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Abstract 

Background  Efficient presentation of mutant peptide fragments by the human leukocyte antigen class I (HLA-I) 
genes is necessary for immune-mediated killing of cancer cells. According to recent reports, patient HLA-I genotypes 
can impact the efficacy of cancer immunotherapy, and the somatic loss of HLA-I heterozygosity has been established 
as a factor in immune evasion. While global deregulated expression of HLA-I has also been reported in different tumor 
types, the role of HLA-I allele-specific expression loss — that is, the preferential RNA expression loss of specific HLA-I 
alleles — has not been fully characterized in cancer.

Methods  Here, we use RNA and whole-exome sequencing data to quantify HLA-I allele-specific expression (ASE) in 
cancer using our novel method arcasHLA-quant.

Results  We show that HLA-I ASE loss in at least one of the three HLA-I genes is a pervasive phenomenon across 
TCGA tumor types. In pancreatic adenocarcinoma, tumor-specific HLA-I ASE loss is associated with decreased overall 
survival specifically in the basal-like subtype, a finding that we validated in an independent cohort through laser-
capture microdissection. Additionally, we show that HLA-I ASE loss is associated with poor immunotherapy outcomes 
in metastatic melanoma through retrospective analyses.

Conclusions  Together, our results highlight the prevalence of HLA-I ASE loss and provide initial evidence of its clini‑
cal significance in cancer prognosis and immunotherapy treatment.

Keywords  HLA, Allele-specific expression, Loss of heterogeneity, Pan-cancer analysis, Pancreatic cancer, 
Immunotherapy

Background
Somatic mutations and chromosomal instability drive 
carcinogenesis and progression of cancer. Mutant pep-
tide fragments derived from aberrant proteins can trig-
ger a cytotoxic T-cell response through recognition of 
neoantigens that differ sufficiently from the normal host 
peptides [1]. As HLA-I is necessary for neoantigen pres-
entation in cancer cells, disruptions in HLA-I expres-
sion can have major implications on immune evasion. 
Meta-analyses of human cancers indicate abnormal 
global HLA-I expression in particular for non-small cell 
lung cancer, breast carcinoma, head-neck squamous cell 
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carcinoma, melanoma, as well as bladder, pancreas, and 
prostate tumors, in up to 90% of primary samples [2–5].

Although down-regulation of HLA-I can allow tumor 
cells to escape immune detection by cytotoxic T-cells, a 
complete loss of HLA-I makes cells vulnerable to natural 
killer (NK) antitumor activity as they are no longer able 
to present self-antigens on the cell surface [6]. Indeed, 
down-regulation of HLA-I is associated with worse prog-
nosis [3, 7], but it is also associated with a decreased 
metastatic potential [8]. The tumor microenvironment, 
therefore, plays a critical role in immune escape [3], and 
it has been suggested that decreased expression of HLA-
I, but not complete loss, can allow tumors to escape from 
both T-cell and NK surveillance [9].

The loss of HLA-I germline heterozygosity (LOH), 
through either partial or complete loss of chromosome 6 
or a focal deletion of the HLA locus, is a common molec-
ular mechanism that may drive abnormal HLA-I expres-
sion [5]. LOH, traditionally assessed through analysis of 
microsatellite markers, is frequently observed in many 
tumor types, including head-neck [10] and pancreatic 
cancer [11]. Haplotype-specific copy number infer-
ence through computational approaches has enabled 
LOH assessment from standard next-generation DNA 
sequencing, showing that LOH occurs in 40% of non-
small-cell lung cancers [12].

However, the LOH of HLA-I genes, which occurs at 
the genomic level, is not identical to HLA allele-specific 
mRNA expression (ASE) loss, which is measured at the 
transcriptomic level. While a few works have recently 
reported HLA-I ASE [13, 14], even at single-cell resolu-
tion [15], there is currently no gold standard for meas-
uring HLA-I ASE from RNA-seq data. Furthermore, 
our understanding of the clinical significance of HLA-I 
imbalance at the level of expression (HLA-I ASE loss) 
remains incomplete across cancer types.

