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Abstract 

Background  Osteosarcoma (OS) is the most frequent and aggressive primary malignant sarcoma among adoles-
cents and chemotherapy has not substantially progressed for decades. New insights into OS development and thera-
peutic strategies are urgently needed.

Methods  We analyzed integrated single-cell transcriptomes, bulk RNA-seq, and microarray data from Gene Expres-
sion Omnibus (GEO) datasets. We also used Weighted Gene Co-expression Network Analysis (WGCNA), Gene set 
enrichment analysis (GSEA), and Gene set variation analysis (GSVA), along with Simple ClinVar and Enrichr web servers.

Results  The findings of integrated single-cell analysis showed that OS arises from imperfect osteogenesis during 
development. Novel abnormalities comprised deficient TGFβ and P53 signal pathways, and cell cycle pathway activa-
tion, and a potentially new driver mutation in the interferon induced transmembrane protein 5 (IFITM5) that might 
function as a pathogenic factor in OS. Osteosarcoma is characterized by oncocyte heterogeneity, especially in immu-
nogenic and adipocyte-like subtypes that respectively promote and hamper OS treatment. Etoposide is a promising 
chemotherapeutic that provides palliation by affecting the subtype of OS and correcting the abnormal pathways.

Conclusion  Various abnormal signal pathways play indispensable roles in OS development. We explored the hetero-
geneity and underlying mechanisms of OS and generated findings that will assist with OS assessment and selecting 
optimal therapies.
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Introduction
Osteosarcoma (OS) is an extremely aggressive sarcoma 
for which chemotherapeutic strategies have not sub-
stantially progressed for decades [1, 2]. The mechanism 

of OS awaits explanation and new molecular targets are 
urgently needed to improve the prognosis of patients. 
The causes of OS remain unclear in terms of oncogenetic 
mechanisms, but it might be due to genetic abnormali-
ties, changes in tumor suppressor pathways (such as p53 
and Rb), telomerase, and alternative telomere lengthen-
ing (ALT) inside bone cells [3]. Osteosarcoma driver 
mutations have been found in TP53, RB, PTCH1, MYC, 
NOTCH1, BRCA2, APC, and PRKAR1A genes. Clinical 
evaluations of targeted agents have yielded disappointing 
results [4, 5]. However, some new driver genes are cur-
rently under development as potential therapies for OS.

Interrelated biological signaling pathways in OS com-
prise WNT/βcatenin, Hedgehog, mTOR, and RANKL/
NF-κB [6]. Achievements in the underlying molecu-
lar biology of OS have contributed to transformative 
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advances in understanding this type of malignancy. Oste-
osarcoma originates from bone mesenchymal stem cells 
(MSCs) with osteoblastic lineage commitment. However, 
understanding the molecular mechanisms of OS develop-
ment remains insufficient [3, 7]. For example, the TGFβ 
signal pathway exerts dual effects in terms of tumor pre-
vention and carcinogenesis, depending on the timing of 
tumor development [8–10].

Osteosarcoma is significantly heterogeneous at the 
genomic, transcriptomic, and epigenetic levels. Malig-
nant OS cells have stemness properties that are closely 
involved in chemotherapy resistance, relapse, or 
refractory and metastatic processes [11–13]. Current 
approaches to intra-tumor heterogeneity mainly depend 
on cellular genomic or transcriptional sequencing. How-
ever, this lacks high resolution in authenticating the com-
plex cellular subtypes and intra-tumoral heterogeneity in 
OS. Single-cell RNA-sequencing (scRNA-seq) is a prom-
ising tool that can analyze the composition of heteroge-
neous cell populations and lineage hierarchies [14, 15].

Here we mapped single-cell (sc) RNA sequences of 
human embryonic long bones, normal bone tissue, and 
OS at single-cell high resolution to address the devel-
opment of OS and oncocyte heterogeneity. The results 
of our integrated bioinformatic analysis identified and 
validated the process of osteogenesis imperfecta, poten-
tial new driver genes, abnormal signaling pathways, 
transcriptomic heterogeneity, and targeted therapeutic 
agents for OS.

