QC 
methods) is still not able to know whether a cell listed as an outlier is one because of 
technical or biological reasons.

One of the main challenges in this work is the lack of ground truth to evaluate meth-
ods. For this reason, previous QC filtering methods have not performed comprehensive 
benchmarks. Meanwhile, most datasets are annotated to cell types after filtering and 
therefore not annotated as good/bad for such an assessment. And while filtering is nec-
essary at some level, it is also not always straightforward to assign a reason for a cell’s 
exclusion. For example, many of the excluded cells according to SampleQC are in low-
density regions, but it could be they are not too extreme in each univariate QC metric, 
but reside in a low-density region in a multivariate sense. Furthermore, none of the tools 
available for QC filtering, including SampleQC, perform rigorous validation that low-
quality cells are truly removed.

Our method is based on empirical observations of real data and is motivated by known 
biological mechanisms. Many single-cell techniques assume that scRNAseq data com-
prises multiple cell types that are distinct in terms of gene expression, however this is 
not reflected in current approaches to QC. Metrics used for quality control are func-
tions of the full expression vector of counts. When multiple cell types are present in 
the full expression data, our observations over multiple datasets are that at least some 
separation into “QC cell types” is typically preserved in the restricted “QC space.” Our 
motivations regarding outliers, i.e., that they form a small proportion of the dataset with 
lower read counts and higher mitochondrial proportions, are also consistent with this 
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observation. SampleQC allows users to choose any metric for input, and if the selected 
metrics approximately follow a GMM, the approach should produce sensible outputs. A 
GMM is a reasonable model given that single-cell data is known to often form clusters, 
and we have shown that the individual metrics (after appropriate transformations) typi-
cally follow Gaussian distributions. Non-Gaussian and non-parametric approaches to 
outlier detection could also be considered, such as estimating cell densities in QC space 
and then excluding cells in sparsely populated regions. However, this would risk exclud-
ing cells that were only rare in that sample, and our observations suggest that a GMM is 
reasonable for various experiments. By fitting one model across multiple samples, Sam-
pleQC is able to preserve cell types that are abundant in some samples, but have low 
abundance in others and are therefore discarded by methods that operate only at the 
sample level.

Although the downstream effects of choice of QC metrics are not well understood, 
there are good biological motivations for the metrics currently in use. Low library sizes 
indicate droplets where the cell lysed before the reaction took place, droplets that con-
tain only debris, or where the reaction was not successful, while high library sizes may 
correspond to multiple cells in one droplet. Number of features observed is highly cor-
related with library size, and therefore, the same mechanisms for cell quality are rel-
evant. Mitochondrial proportion may be high in cells that are stressed, or that lysed 
partially before measurement (resulting in a loss of cytoplasmic RNA and correspond-
ing increased proportion of mitochondrial RNA); in single nuclei RNA-seq, the pro-
cess of preparing nuclei should wash away mitochondria, meaning that mitochondrial 
reads may indicate contamination by ambient RNA. The relative proportion of spliced 
to unspliced reads indicates the relative abundances of nuclear and cytoplasmic RNA 
in a droplet [22]. Unspliced reads should only be present in the nucleus; high ratios of 
spliced to unspliced read counts in single nuclei data therefore allow us to identify nuclei 
that were not successfully stripped of their cytoplasm and are likely to be contaminated; 
meanwhile, in single-cell RNA-seq data, high proportions of unspliced (nuclear) RNA 
may indicate lysed cells. We expect that as new technologies are developed, new QC 
metrics will accompany them.

We have demonstrated SampleQC on standard measures of cell quality. However, 
the model is flexible and can be applied to any set of metrics specified by the user that 
approximately follow a Gaussian mixture distribution. We also note transformations 
that allow non-Gaussian metrics to be transformed into spaces where they are more 
likely to be Gaussian. For example, SampleQC transforms mitochondrial proportions 
via the logit function, and spliced:unspliced ratios via log. SampleQC is effectively 
a general outlier detection technique for GMMs, and this should allow SampleQC to 
be applied to datasets with other or multiple modalities. We have applied SampleQC 
to CITEseq (Additional file 1: Fig. S10), but in principle, the framework can be applied 
to data from scATACseq [24], scCATseq [26], single-cell techniques based on combined 
modalities, and spatial transcriptomics, by selecting appropriate measures (e.g., anti-
body tag depths for CITE-seq, sparseness for scATAC-seq, etc.). More exploration may 
be required to identify the set of QC measures that are sufficient to filter questionable 
cells, also because many existing measures are highly correlated, which could mean they 
are redundant.