To systematically characterize HLA-I ASE loss across 
tumor types, we developed an allele-specific quantifi-
cation method, namely arcasHLA-quant, which builds 
upon our previously established high-resolution HLA 
genotyping protocols based on RNA-seq data [16, 17]. In 
light of ubiquitous HLA-I aberrant expression in cancer, 
we hypothesized that HLA-I ASE loss (specifically, loss of 
either HLA-A, HLA-B, or HLA-C) may constitute a uni-
versal immune escape mechanism with significant clini-
cal impact, particularly in the context of immunotherapy. 
Using arcasHLA-quant, we first quantified HLA-I ASE 
in cancer tissue for ~ 9  k individuals across thirty-two 
TCGA molecular tumor subtypes [18]. Interestingly, 
we observed many cases with HLA-I ASE loss did not 
possess DNA-level HLA-I LOH, suggesting the exist-
ence of additional factors which may impact expression 
imbalance in tumor samples. While our analysis did not 

identify any universal effect of HLA-I ASE loss on prog-
nosis, in the basal-like subtype of pancreatic ductal carci-
noma HLA-I ASE loss was associated with worse overall 
survival. We also found that HLA-I ASE loss was associ-
ated with a poor outcome to anti-PD-1 immunotherapy 
treatment for metastatic melanoma.

Methods
Cohort descriptions
TCGA​
We have included 9000 tumors from the Cancer Genome 
Atlas (TCGA) [18] across 32 molecular subtypes where 
whole exome sequencing (WES) samples were available 
from the tumor and from normal tissue, in addition to 
matched RNA-seq derived from the same tumor sam-
ple. The TCGA-LAML dataset was not included in our 
study because of the lack of primary tumor samples. 
We also eliminated TCGA cases from the TCGA-PAAD 
dataset  that were not classified as pancreatic ductal 
adenocarcinoma using the criteria laid out in [19]. We 
dub the resulting subset as “TCGA-PDAC”  hencefor-
ward. In order to reduce the bias caused by low purity, we 
excluded cases with ultra-low purity estimate (sequenza-
inferred purity below 10%; see the “Tumor purity and 
ploidy inference” section below). After the filter, 8,182 
cases remained and the HLA-I ASE loss ratios were cal-
culated based on these TCGA cases. For survival analysis, 
we excluded cases without age at diagnosis information 
and cases without overall survival data. We also excluded 
DLBC, PCPG, TCTG and THYM from survival analysis 
per the recommendation in [20] given that the sample 
size or the number of events regarding overall survival is 
too small in these TCGA cohorts. We further excluded 
THCA in survival analysis because of the low percent-
age of cases with tumor purity > 0.1 (as assessed with 
our computational pipeline; see Tumor purity and ploidy 
inference).

CUMC cohort
We analyzed a previously published cohort at Columbia 
University [21] (denoted as CUMC, n = 192) comprised 
of epithelial samples (CUMC-E, n = 96) and stroma 
samples (CUMC-S, n = 96) that were cleanly deline-
ated through laser-capture microdissection and subse-
quently processed and sequenced separately. The CUMC 
cohort consists of patients who underwent surgery at the 
Columbia Pancreas Center. Specimens were harvested 
and frozen intraoperatively by the Columbia University 
Tumor Bank in collaboration with the Columbia Pan-
creas Center. All n = 96 cases reported here were diag-
nosed as PDAC and had complete RNA-seq data as well 
as overall survival information available. The vast major-
ity of samples (94%) were stage 2A or 2B. We divided the 
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CUMC-E samples into basal-like and classical subtypes 
using the method reported in [22].

Metastatic melanoma cohort
For the analysis of HLA-I ASE loss in the context of 
immunotherapy, we included a retrospective study of 
pre- and on-treatment samples in metastatic melanoma 
[23]. In total, 85 patients were accrued across multiple 
study arms and institutions in order to evaluate the phar-
macodynamic activity of Nivolumab. Patients received 
Nivolumab every 2  weeks until progression (or for a 
maximum of 2 years). They underwent biopsy twice: once 
before the treatment start (1–7 days before the first dose; 
referred to as the pre-treatment sample in our paper), and 
a second time on cycle 1, day 29 (between 23 and 29 days), 
collected at the same site (referred to as the on-treatment 
sample). In all, we identified n = 75 cases (n = 46 pre-
treatment and n = 29 on-treatment) with paired DNA 
and RNA samples as required for our pipeline (see Fig. 1). 
For all analyses with the metastatic melanoma cohort, we 
excluded cases with ultra-low purity (sequenza-inferred 

purity < 0.1). After filtering, there were n = 41 pre- and 
n = 25 on-treatment cases remaining.