Methods
Single cell RNA sequencing (scRNA‑seq) data processing
We analyzed scRNA-seq data using R statistical soft-
ware (v. 4.1.2, The R Foundation for Statistical Com-
puting, Vienna, Austria), the Seurat v4.0 toolkit and 
MPLAB  Harmony v1.0. Public scRNA-seq data were 
acquired from the GSE143753, GSE196678, and 
GSE162454 datasets in the Gene Expression Omni-
bus (GEO). Low-quality cells (< 3; features, < 200; > 10% 
mitochondrial genes) were filtered, the data were ini-
tially normalized, then batch effects were removed using 
LogNormalize (features = 3000) and the Harmony func-
tion (max.iter.harmony = 20). Dimensions were reduced 
using Uniform Manifold Approximation and Projection 
(UMAP). We found marker genes for cell groups in data-
sets using the COSine similarity-based marker gene iden-
tification (COSG) package [16]. We quantified marker 
genes using Z-scores and the results are shown in a heat-
map. We calculated copy number variations to identify 
malignant oncocytes using the inferCNV package.

Cell types were identified in each subpopulation based 
on their known lineage markers: mesenchymal cells, 
vimentin (VIM); immune cells, cluster of differentiation 

(CD)45; myeloid cells: CD83, CD14, CD68; lymphoid 
cells, CD3 and B-cell maturation antigen (BCMA); 
endothelial cells, von Willebrand factor, (VWF) and car-
cinoembryonic antigen-related cell adhesion molecule-1 
(CEACAM1); myogenic cells, myogenic differentiation 
1 (MYOD1) and myogenin (MYOG); bone-related cells, 
collagen type 1 alpha 1 (COL1A1) and alpha 2 (COL1A2) 
chains, lumican (LUM), SRY-Box Transcription Factor 9 
(SOX9), alkaline phosphatase (ALP) and RUNX Family 
Transcription Factor 2 (RUNX2)).

Pseudotime and trajectory analysis
Single-cell pseudotime and trajectory analyses were 
constructed using the Monocle3 toolkit (v. 2.14.0). Evo-
lutionary processes were organized into potentially dis-
continuous trajectories by the learn_graph function. 
Pseudotime was defined using the order_cells function 
with a selected node representing development. Genes 
that were differentially expressed over these trajectories 
were then identified [17, 18].

Weighted gene co‑expression network analysis (WGCNA)
We also searched related public expression profiles in 12 
MSCs, 3 osteoblasts, and 84 OS samples (GSE33383). A 
co-expression network was constructed to identify co-
expressed modules using the WGCNA package in R. The 
expression matrix was restricted to only the top 25% of 
expressed genes according to variance analyses. Relation-
ships between gene sets (modules) were explored using a 
hierarchical cluster dendrogram. A clustering tree based 
on the eigengenes of modules calculated the dissimilarity 
of the module eigengenes (MEs). Associations between 
gene sets (modules) and clinical features were assessed 
using Pearson correlations.

Clinical datasets and resources
We downloaded 53 samples including expression pro-
files and clinical outcomes of patients with OS from 
GSE19743 for further analysis. Except for the expres-
sion profile, the clinical information mainly included liv-
ing status, survival duration, Huvos grading scores, and 
metastatic status. Patients were assigned to high- (n = 27) 
and low- (n = 26) risk groups based on the median num-
bers of samples. We applied Cox regression and Kaplan–
Meier curves to estimate overall survival.

Microarray data processing
We used the gene set with the expression profile 
GSE84500 to obtain significantly differentially expressed 
genes (DEGs). A data matrix was downloaded to anno-
tate the probe into gene symbol sets. Significance was 
analyzed using Limma, or the Deseq2 package. The most 
significant changes in gene expression were identified 
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using false discovery rates (FDR < 0.01) and absolute fold 
change (FC > 1).

Gene set enrichment analysis (GSEA)
We assessed gene set enrichment using GSEA [19]. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) signaling 
pathway gene sets were curated from the Molecular Sig-
natures Database (Human MSigDB database v2022.1.Hs). 
Immunogenic and adipocyte-like subtype molecu-
lar signatures were created by identifying significant 
marker genes in scRNA-seq. Normalized enrichment 
scores (NES) > 1 and p < 0.05 reliably filtered significant 
pathways.