Page 14 of 22Macnair and Robinson ﻿Genome Biology           (2023) 24:23 

QC does not need to be conducted entirely at the filtering stage. Another option is to 
carry forward more cells to a clustering/annotation step and then filter out subpopula-
tions that are of debatable quality, assuming some biological knowledge can be used to 
assign this. And here, it is difficult to know if there is a clear “optimal” path. On the one 
hand, including more sparser cells may have adverse effects on similarity calculations, 
estimation of highly-variable genes, or on the low dimensional projections that cluster-
ing is based on; on the other hand, SampleQC summaries (e.g., P-values representing 
cells in low-density regions of their QC space) could be used afterwards as indicators 
for removal of individual clusters. The effect of including sparse cells on direct cell type 
annotation methods is not well studied. Furthermore, it is not clear at what point entire 
samples should be removed from downstream analysis; while SampleQC gives useful 
visualizations to characterize the QC of many samples, a judgment call is still needed.

It is worth noting that our performance results depend on the choices made in imple-
menting the simulation, largely because we are not aware of other frameworks to sim-
ulate scRNA-seq QC summaries. Ultimately, our simulation highlights that inference 
from our model is possible, but does not directly show that cells are “bad.” While we 
tried to represent parameters and phenomena observed based on our experience in large 
scRNA-seq datasets, further development of the simulation framework would be desir-
able. We note that as the underlying models for both scater and miQC are unimodal, 
any circumstance where there are multiple distinct healthy cell populations may result in 
a performance advantage for SampleQC.

We do not provide any statistical guarantees that SampleQC converges to the optimal 
solution. However, SampleQC does provide automatically generated and comprehen-
sive reports that show the fitted model over the empirical density. The models defined 
are conceptually simple, and the reports should therefore allow users to check both the 
validity of the fits and the appropriate number of clusters for each group.

We also do not attempt to solve the problem of selecting the appropriate value of k; 
this is a challenging and extensively-discussed problem in statistics [21]. As noted above, 
the automatic reports allow users to inspect whether the model has fit appropriately. In 
addition, using robust estimators makes the procedure less sensitive to misspecifica-
tion of the number of components: robust methods expect some of the data to be outli-
ers, and therefore do not attempt to “explain” all data; non-robust methods attempt to 
explain the whole dataset, and where the number of components is misspecified, the 
estimated means may lie between components.

Conclusions
As experiments increase in size and complexity, the task of removing unwanted cells 
becomes correspondingly more challenging, especially if users would like to preserve 
rarer populations. SampleQC seeks to solve this problem, by first identifying groups of 
samples with similar QC distributions, then fitting an empirically motivated statistical 
model to the QC metric data for each group. The model is simple, meaning that it is fast 
to fit and easy to check. This allows users to obtain an overview of data quality for their 
entire experiment and to accurately identify cells for exclusion without having to make 
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decisions regarding every sample individually. Our intention is to provide a fast, flexible, 
and easy-to-use method that allows investigators to do quality control with minimal loss 
of their valuable data.

Methods
SampleQC model

SampleQC is based on standard approaches to identifying GMMs, with two important 
changes. Firstly, the model includes terms that are sample-specific: each sample has a 
sample shift term, i.e., a uniform change in values applying to all cells in a given sample. 
In addition, while we assume that each sample has the same mixture components (= QC 
cell types), the proportion of these components may vary within each sample. For cell i, 
which comes from sample j in QC cell type k, this gives us the following model for the 
QC values Xi:

Secondly, the fit is robust, in the sense that it is less sensitive to outliers. The standard 
approach to fitting GMMs is via expectation-maximization, where the method alter-
nates between fixing the means and covariance matrices then identifying the expected 
values for the latent cluster variables (“expectation”), and fixing the latent cluster vari-
ables then calculating the maximum likelihood estimators (MLEs) for the means and 
covariances (“maximization”). This approach assumes that all observations come from 
the GMM distribution. If the data is contaminated by a small proportion of observations 
that do not come from the assumed distribution (outliers), then this procedure may fail, 
especially regarding estimation of covariance matrices, in turn affecting cluster member-
ship identification [19]. To mitigate this problem, we use a robust method to estimate 
the means and covariance matrices, based on using the points nearest the center of the 
component [20]. Robust estimators are designed to return good results even in the pres-
ence of outliers, which is especially important when the principle assumption of our task 
is that outliers may be present.

