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Abstract

Background Transporter associated with antigen processing 1 (TAP1) is a molecule involved in processing and pres-
entation of major histocompatibility complex class | restricted antigens, including tumor-associated antigens. TAP1
participates in tumor immunity, and is aberrantly expressed in multiple cancer types;

Methods Transcriptome profiles were obtained from The Cancer Genome Atlas and Genotype-Tissue Expression
databases. Genetic alterations, protein distribution, and interaction information for TAP1 were downloaded from
cBioPortal, Human Protein Atlas and Compartmentalized Protein—Protein Interaction, respectively. Single-cell analy-
ses of TAP1 across cancers were conducted via the Tumor Immune Single-cell Hub website. Gene set enrichment
analysis was employed to investigate TAP1-associated functional mechanisms and processes. Immune cell infiltration
was explored using Tumor Immune Estimation Resource 2.0. Pan-cancer correlations between TAPT expression and
immunotherapy biomarkers were explored using the Spearman’s correlation test. Associations with immunotherapy
responses were also investigated using clinicopathological and prognostic information from cohorts of patients with
cancer receiving immune checkpoint inhibitors.

Results TAPT expression was elevated in most cancer types and exhibited distinct prognostic value. Immune cells
expressed more TAPT than malignant cells within most tumors. TAPT expression was significantly correlated with immune-
related pathways, T-lymphocyte infiltration, and immunotherapeutic biomarkers. Clinical cohort validation revealed a sig-
nificant correlation with immune therapeutic effects and verified the prognostic role of TAP1 in immunotherapy. Western
blot assay indicated that TAP1 is upregulated in glioblastoma compared with adjacent normal brain tissues.

Conclusion TAP1 is a robust tumor prognostic biomarker and a novel predictor of clinical prognosis and immuno-
therapeutic responses in various cancer types.

Keywords Transporter associated with antigen processing 1 (TAP1), Pan-cancer, Prognostic biomarker, Cancer
immunotherapy, Immune Check-point Inhibitor (ICl)
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Background

Transporter associated with antigen processing 1
(TAP1) is a member of the ATP-binding cassette super-
family, which forms a heterodimeric complex with its
homolog, TAP2, for intracellular translocation of anti-
genic peptide across endoplasmic reticulum (ER) mem-
brane [1, 2]. In the ER, TAP complexes assist in loading
cytosolic peptides onto adjacent major histocompat-
ibility complex class I (MHC-I) molecules, which then
transport the peptide to the cell surface for recogni-
tion by CD8™ cytotoxic T lymphocytes (CTL). MHC-I
presentation occurs in every nucleated cell (i.e., not
mature erythrocytes), and presented antigens are gen-
erally derived from endogenous molecules [3]; how-
ever, MHC-I molecules in dendritic cells (DCs) can also
present exogenous antigens derived from pathogens or
dead cells [4]. Due to precise regulation, viral-infected
cells and malignantly transformed cells that express
abnormal proteins are under strict immune surveil-
lance and are eliminated over time. Consequently, the
pivotal function of TAP1 is prone to be hijacked for
immune evasion by malignant disease.

The TAP complex executes its role via an elaborate
mechanism. Antigenic proteins, either endogenously
expressed or internalized by antigen presenting cells,
are marked by ubiquitin and degraded into small, 8—-10
amino acid, peptide fragments [5]. CD8" CTL recog-
nize the antigenic peptides presented by MHC-I and
initiate an immune attack. When errors in assembly or
translocation of MHC-I complexes occur, CTL-medi-
ated immune surveillance is suppressed [2]. Therefore,
malignant cells evolve strategies to escape immune sys-
tem recognition by targeting and interfering with the
normal process of MHC-I-mediated antigen presenta-
tion, particularly the “peptide pump’, TAP [6]. Within
the TAP complex, TAP1 stabilizes the assembly of TAP2
[7]. Thus, we focused on TAP1 as potentially dominant
in TAP protein function. Studies on TAP1 have continu-
ously emerged over recent years, with novel findings in
several cancers [8]. Down-regulation or defective TAP1
expression were observed in primary cancer or autolo-
gous metastatic lesions of different disease stages, includ-
ing in bladder cancer [9], small cell lung cancer [10],
glioma [11], prostatic cancer [12], head and neck squa-
mous cell carcinoma (HNSC) [13], breast cancer [14],
and colorectal cancer (CRC) [15]. However, few studies
have proposed associations between TAP1 and responses
to therapeutic anti-tumor regimens. As a novel treatment
approach, immune therapy delays, or even completely
blocks, tumor development and progression, providing
hope for many cancer patients. Nevertheless, expected
responses to immunotherapy are not observed in every
patient. Further, random application of immunotherapy
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can be disadvantageous to patients who exhibit tolerance
or toxic reactions to the drugs. Therefore, exploring reli-
able biomarkers that can predict the effect of immuno-
therapy for individual patients is an urgent priority. TAP1
regulates normal immune responses, and is abnormally
expressed in various cancer types; therefore, we hypoth-
esized that it is a potential biomarker for predicting
immunotherapeutic efficacy.