Gene set variation analysis (GSVA)
We established the molecular signatures of OS oncocyte 
subtypes depending on the significant marker genes, 
which were acquired by single cell analysis [20]. We also 
calculated final scores for further analyses using GSVA (v. 
1.47.0).

Databases and datasets
Simple ClinVar (https://​simple-​clinv​ar.​broad​insti​tute.​
org/) is a web-server application that summarize vari-
ant, gene, gene- and disease-wise statistics based on the 
entire ClinVar database in a dynamic and user-friendly 
web-interface [21]. Enrichr (https://​maaya​nlab.​cloud/​
Enric​hr/) is a robust web-server that contains many types 
datasets, among which we used the MGI Mammalian 
Phenotype, Jensen DISEASES, and BioPlanet pathway 
databases, as well as the PanglaoDB Augmented, and 
DrugMatrix datasets [22, 23]. Statistical significance was 
set at < 0.05.

Results
Osteosarcoma arises from osteogenesis imperfecta 
during development
We integrated data from 8-week-old long bones 
(GSE143753), human normal bone tissue (GSE196678) 
and OS (GSE162454) to determine whether a devel-
opmental disorder is associated with OS. After quality 
control and batch correction, we obtained 60,553 cells 
for downstream analysis. After dimensionality reduc-
tion, UMAP-based cell clustering identified myeloid, 
lymphoid, endothelial, myogenic, and bone-related cell 
clusters (Fig. 1A). Based on the lineage markers (Fig. 1B), 
then split them depending on their tissue origins. We 
found that bone mesenchymal stem cells (BMCs), normal 
osteocytes, and OS oncocytes mapped together, indicat-
ing that oncocytes might be derived from BMSCs due to 
a developmental disorder (Fig.  1C). We compared tran-
scriptional profiles to identify DEGs between normal 
osteocytes and OS oncocytes during development. We 

identified 349 DEGs (log2FC > 1; P < 0.01), of which 143 
were elevated in OS oncocytes (Fig. 1D; Additional file 2: 
Table S1). We analyzed the upregulated DEGs using the 
MGI Mammalian Phenotype and Jensen DISEASES data-
bases to gain insight into their functional relevance. We 
found enrichment of decreased compact bone thickness, 
decreased trabecular bone volume, decreased length 
of long bones, and osteogenesis imperfecta (Fig. 1E and 
F; black arrows). This further supported the notion of a 
developmental disorder in OS. We analyzed trajectories 
to gain insight into the origin and development of bone-
related cells (Fig. 2A and B). The results revealed partial 
BMSCs at the start of the developmental trajectory. This 
indicated that BMSCs can develop into OS.

Interferon induced transmembrane protein 5 (IFITM5) 
is a potential new driver gene in OS development
Among the functional ontologies, only IFITM5 played a 
crucial role in the process of OS oncogenesis, including 
osteogenesis imperfecta, and decreased bone thickness, 
volume, and length (Fig. 2C). Furthermore, IFITM5 and 
Metallothionein 2A (MT2A) were the most significantly 
upregulated and downregulated genes, respectively, 
among the DEGs between normal osteocytes and OS 
oncocytes (Fig. 1D). The trajectory analyses also offered 
a clearer view of gene dynamics along a single path. We 
found that IFITM5 significantly increased from BMSCs 
to OS, whereas MT2A did not (Fig. 2D). The pseudotime-
dependent IFITM5 gene changed as cells progressed 
along the oncocyte trajectory. Therefore knowing the 
order in which IFITM5 changes can lead to the genera-
tion of new models of OS development (Fig. 2E and F). 
We confirmed the IFITM5 variant using Simple ClinVar. 
We summarized various mutation categories of IFITM5 
and found that a missense mutation was the most preva-
lent type (Fig. 2G), and that three variations of ITITM5, 
including the point mutation (c.-14C > T), the missense 
c.119C > T (p.S40L), and c.143A > G (p.N48S), can lead to 
pathogenic states according to the Simple ClinVar dataset 
and current literature (Fig. 2H). These findings together 
indicated that IFITM is a potential new driver gene in OS 
development that warrants further investigation.