HLA‑I allele‑specific expression (ASE) quantification 
with arcasHLA‑quant
We propose a novel pipeline (Fig. 1) to quantify the loss 
of HLA allele-specific expression in HLA-A, HLA-B, 
and HLA-C. The input consists of RNA-seq data from 
tumor tissue and whole exome sequencing (WES) data 
from tumor tissue and from the paired normal sam-
ple. The output is the tumor-specific expressed copy 
number of each allele in HLA genes. These inferred 
tumor-specific expressed copy numbers are the basis 
of identifying whether HLA-I ASE loss occurs or not 
in the input tumor sample. Our pipeline contains 
the following key steps (Fig.  1): (1) identification of 
the genotype of every HLA gene based on WES data 
from the normal sample; (2) quantification of allele-
specific expression of every HLA gene from RNA-seq 
data using arcasHLA-quant, and calculation of allele 
frequency; (3) estimation of tumor purity and ploidy 
by comparing the WES data from tumor and normal 

Fig. 1  Workflow for quantification of HLA-I allele-specific expression loss using arcasHLA-quant. The pipeline takes RNA-seq data from tumor, 
and WES data from tumor and normal samples. The major steps include (1) HLA-I genotyping; (2) HLA-I gene expression quantification using 
arcasHLA-quant and allele frequency calculation; (3) tumor purity and ploidy estimation; and (4) adjustment of allele frequencies for HLA-I ASE 
inference
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samples; (4) adjustment of allele frequency by taking 
into account the estimated tumor purity and ploidy, 
which we denote here as “expressed copy number.” 
Finally, we define tumor HLA ASE loss in the cases 
with detectably high HLA expression imbalance in 
minor-major allele pairs for any of the HLA-I genes 
(namely in HLA-A, HLA-B, or HLA-C).

In step (1), when normal WES samples are not avail-
able, arcasHLA-quant can also quantify allele-specific 
expression  by taking the genotype that is determined 
using arcasHLA [16] from RNA-seq data. In step (2), 
similar to existing approaches [13], the arcasHLA-
quant method first builds a customized transcriptome 
reference by replacing the default HLA transcripts 
from the human chromosome 6 reference (GRCh 38) 
with patient-specific HLA-I allelic cDNA references 
obtained from the IMGT/HLA database [24]. Subse-
quently, reads from input BAM files are extracted as 
in arcasHLA, and allele-specific expression quantifi-
cation is performed using Kallisto [25]. This approach 
extends the workflow and applicability of arcasHLA; 
importantly, the same pipeline for extracting reads 
from input samples and constructing graph-based ref-
erences for pseudo-mapping — which give arcasHLA 
high-resolution accuracy in genotyping HLA class 
I and class II genes from RNA-seq — are used for 
arcasHLA-quant. arcasHLA-quant is developed in 
Python and can be run as a command-line instruc-
tion set or in a virtual environment. It has been incor-
porated into arcasHLA and it is publicly available: 
https://​github.​com/​Rabad​anLab/​arcas​HLA [26].

HLA‑I genotyping and HLA supertypes
For all the TCGA cohorts in this study, high-resolution 
HLA class I genotyping was performed with Polysolver 
[27] from normal WES samples. We noticed that the Pol-
ysolver HLA-I genotyping results for a part of the cases 
were previously available [18]. All HLA supertypes [28] 
were annotated in the TCGA cohort for each subject and 
included as binary predictor variables in the multivariate 
Cox regressions. For the CUMC cohort, high-resolution 
HLA-I genotyping was performed from RNA-seq using 
arcasHLA [16]. Only the stromal compartment was used 
to infer patient HLA genotypes. For the metastatic mela-
noma cohort, the HLA-I genotypes were previously avail-
able [29].

Tumor purity and ploidy inference
We used the sequenza [30] algorithm with default 
parameters to obtain purity and ploidy estimates for 
all the TCGA samples, and likewise for the samples 
from the metastatic melanoma cohort. Among all 
the solutions proposed by the model, we selected the 

purity-ploidy pair with the highest posterior probabil-
ity. Owing to the absence of DNA sequencing data, we 
assumed that the laser-capture microdissected CUMC-
E and CUMC-S samples had 100% purity, and ploidy 
equal to 2.0 for the purpose of calculating ASE loss in 
the CUMC cohort.