In this study, we performed a comprehensive pan-
cancer analysis to generate a TAPI expression landscape
across various cancer types. Further, we report basic
information regarding TAP1 in pan-cancer cohorts and
explore the relationship between TAPI expression and
prognosis, enriched gene sets, immune cell infiltration,
expression of immune regulators, and immunotherapeu-
tic effects on a pan-cancer scale. Based on these data, we
propose TAP1 as a novel biomarker for predicting patient
prognosis and the effects of immunotherapy in diverse
cancers. These results have been published as a preprint
version [16], and our findings have potential to inform
the future direction of research into TAP1.

Methods and materials

Clinical samples and ethics statement

Clinical glioblastoma (GBM) samples were obtained
from inpatients at the Second Affiliated Hospital of Nan-
chang University between 2021 and 2022. Tumor core
and para-tumor normal tissues were excised and stored
at —80°C until use. This study was approved by the Medi-
cal Ethics Committee of The Second Affiliated Hospital
of Nanchang University. Each patient provided informed
consent for sample acquisition and use for research based
on the approved guidelines.

Data sources and processing

mRNA expression profiles of TAP! in tumor and corre-
sponding normal tissues were obtained from The Cancer
Genome Atlas (TCGA) and Genotype-Tissue Expression
(GTEx) databases. Available data were downloaded from
the UCSC Xena database (https://xenabrowser.net/datap
ages/) [17], and the format changed to transcripts per
kilobase million. A query of TPA1 in “TCGA pan-cancer
atlas” was submitted via the cBioPortal website (https://
www.cbioportal.org/). Data on gene alterations (muta-
tion, structural variant, amplification, deep deletion, and
multiple alterations) matched with 32 cancer types were
obtained from “Cancer Type Summary” items. At the
subcellular level, immunofluorescence images of TPA1
were obtained from The Human Protein Atlas (https://
www.proteinatlas.org/) database and the subcellular dis-
tribution of TAP1 protein determined. Protein—protein
interactions (PPI) were explored using the Compartmen-
talized Protein—Protein Interaction Database (https://
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comppi.linkgroup.hu/). Protein names were mapped
using the “Retrieve/ID mapping” tool on the Uniprot
website (https://www.uniprot.org/), and visualized using
the R package “ggplot2” in the R programming environ-
ment. Cancer type abbreviations are summarized in Sup-
plemental Table 1.

Western blotting

Protein was extracted from collected GBM core and adja-
cent normal tissue samples, and prepared samples used
to perform western blots using methods and reagents
described previously [18]. The antibody used was rabbit
TAP1 polyclonal antibody (Proteintech, number: 11114—
1-AP; diluted 1:1000).

Single-cell analysis of TAP1

TAPI single-cell analysis was conducted using the Tumor
Immune Single-cell Hub (TISCH, http://tisch.comp-genom
ics.org/) website [19] Gene “TAP1” was input and cell-type
annotation “major-lineage” searched in “all cancers’, to ana-
lyze TAPI expression in 33 cell types and 78 cancer lineages.

Analysis of prognosis by Cox regression and Kaplan-Meier
methods

The value of TAP1 for predicting patient prognosis
in pan-cancer was explored based on matched TAPI
expression and prognostic information from TCGA data-
base. Univariate Cox regression and Kaplan—Meier anal-
yses were performed to assess the relationships between
TAPI expression and patient prognosis in diverse cancer
types, using the outcome indices: overall survival (OS),
disease-specific survival (DSS), disease-free interval
(DFI), and progression-free interval (PFI). TAPI expres-
sion pattern was tested as a continuous variable by uni-
variate Cox regression, and TAPI expression level as a
bivariate variable using the Kaplan—Meier method. The
algorithm, “surv-cutpoint” of the “surminer” R package
was used to determine the cut-off point with maximal
rank statistics that divided the undefined expression data
into high- or low-expression sets. Given the non-normal
distribution of survival data, a non-parametric test was
applied and log-rank P values computed in Kaplan—Meier
analysis. For Cox regression analysis, hazard ratio (HR)
and 95% confidence interval (CI) values were calculated.

Screening of differentially expressed genes (DEGs)
between low and high TAP1 expression subgroups
Cancer patients were ordered according to their TAPI
expression values and the 30% patient populations
with the lowest and highest values defined as high and
low expression subgroups, respectively. Differential
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expression analysis was performed using the “limma” R
package [20], and log,(fold-change) and adjusted P values
calculated. Genes with P<0.05 were considered DEGs.
DEGs for each cancer type are presented in Supplemen-
tary Table 2.

Gene set enrichment analysis (GSEA)

GSEA was performed to further explore the possible
mechanisms or biological processes involving TAPI.
The Hallmark gene set (containing 50 gene sets) file was
downloaded from MSigDB in “gmt” format. Then, the R
package “clusterProfiler” used to conduct GSEA, based
on data generated by differential expression analysis, with
false discovery rate (FDR) and normalized enrichment
score (NES) values computed for every hallmark in each
cancer type [21]. TAP1 enrichment data in multiple path-
ways matched with corresponding pan-cancer types were
visualized using the “ggplot2” R package.