Osteosarcoma was attributed to complicated regulation 
of abnormal signal pathways during development
We further investigated OS development by analyz-
ing the expression profiles of 12 MSCs, 3 osteoblasts, 
and 84 OS samples (GSE33383). We established corre-
lation networks and identified co-expression modules 
using WGCNA. Nine co-expression modules with 4,637 
genes were obtained using the Dynamic Tree Cut algo-
rithm (Fig.  3A). The clustering tree mainly showed two 
branches based on the module eigengenes (Fig.  3B). 

https://simple-clinvar.broadinstitute.org/
https://simple-clinvar.broadinstitute.org/
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
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Correlations between modules and samples of MSCs, 
osteoblasts, and OS are shown in (Fig. 3C). The heat map 
shows that MEgreen and MEblue modules correlated 

negatively with MSCs and osteoblasts, and positively 
with OS. The MEgery module correlated positively 
with MSCs and osteoblasts, but negatively with OS. We 
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Decreased trabecular bone volume 
Abnormal response to cardiac infarction 
Decreased length of long bones 
Delayed wound healing 
Abnormal vascular wound healing 
Abnormal osteoblast morphology 
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Abnormal molar root morphology 
Abnormal optic chiasm morphology 
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analyzed BioPlanet pathways using the co-expressed 
genes in the MEgreen, MEblue and MEgery modules to 
gain insight into the signal pathway relevance (Additional 
file  3: Table  S2). The three most significant pathways in 
each module, namely, Cell cycle, Antigen processing and 
presentation, and TGFβ regulation of extracellular matrix 
were enriched (Fig. 3D‒F). The module correlation coef-
ficients for MSCs were consistent with those of osteo-
blasts, in contrast to OS (Fig. 3G and H). That is, OS was 
attributed to constitutive activation of the Cell cycle and 

Antigen processing and presentation pathways, and defi-
cient TGFβ regulation of extracellular matrix signals. The 
atypical signal pathways also had complex connections to 
regulate bone development (ConsensusPathDB; Fig. 3I).

Transcriptomic heterogeneity of oncocytes in OS
We analyzed the transcriptomic heterogeneity of OS 
oncocytes by re-clustering bone-related cells in OS 
(n = 8758 cells) and found six distinct transcriptomic sub-
clusters (Fig.  4A). The positive expression of COL1A1, 
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COL1A2, ALP and the absence of CD45 revealed that the 
six sub-clusters were bone-related oncocytes (Additional 
file 1: Fig. S1 B). The copy number variation (CNV) was 
estimated using inferCNV (with myogenic cells as a refer-
ence) to distinguish oncocytes and normal cells (Fig. 4B). 
The CNV from scRNA-seq revealed numerous altera-
tions in all sub-clusters compared with the reference 
cells (Fig. 4C). We determined the top 100 differentially 

expressed transcripts among the six sub-populations and 
defined their cell types in the Enrichr datasets (Additional 
file 4: Table S3). A heat map shows the hub genes in each 
sub-cluster (Fig.  4D). Six sub-populations were anno-
tated and visualized by UMAP as neuron-like, immuno-
genic, fibroblastic, chondroblastic, adipocyte-like, and 
osteoblastic oncocytes (Fig. 4A). The top 100 gene signa-
tures of each sub-population were assessed using GSVA 

TGFβ signal pathway

Cell cycle

Antigen processing and presentation

Osteogenesis imperfecta

448 genes

45 genes

106 genes

19 genes

1.0

0.8

0.6

0.4

0.2

Module (branch) color

Cluster Dendrogram

H
ei

gh
t

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Clustering tree based on the 
module eigengenes of modules

MSCs Osteoblast osteosarcoma

Meblack

MEbrown

MEpink

MEgreen

MEturquoise

MEred

MEblue

MEyellow

MEgrey

Module−trait relationships

-Log10(P.Val)

Cell cycle
M phase pathway
DNA replication
FOXM1 transcription factor network
Mitotic prometaphase
Polo-like kinase 1 (PLK1) pathway
Kinesins
Aurora B signaling
MHC class II antigen presentation
Factors involved in megakaryocyte
development and platelet production

MEgreen

Antigen processing and presentation
Immune system
Phagosome
Intestinal immune network
Allograft rejection
Asthma
Graft-versus-host disease
Type 1 diabetes mellitus
Adaptive immune system
Systemic lupus erythematosus