In addition to identifying outlier cells, fitting the GMM gives in estimated statistics as 
outputs, namely: the QC metric shift for each sample ( ̂αj ), the location and shape of each 
mixture component ( (β̂k , �̂k) ), and the proportions of the components in each sample 

(1)Xi ∼ N (α0 + αj + βk ,�k) and

(2)P(Zi = k|si = j) = pjk

where

si = j, cell i is from sample j

Zi = k , cell i is in mixture component k

αj sample shift for sample j

βk mean for mixture component k

�k covariance matrix for mixture component k

pjk mixing proportions in sample j
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( pjk ). These can be used to identify samples with markedly different statistics to others 
in their sample group, both in terms of mean QC values and in terms of the split of cells 
across QC cell types. These samples are therefore flagged to experimenters for detailed 
checking and potential exclusion.

Criteria for outliers

In the software (see below), the user can also specify the threshold of the χ2 distri-
bution to determine the how stringent the outlier exclusion should be. In particular, 
under the null of no outliers, the Mahalanobis distance (to the center of the nearest 
GMM component) should follow a χ2 distribution (with degrees of freedom equal to 
the number of QC metrics used as input). Large distances are therefore by definition 
very unlikely under the GMM model and represent the candidates to filter out. This 
can be achieved by setting a threshold on the tail of the χ2 distribution

Software

The input to SampleQC is a data.frame where each row corresponds to a cell; the 
columns must contain the chosen QC metrics and sample labels and can optionally also 
include additional sample annotations such as batch or experimental condition. Using 
a data.frame as input makes the software accessible to users of both the Single-
CellExperiment and Seurat packages (and, by saving intermediate files as CSV, to 
users of scanpy). Please see the user guide for further details.

Prior to running SampleQC, we recommend excluding empty droplets, for exam-
ple by running emptyDrops with either the default or a more generous cutoff, to 
ensure that all genuine cells are included. This may result in some empty droplets 
being used as input to SampleQC, but they should be identified as outlier cells and 
later excluded.

We then recommend removing multiplets before running SampleQC for two princi-
pal reasons. Firstly, excluding low quality cells first assumes that all doublets are com-
posed of two good quality cells; by excluding low quality cells first, it is then more 
difficult to detect doublets comprising one good quality and one low quality cell. Sec-
ondly, just as the count vectors for doublets are linear combinations of two true cells, 
their QC metric values are also functions of combinations of two true cells. The practi-
cal impact of this is that doublets introduce a small amount of noise to the QC met-
ric distributions; excluding them results in cleaner distributions that are slightly easier 
for SampleQC to fit. (In addition, the number of cells used in the run is needed to 
accurately estimate the expected number of doublets. Excluding low quality cells first 
would distort this calculation; although this can be addressed by recording the initial 
number of cells.)

To run SampleQC, the user first runs the function calculate_pairwise_mmds, 
which estimates MMD values for each pair of samples, identifies groups of samples with 
similar QC metric distributions, and calculates embeddings in lower-dimensional spaces 
(both MDS and UMAP). The user can then plot the samples and check for evidence of 
batch effects, e.g., if all samples from a given well, run or experimental condition are 
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grouped together. Users can also check whether any sample group has consistently low 
quality cells (e.g., high mitochondrial proportions) and consider excluding all samples in 
that group.

To run the cell outlier section of SampleQC, the user then selects qc_names, the 
QC metrics to use, and k, a vector corresponding to the number of mixture com-
ponents for each sample group, and calls the function fit_sampleqc. SampleQC 
then fits a GMM to each sample group, and uses cell likelihoods to identify outlier 
cells. Users would typically start by using k = 1 for all sample groups; as the simplest 
model, this is extremely fast. The report includes biaxial plots of the QC metrics for 
all samples, which allow users to judge what value of k is most appropriate for each 
sample group, then rerun SampleQC. Users can inspect the cells identified as outliers 
by generating an html report with the function make_sampleqc_report. The user 
can also specify alpha, the χ2 distribution threshold determining the how stringent 
outlier exclusion should be; however, this is less critical and the default value (alpha 
= 0.01) is generally appropriate. alpha specifies the distance away from the center of 
the nearest GMM component that should be considered as an outlier. Under a robust 
model, the distribution is assumed to be a GMM plus a contamination component 
that does not follow the GMM and is therefore by definition very unlikely under the 
GMM distribution, so as long as alpha is set reasonably low (e.g., 1%, 0.1%), this will 
only have marginal effects on results.