Pan-cancer tumor microenvironment analysis

Tumor masses are generally infiltrated by various
immune cells and other functional cells that influence
cancer progression and the effects of therapy, where infil-
trating cells and molecules inside a tumor matrix com-
prise the tumor microenvironment (TME) [18]. Tumor
Immune Estimation Resource 2.0 (TIMER 2.0) was used
to quantitatively evaluate tumor immune cell infiltration
based on transcriptome data from the pan-cancer cohort.
Correlations between TAPI expression and infiltrating
cells of interest were investigated using Spearman’s rank
correlation analysis. Candidate cells included: CD4" T
cells, cancer-associated fibroblasts, lymphoid progeni-
tors, myeloid progenitors, granulocyte-monocyte pro-
genitors, endothelial cells, hematopoietic stem cells
(HSCs), T cell follicular helper cells, T cell gamma delta
cells, NK T cells, regulatory T cells, myeloid-derived sup-
pressor cells (MDSCs), B cells, neutrophils, monocytes,
macrophages, DC, NK cells, mast cells, and CD8™ T cells.
Infiltration patterns were visualized using the R pack-
age “ggplot2”. Microsatellite instability (MSI) and tumor
mutational burden (TMB) were evaluated as biomarkers
to predict TME conditions [22, 23]. Correlations between
TAPI mRNA expression and MSI or TMB were investi-
gated by Spearman’s correlation test. According to a pre-
vious study, 47 immune checkpoints (ICP) were included
and their correlations with TAPI expression also esti-
mated [24].

Immune check-point inhibitor (ICl) cohort validation

A comprehensive study to summarize the clinical effects
of immune checkpoint blockade therapy was conducted.
Clinical information, including immunotherapy progno-
sis, matched with TPAI expression data, were obtained
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from previous studies [25-28]. High or low expression
was defined by the method applied in Kaplan—Meier
survival analysis, and the prognosis of patients with dif-
ferent TAPI levels compared by log-rank test. To assess
patient responses to ICIs, the chi-square test was applied
to compare the proportions of patients that responded to
ICI therapy.

Statistical analysis

The Wilcoxon sum test was used to assess the statisti-
cal significance of differences in TAPI expression lev-
els between cancer and para-cancerous normal tissues.
A paired t-test was used to compare protein expression
levels. To investigate correlations between cancer prog-
nosis and TAPI expression, univariate Cox regression
analysis and the Kaplan—Meier method were applied.
Cox regression test, Cox P values, and HR were assessed,
and log-rank P values with 95% CI calculated using the
Kaplan—Meier method. Spearman’s correlation tests
were employed to calculate the significance of correla-
tions between TAPI expression and immune cell infil-
tration, immune regulator expression, TMB, and MSI.
For immunotherapy cohort validation, differences in
the proportions of responders and non-responders in
low- and high- TAPI expression groups were evaluated
by chi-square test. Statistical significance was set at P
value <0.05.

Results

Analysis of TAP1 at the genetic, mRNA, and protein levels
To determine the basic landscape of TAPI expression,
multi-omics data on TAPI levels in various cancers
were analyzed. Transcription profiles from TCGA and
GTEx database were combined, as sample numbers for
several cancer types were limited. TAPI mRNA expres-
sion in normal and tumor tissues from 27 cancer types
is presented in Fig. 1A. TAP1 was strongly significantly
overexpressed in all tumor tissues, except adrenocorti-
cal carcinoma (ACC), kidney chromophobe (KICH),
and uterine carcinosarcoma (UCS). Among tumors,
TAPI showed marked overexpression in cervical and
endocervical cancers (CESC) and HNSC, relative to

(See figure on next page.)
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other tumors, while the greatest difference between nor-
mal and corresponding malignant tissues was detected
in cholangiocarcinoma (CHOL), GBM, and pancreatic
adenocarcinoma (PAAD). GBM, the most malignant type
of intracranial tumor, showed significantly higher TAPI
expression relative to normal brain tissues (Fig. 1B).
Overall, aberrant expression TAPI mRNA levels were
detected in various cancer types. To determine whether
TAP1 protein levels were also aberrantly expressed in
cancer samples, we conducted western blot assays to
verify the results of informatics analysis of RNA-seq
data. As shown in Fig. 1C and ID, GBM samples from our
patients also had higher TAP1 protein expression than
corresponding adjacent normal tissues (p value =0.0042),
consistent with TAPI RNA expression patterns. Next,
we investigated the genetic alteration status of TAPI
in TCGA pan-cancer cohort, including the types and
frequencies of genetic alterations (Fig. 1E). Among all
alteration types, “amplification” was most frequent, fol-
lowed by “mutation’, and “deep deletion” Notably, some
cancer types were observed to only have one type of
TAPI genetic alteration; for example, esophageal adeno-
carcinoma and uveal melanoma (UVM) only exhibited
amplification, while mutation was the sole alteration type
in thymoma (THYM). In general, TAPI alteration fre-
quencies in the pan-cancer cohort fluctuated between
2 and 4%; however, diffuse large B-cell lymphoma
(DLBC) exhibited the highest frequency, at>8%. Focus-
ing on copy number variation in pan-cancer types, TAPI
expression was significantly correlated with copy number
variation in KICH and kidney renal papillary cell carci-
noma (KIRP) (Fig. 1F). The scatter plot in Fig. 1G illus-
trates these results and a fitted regression curve.