MEblue MEgrey

TGFβ regulation of extracellular matrix
BDNF signaling pathway
Extracellular matrix organization
Collagen biosynthesis and modifying enzymes
T cell receptor regulation of apoptosis
Oncostatin M
Syndecan 1 pathway
FSH regulation of apoptosis
Diabetes pathways
Disease

0                      5                     10                   15 0                5              10              15              20 0           10           20          30          40           50
-Log10(P.Val) -Log10(P.Val)

Bi
oP

la
ne

tD
at

as
et

s

Bi
oP

la
ne

tD
at

as
et

s

Bi
oP

la
ne

tD
at

as
et

s

0.2

0.0

-0.2

-0.5             0.0             0.5             1.0
MSCs correlation coefficient 

O
st

eo
bl

as
t c

or
re

la
tio

n 
co

ef
fic

ie
nt

 

-0.5             0.0             0.5             1.0

0.5

0.0

-0.5

-1.0

MSCs correlation coefficient 

O
st

eo
sa

rc
om

a 
co

rre
la

tio
n 

co
ef

fic
ie

nt
 

A B C

D E F

G H I

1.0

0.5

0.0

-0.5

-1.0

0.56 (2e−09) −0.024 (0.8) −0.5 (2e−07)

0.94 (8e−49) 0.17 (0.09)    −0.94 (6e−48)

−0.14 (0.2) −0.057 (0.6) 0.16 (0.1)

−0.43 (8e−06) −0.27 (0.006)   0.52 (3e−08)

−0.32 (0.001) −0.051 (0.6)     0.31 (0.002)

−0.16 (0.1) −0.08 (0.4)       0.18 (0.07)

−0.59 (9e−11)  −0.26 (0.009) 0.67 (5e−14)

−0.43 (1e−05) −0.2 (0.04)     0.49 (4e−07)

0.85 (2e−28) 0.29 (0.003) −0.91 (3e−39)

Fig. 3  Osteosarcoma was attributed to complicated regulation of abnormal signal pathways during development. A Hierarchical cluster 
dendrogram of identified co-expressed genes in modules in 12 MSCs, 3 osteoblasts, and 84 OS samples (GSE33383). B Clustering tree based on the 
module eigengenes of modules. C Heatmap of the correlation between hub genes and cell types. D, E, F Enrichment of BioPlanet signal pathway 
in MEgreen, MEblue, and MEgrey modules. G, H The correlation analysis between MSCs and osteoblast, as well as MSCs and osteoblast by Pearson 
method. I The connections of atypical signal pathways in ConsensusPathDB datasets



Page 7 of 14Sun et al. Journal of Translational Medicine           (2023) 21:99 	

and the oncocyte subtype abundance was estimated from 
53 human transcriptomic profiles (GSE21257). Kaplan–
Meier estimates associated higher immunogenic and 
adipocyte-like scores with longer progression-free sur-
vival (p = 0.0202), whereas and unfavorable prognoses, 
respectively (p = 0.0065). Other subtypes had no signifi-
cant prognostic value (Fig. 4E). IFITM5 is a potential new 
driver gene in OS development in our study. Correlation 
analysis was performed to further identify the relation-
ship between tumor subtypes and IFITM5. We found 
that the expression of IFITM5 has a strongly significant 
positive correlation with adipocyte-like and chondro-
blastic subtypes and a significant negative correlation 
with immunogenic and fibroblastic subtypes. Therefore, 
the high expression of IFITM5 was associated with the 
shorter overall survival subtype which is in line with the 
previous study (Additional file 1: Fig. S1A) [24].