If a large proportion of a sample is of poor quality, SampleQC may identify these 
cells as one sample cluster, and one of the mixture model components may therefore 
be centered on them (e.g., the cells with high splice ratio in Fig.  5). Without inter-
vention, these would be reported as good cells rather than outliers. SampleQC 
therefore includes functionality allowing users to specify that any component whose 
mean meets a certain criteria should be regarded as outliers. For example, a compo-
nent whose mean mitochondrial percentage is greater than a given percentage can be 
labeled as outliers.

Simulations

We developed a framework for simulating samples of QC data that reflects the com-
plexity observed in real datasets, following the model given in Eq. (1), but addition-
ally modeling outliers; in the SampleQC R package, users can access this functionality 
from the simulate_qcs function. For the simulations, we assume that there are 
three QC metrics: log library sizes, log feature counts, and logit mitochondrial pro-
portion. The simulations are hierarchical: firstly, parameters for group size and GMM 
components are drawn at the whole-experiment level; then, we draw parameters for 
sample quality at the sample group level, capturing variability that is coherent across 
groups of samples; then we draw parameters for each individual sample and QC met-
rics for each individual cell. To model the QC metrics, we assume that most cells are 
healthy, i.e., they derive from the experiment-level GMM, while a small number are 
“bad,” i.e., their values are perturbed away from the means of the GMM. These steps 
are set out in Algorithm 1.
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Algorithm  1 simulate_qcs: Overview of simulations (* indicates variables that 
would be known and used as input for real data)At the experiment level, we simulate 
the covariance matrices and relative means of the mixture components (QC cell types) 
that are present in the experiment (Algorithm 2). We then simulate parameters reflect-
ing coherent behavior across different groups of samples. First, we partition the cells 
between the groups according to a multinomial distribution, simulate how many sam-
ples are present in each group, and randomly assign QC cell types to each group. We 
assign the QC cell types such that each group has at least one QC cell type present, and 
that no two groups have identical sets of QC cell types. To simulate coherent differences 
in outliers between each group, we simulate parameters from a beta distribution that 
determines how the proportion of outliers varies across samples (p_out_0, theta_0) 
and how perturbed these outliers will be relative to healthy cells (p_loss_0, the mean 
proportion of non-mitochondrial reads that is lost).

Algorithm 2 draw_expt_level: Pseudocode for drawing experiment-level parame-
tersWe then simulate samples and cells within each sample group (Algorithm 4). Within 
each sample, we first simulate the sample shift from a multivariate Gaussian and simulate 
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the proportions of the different QC cell types via a Dirichlet distribution (p_jk). We 
also simulate what proportion of cells in this sample are outliers, p_out_j, from a beta 
distribution with parameters (p_loss_0, theta_0), and the extent of perturbation in 
unhealthy cells, p_loss_j, from a logit-normal distribution.

We can then simulate each healthy cell, by first drawing its QC cell type from a multi-
nomial with p = {p_jk} , then drawing from multivariate normal (beta_k,Sigma_k) 
for the appropriate k. Adding this to the relevant mu_0 gives us the QC metrics for 
a healthy cell. We then decide whether this cell is healthy or not by drawing from a 
binomial distribution (with probability p_out_j . If the cell is healthy, its QC metrics 
are left unchanged. If not, its non-mitochondrial reads are randomly decreased by a 
proportion p_loss_j. This results in both a reduction in total counts and an increase 
in mitochondrial proportion. We apply the same random reduction to the number of 
features.

Algorithm 3 draw_group_level: Pseudocode for drawing sample group-level parameters
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Algorithm  4 draw_cell_level: Pseudocode for drawing cell-level parameter-
sThe outputs from the simulations show similar distributions of QC metrics to real data 
(Fig. 5).

Datasets

The datasets listed in Table 1 were used in this paper, obtained via the scRNAseq pack-
age [27].

Table 1  List of datasets used in paper. All datasets are single-cell RNA-seq unless otherwise stated

Short name Tissue Reference

Campbell Mouse brain [28]

CITEseq Human PBMC (CITE-seq) [25]

HGSOC Human ovarian cancer [29]

Macosko Mouse retina [2]

Roche Human brain (single nuclei RNA-seq) [30]

Shekhar Mouse retina [30]

Wang Human endometrium [31]

Zeisel Mouse brain [32]
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