Immunofluorescence images of cell lines derived from
tumor and non-tumor tissue were analyzed to deter-
mine TAP1 protein distribution at the subcellular level
(Fig. 1H). In both the para-cancerous normal (HaCaT)
and melanoma (SKMEL30) cell lines, TAP1 protein was
clearly located at the ER, with no change observed before
and after tumorigenesis. Finally, we constructed a PPI
network to identify potential biological interactions of
TAPI (Fig. 1I).

Fig. 1 Analysis of TAP1 at the genetic, RNA, and protein levels. A RNA expression of TAPT in tumor and normal tissues from 27 pan-cancer types.
B Comparison of differential TAPT RNA expression in GBM and NBT. C Comparison of TAP1 protein expression between cancerous and adjacent
normal tissue from patients with GBM, the full-length blots/gels are presented in Supplemental Fig. 1. D Differences in TAP1 expression within
paired clinical GBM samples (n=7 pairs, p value =0.0042). E Genomic alterations of TAPT across pan-cancer presented as types and frequencies
of alterations. F Correlation between TAP1 expression and copy number variation at the pan-cancer scale. G Analysis of correlation between
copy number variation and TAPT expression level in KICH. H Distribution of TAP1 protein in the HaCaT and SKMEL30 cell lines; HaCaT is human
non-malignant keratinocyte line and SKMEL30 is human melanoma cell line. | Protein—protein interactions of TAP1 in different cellular structures.
GBM, glioblastoma; NBT, normal brain tissue; KICH, Kidney Chromophobe. *P<0.05, **P < 0.01, ***P < 0.001
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Single-cell analysis of TAP1 expression results

across multiple cell types

To determine TAPI expression patterns in tumor masses,
we further explored the individual expression of TAPI
in immune and malignant cell populations using the
TISCH tool. TAPI expression was evaluated in all sepa-
rate cells, and then presented as mean values (Fig. 2A). In
the plotted heatmap, we observed that TAP1 was mainly
expressed in immune cells, particularly T lymphocytes
(CD4 Tconv, T reg, T prolif, CD8 T, and CD8 Tex cells),
followed by non-specific immune cells, including NK
cells, DCs, and monocytes/macrophages. Notably, TAPI

A

Single cell expression of TAP1 in pan-cancer
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was not overexpressed in malignant cells, while it was
strongly upregulated in cell populations of non-malig-
nant origin. TAPI expression was stronger in the non-
small cell lung cancer (GSE99254), liver hepatocellular
carcinoma (LIHC; GSE98638), and CRC (GSE108989)
datasets than in other cell lines. Specifically, we visu-
alized TAPI expression in invasive breast carcinoma
(BRCA; GSE11068) and skin cutaneous melanoma
(SKCM; GSE12057) datasets, and the cell types with the
highest TAPI expression are highlighted in Fig. 2B-E.
Our results suggest preferential expression of TAPI in T
lymphocytes and monocytes/macrophages in the TME.
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Risk prediction based on correlation between prognosis
and TAP1 expression

To further explore the potential value of TAP1 for prog-
nosis prediction, we next analyzed the prognostic role
of TAP1 across cancers. The survival indices, OS, DSS,
DFI, and PFI, served as reliable indicators of prognosis.
A summary of the clinical prognostic outcome patterns
in the tested pan-cancer cohort are plotted in Fig. 3A.
Kaplan—Meier and Cox regression analyses were per-
formed to validate one another. The results suggested
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that TAP1 was a risk factor for patients with ACC,
DLBC, KIRP, low-grade glioma (LGG), lung adenocar-
cinoma (LUAD), lung squamous cell carcinoma (LUSC),
PAAD, and UVM, as higher expression of TAPI mRNA
was correlated with poor prognosis, as well as a poten-
tial protective factor in bladder urothelial carcinoma
(BLCA), BRCA, clear cell renal cell carcinoma (KIRC),
ovarian serous cystadenocarcinoma (OV), rectum ade-
nocarcinoma (READ), SKCM, stomach adenocarcinoma
(STAD), and UCS. Cox regression analysis of OS data,

A Prognostic role of ':'AF’1 in pan-cancer . B Univariate Cox regression of TAP1 - Overall Survival
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Fig. 3 Correlation between TAP1 expression and cancer prognosis in pan-cancer cohorts. A Summary of the prognostic role of TAP1 in pan-cancers
using Kaplan-Meier and Univariate Cox regression analyses. Clinical prognosis is expressed as DFI, DSS, OS, and PFI. B Forest plot showing

cancer types correlated with TAP1 expression using OS data; HR and 95% Cl are presented. Kaplan-Meier survival curve showing changes in OS
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revealed significant associations of TAPI expression in
patients with sarcoma (SARC), STAD, OV, LUAD, UVM,
KIRP, PAAD, LGG, and THYM (Forest plot, Fig. 3B).
We conducted specific analyses of several cancer types
and plotted Kaplan—Meier survival curves. As shown in
Fig. 3C and D, OS rates of patients with LGG and UVM
in the high-TAPI expression group decreased rapidly
over time, while those in the low expression group had
relatively better outcomes at the same time points. Clini-
cal outcomes were most significantly reversed in patients
with OV and READ (Fig. 3E-F). In some cancer types,
including CHOL, esophageal carcinoma, GBM, KICH,
paraganglioma, SARC, and UCS, there was no signifi-
cant relationship between TAPI expression and OS.
Cancer types showing significant correlations between
TAPI expression and patient outcomes may benefit from
TAPI1-targeted treatment, which could be advantageous
to populations sensitive to such regimens, as discussed
below.