Deficient TGFβ signaling leads to adipocyte‑like subtype 
of OS during development
The adipocyte-like OS subtype was associated with 
a poor prognosis. We profiled gene expression in 
human MSCs (hMSCs) in the presence of adipogenic/
osteogenic factors (GSE84500) to assess the develop-
ment of adipocyte-like subtype of OS. A comparison 
of transcriptional profiles between panels of hMSC_
BMP2 + IBMX and hMSC_BMP2 + IBMX + TGFβ. 
Principal Component Analysis (PCA) initially revealed 
correlations (Fig.  5A). We identified 469 upregulated 
transcripts (log2FC > 1, P < 0.01), of which 240 were ele-
vated in the hMSC_BMP2 + IBMX group (Additional 
file  5: Table  S4) and named Adipocytes in PanglaoDB 
Augmented Datasets and 229 that were abundantly 
expressed in the hMSC_BMP2 + IBMX + TGFβ group 
(Additional file  6: Table  S5) were labeled Chondro-
cytes, Osteoblasts, and Fibroblasts in the same datasets 
(Fig.  5B). Meanwhile, BioPlanet pathways confirmed 
activated TGFβ regulation of extracellular matrix in 
the hMSC_BMP2 + IBMX + TGFβ group. Therefore, 
we judged that BMP2 and IBMX cause hMSCs to dif-
ferentiate into adipocytes, TGFβ inhibits this process 
and redirects these cells to differentiate into chondro-
cytes, osteoblasts, and fibroblasts. The TGFβ signal 
was defective during OS development (Fig.  3C and 
F), and adipocytes could not differentiate into normal 

bone cells without the TGFβ signal. This stalled adi-
pocyte development and led to the adipocyte-like sub-
type of OS (Fig.  5D). In clinical translation, patients 
with metastasis are more likely to have high-risk scores 
(Fig. 5E). We applied the Huvos grading system to judge 
the effectiveness of neoadjuvant chemotherapy on OS; 
higher scores reflect larger necrotic areas in the clini-
cal data (GSE21257). However, the risk score of the 
adipocyte-like subtype did not differ among grades, 
indicating that the adipocyte-like subtype is resistant to 
neoadjuvant chemotherapy (Fig. 5F).

Etoposide exerts effective palliation by affecting 
the subtype of OS and correcting abnormal pathways
Patients with OS and higher-, than lower-risk scores for 
the immunogenic subtype survived longer (Fig.  4E) and 
metastasis was less likely to develop (Fig.  6A). Further-
more, the Huvos system associated the immunogenic 
subtype with higher grades and sensitivity to neoadjuvant 
chemotherapy (Fig.  6B). We applied the immunogenic 
subtype gene signature to the DrugMatrix dataset that 
contains comprehensive information about gene expres-
sion in rats under treatment with various drugs. Tran-
scriptional changes caused by thioguanine and etoposide 
were enriched (Fig.  6C). An extensive literature review 
revealed that etoposide is a feasible candidate as salvage 
therapy for relapsed and metastatic OS. A high-through-
put transcriptomic screen of OS cells (U-2 OS) exposed 
to seven concentrations of etoposide was evaluated by 
GSEA (GSE200845) to determine the underlying mecha-
nism of etoposide. The GSEA enrichment plot associated 
DEGs with the activation of immunogenic subtype signa-
tures (p = 0.000, NES = 1,80; Fig. 6D left). The heat map 
also shows that the top 10 genes with immunogenic sub-
type signatures gradually increased as the dose increased 
(Fig.  6D right). Meanwhile, the enrichment plot and a 
heat map showed that the adipocyte-like subtype sig-
natures correlated negatively with the dose-dependent 
profile of etoposide treatment (p = 0.015; NES = − 1.49; 
Fig.  6E). We also used GSVA to determine a dose-
dependent tendency between immunogenic and adipo-
cyte-like subtype signatures. The results were the same as 
those of the GSEA analysis (p < 0.01, Fig.  6F). We iden-
tified the high-risk genes checkpoint kinase 2 (CHEK2) 

Fig. 4  Transcriptomic heterogeneity of oncocytes in OS. A Re-clustering of OS oncocytes. B The copy number variation (CNV) was estimated 
using inferCNV (with myogenic cells as a reference) to distinguish oncocytes and normal cells. The red and blue colors represent the copy number 
variation. C The CNV score of each cell was calculated as a quadraic sum of CNV. D A heat map shows the hub genes in each sub-cluster. E Kaplan–
Meier survival curve shows the survival of OS patients with high- and low risk-scores for each subcluster signature (Nhigh-risk = 27 vs. Nlow-risk = 
26)

(See figure on next page.)
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Fig. 6  Etoposide exerts effective palliation by affecting the subtype of OS and correcting abnormal pathways. A Box plot and corresponding 
stacked histogram show immunogenic subtype score in metastasis and no metastasis OS samples. B Immunogenic subtype score in OS samples 
across various Huvos grades. C Enrichment of immunogenic subtype gene signature in DrugMatrix dataset. D, E The GSEA enrichment plot and 
dose-dependent heatmap showed the effect of etoposide on immunogenic and adipocyte-like subtypes. F GSVA analysis was used to determine 
the different tendencies between immunogenic and adipocyte-like subtypes with different concentrations of etoposide. G Osteosarcoma 
associated mutant genes in Simple ClinVar datasets. H, I The GSEA enrichment plot and dose-dependent heatmap revealed the effect of etoposide 
on the cell cycle and p53 signaling pathway. J The correlation analysis between immunogenic subtype and Antigen processing and presentation 
pathway. K Overview of the abnormal signal pathways and tumor heterogeneity in osteosarcoma
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and retinoblastoma transcriptional corepressor 1 (RB1), 
which represented 46.15% and 15.39% of the OS driver 
genes respectively, and play crucial roles in the cell cycle 
pathway, which we confirmed was activated (Figs.  6G; 
3D). The mutation rate of the important tumor suppres-
sor gene tumor protein 53 (TP53) was also 15.39% in 
OS (Fig.  6G). Etoposide can inhibit the cell cycle path-
way, and activate the P53 signaling pathway (Fig. 6H and 
I). The immunogenic OS subtype originated in MSCs, 
because it correlated closely with Antigen processing and 
presentation as described in Fig. 3E (Fig. 6J). Therefore, 
etoposide has promise as a palliative therapeutic by pro-
moting immunogenic subtypes, inhibiting adipocyte-like 
subtypes, and correcting the abnormal cell cycle and p53 
signaling pathways.

Discussion
Osteosarcoma is the most frequent primary malignant 
sarcoma in adolescents. Given the treatment dilemma, 
new insights into the OS development and therapeutic 
strategies are urgently needed [25, 26]. Here, we discov-
ered using integrated single-cell analysis, that OS arises 
from osteogenesis imperfecta during development. We 
identified deficient TGFβ and P53 signal pathways, an 
activated cell cycle pathway, and a potentially novel 
driver gene IFITM5 mutant as potential pathogenic fac-
tors of OS. We characterized OS heterogeneity and 
found that the immunogenic and adipocyte-like subtypes 
respectively exerted beneficial and detrimental effects on 
OS. Etoposide is a promising chemotherapeutic drug that 
achieves palliation by affecting the OS subtypes and cor-
recting aberrant pathways.

Osteosarcoma is derived from MSCs and is character-
ized by osteogenesis imperfecta [27, 28]. The IFITM5 
gene encodes an osteoblast-specific membrane protein 
that is an established positive regulatory factor during 
bone mineralization [29, 30]. Single base variants (c.119 
C > T), c.143A > G and (c.-14 C > T) in the coding region 
of IFITM5 have been identified in patients with osteo-
genesis imperfecta type V [31, 32]. Furthermore, IFITM5 
is overexpressed in abnormal bone hyperplasia in rat 
primary osteoblasts, UMR106 rat osteosarcoma cells, 
human primary osteoblasts and Saos-2 human osteo-
sarcoma cells [33–35]. There are already proven cases 
published about osteosarcoma occurring in osteogenesis 
imperfecta due to IFITM5 mutation [36, 37]. The skel-
etal disorders caused by alterations in the IFITM5 gene, 
including c.-14C > T, c.119C > T (p.S40L), c.143A > G 
(p.N48S), while more case series are required to estab-
lish detailed genotype-phenotypes for these alterations 
in the IFITM5 gene [32, 38]. Here, we determined that 
IFITM is a potential new driver gene in OS development 

depending on pseudotime using trajectory analysis and 
the ClinVar database.