TAP1 enriched hallmarks across the pan-cancer cohort
Given the significant prognostic value of TAP1 in vari-
ous cancers, we further investigated the underlying bio-
logical processes or pathways associated with TAP1, to
understand the potential mechanisms involved. In the
present study, a hallmark gene set, composed of marker
genes defining tumor biological status and progres-
sion, was analyzed. DEGs between high- and low-TAPI
subgroups were screened and tested for enrichment in
hallmarks gene sets. The enrichment status of TAP1 in
each pathway is plotted in Fig. 4. Our results revealed a
highly concentrated distribution of enrichment across 33
pan-cancer types, where immune-related pathways were
strongly enriched for in cancers with high TAPI high
expression. Enrichment pathways included tumor necro-
sis factor-a (TNF-«) signaling via the NF-xB pathway,
interferon-y (IFN-y) response, IFN-a response, inflam-
matory response, IL6-JAK-STAT3 signaling pathway,
IL2-STAT2 signaling pathway, and allograft rejection.
TAP1 was also enriched in the apoptosis, complement,
and KRAS signaling pathways, to a lesser degree. Focus-
ing on cancer types, ACC, LGG, LUAD, PAAD, and UCS
showed more enrichment of the pathways mentioned
above. As illustrated in the bubble plot, the majority of
enrichments exhibited positive correlations with TAPI
expression (Fig. 4).

Correlation between immune cell infiltration and TAP1
expression in pan-cancer

Given the close correlation between TAPI expression
and immune pathways, we next further explored its pos-
sible correlation with immune cell infiltration. Spearman
correlation analysis of the relationship between TAPI
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expression and infiltration levels of multiple immune cell
lineages in the pan-cancer cohort was conducted. The
results presented in Fig. 5 illustrate the positive relation-
ship between TAPI expression and several cell types,
particularly macrophages, DCs, and CD8' T cells. Fur-
ther, positive correlations were mainly concentrated
in the same cell lineages; that is, specific infiltrated cell
types were positively correlated with TAPI expression in
numerous cancer types. Overall, TAPI expression was
positively correlated with the infiltration of most tested
immune cells, other than some specific subtypes, such
as HSCs, MDSCs, and M2 macrophages. Specifically,
the majority of pan-cancer types were mainly infiltrated
by CD8" T cells, with the exceptions of ACC, CHOL,
GBM, KICH, LGG, READ, and UCS. To link the prog-
nostic role and single cell expression of TAPI in cancers,
we speculated that the cancers with better prognosis and
high TAPI expression also have high tumor infiltrating
lymphocyte populations. We conclude that correlations
between TAPI expression and four specific lymphocyte
populations (activated CD4" T, CD8* T, B, and NK cells)
infiltration levels were evident in 12 types of cancer in
which TAP1 has a protective role. In accordance with
expectations, in most of these cancers (BLCA, BRCA,
CESC, colon adenocarcinoma (COAD), HNSC, KIRC,
LIHC, OV, SKCM, and STAD, but not READ or UCS)
TAPI levels were significantly correlated with lympho-
cyte infiltration (Table 1).

Correlation between TAP1 expression and the TME
Tumor cells generally evade immune attack by silencing
immune responses. One strategy is to target and mute
the immune regulators, so that functional immune sig-
nal processing is blocked, facilitating cancer cell survival.
Here, 47 common ICP genes were selected and analyzed
in the context of TAPI expression, using previously
described methods [29]. Spearman’s correlation analy-
sis was conducted to evaluate the correlations between
TAP1 expression and levels of individual ICPs across
TCGA pan-cancer types (Fig. 6A). Overall, our results
suggested a strongly significant positive correlation. Pan-
cancer analysis indicated that TAP1 expression was posi-
tively correlated with immune regulators in the majority
of cancer types, particularly BRCA, KIRC, prostate ade-
nocarcinoma (PRAD), testicular cancer (TGCT), thyroid
carcinoma (THCA), and UVM. Regarding individual
immune regulators, correlations with TAPI in each can-
cer were highly significantly positive or negative; spe-
cifically, LAG3, ICOS, HAVCR2, CD80, PDCD], IDO1,
PDCD1LG2, TIGIT, CD274, CD86, and TNFRSF9 exhib-
ited markedly stronger correlations than other ICPs.
TMB is the quantity of acquired somatic mutations (after
exclusion of innate mutations), which encode neoantigens,
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Gene Set Enrichment Analysis of Hallmark gene sets
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Table 1 The lymphocyte infiltration correlations with TAP1

expression

Cancertype  Activated CD8T B Activated NK
CDAT memory

BLCA + + + +

BRCA + + + +

CESC + + + +

COAD + + Unclear +

HNSC + + Unclear +

KIRC Unclear + + +

LIHC + + + +

ov + + Unclear +

READ Unclear Unclear Unclear Unclear

SKCM + + + +

STAD + + Unclear +

ucs Unclear Unclear Unclear Unclear

clinical information, including OS and PFI and immu-
notherapy response data, from four cohorts in which
patients with cancer received different immunotherapy
regimens were obtained from published papers [25-28].
The immunotherapies applied were as follows: anti-pro-
grammed cell death protein 1 (PD-1), anti-programmed
cell death protein 1 ligand (PDL1), and anti-CTL antigen
4 (CTLA4) treatment using monoclonal antibodies. As
shown in Fig. 6D—G, groups with high TAPI expression
had higher OS/PFI probability and longer OS/PFI time
than those with low TAPI expression. Further, data on
cancer therapeutic responses to immune therapy indi-
cated that cohorts with melanoma or bladder cancer
and high TAPI expression had a greater proportion of
responders, indicating that patients with melanoma and
bladder cancer and high TAPI levels had both worse clin-
ical prognosis and were potentially more sensitive to ICI
therapy.