The various abnormal signal pathways that prompt 
MSCs towards abnormal bone growth also play indis-
pensable roles in OS development [6, 25]. The dysregu-
lated cell cycle (CHEK2, RB1 mutant) and p53 (TP53 
deficiency) signaling pathways often result in pathogen-
esis and aberrant OS growth. The p53 signal pathway 
acts as a tumor suppressor and exerts a crucial role in 
safeguarding our body from developing OS [39]. There 
are many studies reported that human osteosarcomas 
can have a deletion, mutations, and/or rearrangements 
of the p53 gene, which may cause loss of normal con-
straints on cellular growth, cell cycle, senescence and 
metabolism [40–42].P53 also regulates osteogenic, chon-
drogenic, myogenic, adipogenic differentiation of MSCs 
[43, 44]. The present findings are also in line with the 
fact that Rb and p53 knockout in bone-marrow-derived 
MSCs (BM-MSCs) results in OS-like tumors that can be 
serially transplanted [45, 46]. The TGF-β signal favors 
normal bone formation in the mesenchymal osteoblas-
tic lineage [47, 48]. However, TGF-β seems to mainly 
have a pro-tumoral effect on OS [49–52]. Several clini-
cal strategies to block TGF-β signaling pathways, such 
as neutralizing antibodies (GC-1008), ligands or recep-
tors inhibitors (AP12009), or chemical compounds (SB-
431542, or LY2157299), have not been successful against 
OS [10, 53–56]. In contrast to previous findings, we have 
the new perspective that a TGF-β deficiency is a major 
cause of OS and leads to a detrimental adipocyte-like 
subtype. This is an alternative experimental approach to 
treating patients with OS. Briefly, the TGF-β signal path-
way in MSCs guards bone formation in the early stage 
and then compromises their osteogenic differentiation 
in the late stage, therefore it dictates the conditions for 
bone development [47, 57]. In this context, TGF-β sig-
nal pathway mutations and/or alterations mutations to 
TGF-β cascade components have been associated with 
several bone disorders and many carcinomas [58, 59].
Several high-throughput genomic and transcriptomic 
studies have delineated the intra-tumoral heterogene-
ity of OS [11, 60–62]. Zhang et.al identified seven OS 
tumor cell clusters with three differentiation branches 
by using single-cell RNA sequencing of conventional OS 
and cancellous bone (CB) samples, which have differ-
ent prognoses and possible drug sensitivities [63]. Jiang 
et.al classified OS into four subtypes according to the 
genomic, epigenomic, and transcriptomic data, while 
our classification depended on the single cell sequenc-
ing. We used different methods to identify the heteroge-
neity of OS, but partially with similar molecular features 
and clinical prognosis, such as Immune activated (S-IA) 
and our immunogenic subtype both have immunological 
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traits and better clinical prognosis. Their Immune sup-
pressed (S-IS) subtype has activated adipogenesis and 
fatty acid metabolism-related pathways and encodes the 
fatty acid scavenger receptor CD36 which is in line with 
our adipocyte-like subtype [64]. We explored the hetero-
geneity and the underlying mechanism of OS that could 
help to provide better, customized therapy. We identi-
fied six oncocyte subtypes of OS, of which four did not 
affect prognosis (Additional file 1: Fig. S1C and D). The 
immunogenic and adipocyte-like subtypes were respec-
tively associated with a better and worse prognosis. To 
our knowledge, this is a novel molecular signature clas-
sification of OS, which will facilitate OS assessment, and 
choosing the optimal therapy. For example, etoposide 
is associated with the activation and inhibition, respec-
tively, of the immunogenic and adipocyte-like subtype 
signatures, and combining it with other strategies has 
shown promising anti-tumour activity in clinical trials 
[65–68].

However, it should be noted that the study we exam-
ined is limited to bioinformatics analysis, and a signifi-
cant number of challenges still need to be overcome for 
a successful in vitro and vivo study. Large-scale samples 
including both single-cell sequencing and clinical out-
comes should be taken into account in the future. In 
addition, Some different signaling networks in osteosar-
coma, including RANKL/RANK, Wnt, Notch, PI3K/Akt/
mTOR, and mechanotransduction pathways, contribute 
to osteosarcoma progression and metastasis and tumor 
heterogeneity, which certainly looks worthy of further 
investigation.

Conclusions
We attributed the occurrence of OS to an IFITM5 
mutant, deficient TGFβ signaling, continuous activation 
of the cell cycle signal pathway, and P53 signal inhibition 
during development. Among six OS subtypes, the immu-
nogenic subtype was beneficial, whereas the adipocyte-
like subtype was detrimental to health. Etoposide could 
be a useful palliative because it altered the OS subtype, 
inhibited the cell cycle pathway, and improved the p53 
signal pathway.
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