Discussion

At present, immunotherapy has been an efficient and
promising treatment for cancer patients, and search-
ing novel immune associated targets and biomarkers is

(See figure on next page.)
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urgent [30-32]. Byplotting of TAPI transcriptome data,
derived from data mining, we clearly demonstrated that
TAPI RNA levels were elevated in almost all tumor tissue
types, other than ACC, KICH, and UCS; however, previ-
ous studies have reported down-regulation of both TAP1
mRNA and protein levels, inconsistent with our results
[10-15]. Thus, it is reasonable to speculate that there
may be genomic alterations that counteract the increased
levels of TAPI. Genetic alteration analysis revealed a
maximum frequency of TAPI gene alterations of 8% in
the tested pan-cancer cohort, and mutation types were
non-specific, indicating that they were unlikely to con-
tribute substantially to cancer development. In addi-
tion, alterations in transcription may result in changes in
TAP1 protein, and protein dysfunction can be reflected
in changes of spatial distribution that influence func-
tion. In the present study, immunofluorescence images of
melanoma and normal epithelial cells revealed that TAP1
was strictly distributed on the ER. Thus, the elevated
expression of TAP1 could be attributed to neither spe-
cific types of genetic alteration or altered protein distri-
bution. Hence, the reasons for aberrant TAPI expression
in tumor tissue remain to be determined.

Generally, tumor tissue is composed of parenchyma
and mesenchyme, and contains resident stromal cells
and infiltrated immune cells, in addition to malignant
cells. Hence, TAPI expression levels in tumor tissue
represents a summation of that in all types of cells pre-
sent in the tumor. As shown in Fig. 2A, TAPI expres-
sion was highly concentrated in various immune cells,
particularly adaptive immune cells, including CD4"
and CD8" T lymphocytes, followed by innate immune
cells, such as monocytes/macrophages and DCs. Scat-
tered TAP1 expression was also detected among all
candidate tumor cell lineages; however, levels were
lower than those in immune cell lineages. The results of
single cell analysis, may explain the contradictory find-
ings between our transcriptional analysis and previous
individual studies to some extent. Previous experiments
indicating that TAP1 is downregulated in cancer cells
were conducted at the cellular level, while our results
were derived from a tissue-based analysis, with no

Fig. 6 Correlations of TAPT expression with TME biomarkers and clinical responses to immunotherapy. A Heatmap showing correlations between
TAPT expression and 47 immune regulators according to Spearman'’s correlation test. B, C Correlations of TAPT expression with TMB and MSI. D
Survival analysis of patients with high (n=66) and low (n=232) TAP1 expression based on OS data from patients with urothelial cancer receiving
anti-PDL1 immunotherapy, and proportions of patients with different therapeutic responses. E Survival analysis of patients with high (n=29) and
low (n=3) TAPT expression based on PFS data from patients with melanoma receiving anti-CTLA-4&PD-1 immunotherapy, and the proportions

of patients with different therapeutic responses. F Survival analysis of patients with high (n=43) and low (n=6) TAPT expression using OS data
from patients with breast cancer receiving anti-PD-1 immunotherapy, and the proportions of patients with different therapeutic responses. G
Survival analysis of patients with high (n=23) and low (n=18) TAP1 expression using OS data from patients with metastatic melanoma receiving
anti-CTLA-4 immunotherapy, and the proportions of patients with different therapeutic responses. TMB, tumor mutation burden; MSI, microsatellite
instability; PD, progressive disease; SD, stable disease; CR, complete response; PR, partial responses. The significance threshold was P<0.05. *P<0.05,

**P<0.01,**P<0.001
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separation of tumor cells from adjacent mesenchyme.
Thus, the TAPI expression levels in all non-malignant
cells were also quantified and may have led to detection
of excess levels. Regardless, the detailed TAPI expres-
sion atlas generated here assists in understanding TAP1
distribution, providing a basis for further investigation.

We also focused on the clinical significance of TAP1,
with the aim of informing its practical application. To
evaluate the prognostic implications of TAPI expression,
we used Kaplan—Meier and univariate Cox regression
models to assess its clinical translational potential in each
cancer type. Clinical prognostic outcomes were assessed
using four indices: OS, DFI, DSS and PFI, each of which
is characterized by a specific endpoint that reflects prog-
nosis under different conditions. TAPI expression was
detected as associated with both increased risk and pro-
tection, suggesting a distinct effect of TAP1 in each can-
cer. Forest plots of univariate Cox regression analysis of
OS data indicated that the association of TAPI with sur-
vival probability varied among the 32 cancer types, with
TAP1 a risk factor for 11 cancer types and a protective
factor for 8 types. TAP1 expression was positively corre-
lated with OS of patients with BLCA, HNSC, OV, READ,
SARC, SKCM, STAD, and THCA, indicating a protective
role, while in 11 of 32 cancer types, including ACC, KIRP,
LGG, LUAD, LUSC, PAAD, and UVM, TAPI expression
was found to be a net risk factor. Specific Kaplan—Meier
survival curve analysis of data from patients with LGG
suggested that high TAPI expression was a risk factor
for poor OS, while it was associated with opposite clini-
cal outcomes in patients with BLCA, HNSC, and SKCM.
Thus, TAP1 is a potentially promising and powerful prog-
nostic biomarker for various cancers.

Given the significance of these results, we next sought
to identify functional processes potentially involving
TAP1. Using GSEA, we evaluated TAP1 enrichment
in hallmarks gene sets, and found prominent enrich-
ment in immune-related pathways, which was consist-
ent across pan-cancer cohorts. TNF-a signaling, IFN-y
response, IFN-a response, inflammatory response, IL6-
JAK-STAT?3 signaling, IL2-STAT5 signaling, and allograft
rejection were highly significantly enriched, with positive
NES and low FDR values. IFN and TNF molecules pro-
mote MHC-I expression in vivo by inducing transcrip-
tion activity [33, 34]. Further, IFN-y and IFN-a/p have
clear roles in TAP1 function, where IFN-y can facilitate
TAP-dependent peptide transport [35, 36]. Although
MHC-I molecules and TAP are ubiquitously expressed
in all nucleated cells at distinct levels, they are primar-
ily expressed at sites of inflammation soon after immune
system-mediated recognition and alert [37]. The results
of our GSEA confirmed those of previously published
papers. A strong correlation was observed between TAPI
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expression and pathways of interest. Allograft rejection,
an immune rejection response against grafts from the
same species, typically involve inflammatory responses
of varying severity [38]. The most common form is acute
rejection, which is mainly triggered by T cell-mediated
immune responses [38]. Among interleukin-mediated
signaling pathways, IL6 and IL2 are established inflam-
matory factors involved in tumor immunity regulation
by facilitating lymphocyte growth and function [39, 40].
Overall, our results suggest an immune-related mecha-
nism, which prompted us to further explore the potential
of TAP1 to predict patient responses to immunotherapy.

Tumor development and progression rely on the adja-
cent TME, which comprises a complex variety of non-
malignant cell types, including immune cells, fibroblasts,
and endothelia, as well as extracellular components, such
as cytokines and hormones [41]. Although the compo-
sition of the TME differs among cancers, all types have
some common features. For example, in most tumors,
the vascular network is relative leaky and disorganized,
allowing infiltration of multiple immune cells for tumor
immunity [42]. As we found that TAP1 was enriched in
immune-related pathways, we also conducted an immune
cell infiltration analysis to ascertain the associations
between TAPI expression and infiltrated immune cells
in the TME. Our results revealed an elaborate infiltration
pattern, where TAPI expression was positively correlated
with multiple immune cells, particularly CD8" T cells,
DCs, and macrophages. These results are consistent with
those of our single-cell analysis, providing mutual verifi-
cation, with CD8' T cells and monocyte/macrophages,
the killer cells of immune system, highlighted by both
approaches. Among the numerous cell types analyzed
by TIMER 2.0, M2 macrophages showed an opposite
association, possibly because of the role of these cells in
stimulating anti-inflammation, T helper 2 cell activation
(assisting humoral immunity), and immunoregulation,
which oppose the function of TAP1 in cell-mediated
immunity [41]. Based on the results of single cell and
prognostic analyses, we concluded that TAPI expression
in lymphocytes has a role in cancers and that those with
high TAPI expression are associated with better patient
prognosis. High expression of TAPI in tumors is pri-
marily in infiltrated lymphocytes, and indicates higher
infiltration of lymphocytes, which is generally correlated
with a stronger immune response, and could potentially
explain the association of higher TAPI expression with
superior patient prognosis.

Additionally, IL2-STAT5 signaling, inflammatory
responses, and complement activity were highlighted
in GSEA and are mediated by macrophages and CD8"
CTL. Combining currently available results, we conclude
that TAP1 expression is highly correlated with immune
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regulation, and corresponds to a distinct immune sig-
nature for each pan-cancer type. Although abundant
immune cells infiltrate tumors to mediate tumor immu-
nity, the relationship between the TME and immune
cells is complex. T cell-mediated tumor immunity can
have either pro- or anti-tumor effects, depending on the
cells and regulators they encounter during the process
of immune responses [42]. In our study, 47 ICPs were
tested for their correlation with TAP1 mRNA expression
across a pan-cancer dataset. Tumor cells adopt strate-
gies to activate suppressive ICP pathways, thus silencing
effector lymphocytes and evading immune surveillance
[43]. Heatmap analysis indicated that TAPI expression
was positively correlated with most ICPs in the majority
of pan-cancer types, particularly BRCA, KIRC, PRAD,
TGCT, THCA, and UVM. TMB and MSI are reported
biomarkers that can predict TME status and anti-tumor
efficacy of ICI therapy [44], and used Spearman’s corre-
lation analysis to test the correlations of TMB and MSI
with TAPI expression. The results highlighted specific
cancers with significant associations. For example, both
TMB and MSI were correlated with TAPI expression in
COAD, KIRC, and LUAD. Hence, our results support
the potential for TAPI expression to predict responses to
immunotherapy targeting immune regulatory processes.

Precise therapy targeting tumor immunity based
on distinct TAPI expression levels shows promise for
application in cancer patients. Anti-tumor immunity
is regulated by complex factors in the TME, including
ICP, TMB, and MSI, and can generate different immune
response outcomes [43]. PD-1, PD-L1, and CTLA-4 are
established immunosuppressive ICPs, and are generally
recruited by tumor cells to promote immune evasion [45,
46]. To date, monoclonal antibodies with high selectiv-
ity against PD-1 and CTLA-4 are approved and widely
used in the clinic; however, the expected responses are
only observed in a proportion of patients. As novel ICI
therapies become popular, the lack of certainty that they
will trigger a favorable response in specific individuals
remain a problem. In cases where TAPI expression is
highly correlated with immunotherapeutic biomarkers,
it would be reasonable to expect the feasibility of immu-
notherapy for patients whose responses also correlate
with TAPI expression. Information on clinical outcomes
and transcriptome profiles of patients receiving immune
therapy were also collected and analyzed. The results
have potential to guide therapeutic decisions for patients.
In previous studies, patients with primary or metastatic
urothelial cancer, breast cancer, and melanoma were
treated with single or combined monoclonal antibod-
ies against PD-L1, PD-1, and CTLA-4, and the clinical
outcomes suggest a protective role for TAP1 [25-28].
In our study, patients with BLCA, BRCA, and SKCM
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and high TAPI expression all exhibited better progno-
sis, consistent with the cohort analysis; h Especially, we
also demonstrated that BLCA and SKCM cancer patients
with higher TAP1 expression showed more sensitivity
of ICI therapy in our study. We speculated that BLCA
and SKCM patients with higher TAP1 expression might
indicate higher lymphocyte infiltration in tumors, which
usually results the tumor cells more vulnerable under the
ICI therapy condition. owever, TAPI was not a favora-
ble factor for immune therapy responses in all cancer
types. As concluded based on the findings of prognostic
and ICP correlation analyses, TAPI expression correla-
tion varied among cancer types, which may be related to
differences in the predictive role of TAP1. In LGG, high
TAP1 expression was associated with increased disease
risk. Further, cancer may exhibit varied TAPI expres-
sion levels and clinical outcomes at different stages; for
example, in stage 1 and 2 breast cancer, TAP1 expres-
sion is reduced, while the trend is reversed in stage 3
and 4 disease; however, TAPI was considered a protec-
tive factor in our study [14]. Thus, we propose TAP1 as a
promising and powerful biomarker to predict the effects
of immunotherapy in patients with cancer. In addition
to immunotherapy, previous studies have reported suc-
cess in increasing tumor-specific immune responses by
restoration of TAPI expression via a TAP1 expressing
adenovirus [10]. Such novel treatments have inspired
investigations of clinical prognosis and informed selec-
tion of optimal treatments based on the specific cancer
types involved and individual transcriptome patterns of
biomarkers, such as TAP1.

Although the present study provides rigorous evidence
demonstrating the predictive role of TAPI in clinical
prognosis and potential responses to immunotherapy
across pan-cancer, it has limitations. TAP1 is conven-
tionally considered a tumor-associated gene; however, it
showed diverse correlations with prognosis in pan-cancer
analysis. Although we have proposed a possible explana-
tion, a series of elaborate experiments are required to val-
idate our hypothesis. Moreover, we proposed an essential
role for TAP1 as predictor, but the practical clinical use
of such an approach has not been verified. Furthermore,
our investigation focused on population level analyses,
whereas individual differences were neglected, and clini-
cal therapy protocols are specific for individuals. These
remaining issues indicate directions for future research,
with the aim of providing advantages to patients requir-
ing novel treatment for survival.

In conclusion, we conducted a systemic pan-cancer
analysis with a novel design and characteristics. Our
results revealed aberrant expression of TAPI in the
majority of pan-cancer types, and that this expression is
significantly correlated with clinical prognosis, immune
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cell infiltration, expression of ICPs, TME biomarkers,
and immunotherapy efficacy.

Furthermore, we also clearly discuss our findings that
were contradictory to those of previous studies, and
hypothesize that TAPI expression in immune and stro-
mal cells may have resulted in our finding that TAPI is
upregulated tumor samples, which is not inconsistent
with conclusions based on the role of TAP1 in sam-
ples comprising solely cancer cells. Hence, we propose
TAP1 as a novel biomarker that can predict prognosis
and immunotherapeutic responses in different can-
cer types, opening a new chapter in the exploration of
TAP1 in malignancies.

Conclusion

In this study, we conducted multi-omics research to
explore the roles of TAP1 in prognostic prediction,
immune cell infiltration, hallmarks associated with the
TME, and prediction of immunotherapeutic responses
on a pan-cancer scale. Our results indicate that TAP1
is a powerful and promising biomarker for predicting
cancer prognosis and could benefit patients receiving
immune therapy.
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