Assessment of HLA‑I allele‑specific expression loss (HLA‑I 
ASE loss)
In order to determine the status of HLA-I ASE loss in 
the tumor component of bulk RNA-seq, we incorpo-
rated the following two pieces of information: 1) tumor 
purity and ploidy inferred from paired tumor and nor-
mal samples; and 2) HLA-I ASE inferred from RNA-
seq using arcasHLA-quant. Similar to a previously 
published criterion for somatic LOH, LOHHLA [12], 
we determined a purity- and ploidy-adjusted tumor-
expressed copy number for each HLA-I allele.

Denote AFi ( i = 1, 2 ) as the allelic frequency, which 
is namely the ratio of reads attributed to each allele 
over the total read count for the corresponding 
HLA gene in the bulk sample. Denote ρ as the tumor 
purity and ψ as the overall tumor ploidy, which are 
obtained from sequenza [30]. Our aim is to infer expCNi

 
( i = 1, 2 ), which is the relative expression of an allele in 
a tumor cell over a normal cell. We term expCNi

 as the 
“expressed copy number” hereafter. Assume that the 
expressed copy numbers for both alleles are equal to 1 
in the normal cells, then the expressed copy number for 
each allele in the sample is

which is the weighted sum of those in the tumor cells 
and normal cells. The allele frequency, which we could 
observe based on the read count, can also be defined as

We normalize the sum of the expressed copy num-
bers of the two alleles as the ploidy,

and the expressed copy number of each allele in the 
tumor is

As in LOHHLA, we defined ASE loss as the occur-
rence of a minor allele expCN below 0.5 in at least one 
HLA-I gene (HLA-A, HLA-B, or HLA-C). We note that 
the above formula yields an expressed copy number 

ρ · expCNi
+ (1− ρ),

AFi =
ρ · expCNi

+ (1− ρ)

ρ expCN 1
+ expCN 2

+ 2(1− ρ)
.

expCN 1
+ expCN 2

= ψ ,

(1)expCNi
=

1

ρ

(

2AFi

(

1+ ρ
ψ − 2

2

)

− (1− ρ)

)

.

https://github.com/RabadanLab/arcasHLA
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(expCN) of 1 for both minor and major alleles in the case 
of a heterozygous HLA-I gene with perfectly balanced 
allelic expression levels (i.e. with AF = 0.5 ), and 100% 
tumor purity ( ρ = 1.0 ) and normal ploidy ( ψ = 2.0 ). It 
should be noticed that the cutoff 0.5 was selected as an 
analogy to the DNA case. While our validation shows it 
yielded a specificity of 97.9% (see Results), the thresh-
olding could still benefit from advanced work in the 
future due to the caveat that loss in DNA and RNA may 
not be equivalent.

HLA‑I ASE loss and nonsense or missense mutations
Nonsense mutations on HLA-I genes for TCGA cases 
were collected from [31]. There were in total 58 events 
of “(case, HLA-I gene)” combination being identified. For 
each of the HLA-I gene, we performed a Fisher’s exact 
test to investigate if HLA-I ASE loss was enriched in 
cases with nonsense mutations. Only the cases that had 
heterozygous genotype on the associated HLA-I gene 
were included in the test. Then we performed Fisher’s 
exact test to check the enrichment of HLA-I ASE loss 
event in any of the HLA-I genes. The cases that had het-
erozygous genotype for at least one of the HLA-I genes 
were involved. The same analysis was also carried out for 
HLA-I missense mutations, and nonsense/missense B2M 
mutations [27].

Assessment of somatic loss of HLA‑I haplotypes
We used LOHHLA [12] to infer HLA-I allele-specific 
copy number variation and determine somatic LOH at 
the level of DNA, from input tumor and normal paired 
WES samples. We set the minimum coverage threshold at 
5 and used the default configuration for all other param-
eters. In this study, we focused on somatic LOH cases 
that also exhibited HLA-I ASE loss. We used the crite-
ria for LOH-positive as indicated by LOHHLA, namely: 
allelic copy number (CN) < 0.5 and p-value < 0.05. Cases 
that resulted in LOHHLA errors were excluded from the 
comparison with arcasHLA-quant ASE loss.

In silico decomposition into immune cell subtypes
We used CIBERSORTx [32] LM22 signature matrix con-
taining twenty-two functionally defined human immune-
cell subtypes to quantify the immune cell infiltration in 
the tumor RNA-seq samples. We used the CIBERSORTx 
support-vector machine approach with default parameters 
for each sample in TCGA. However, since the method 
produces a weight decomposition of each bulk sample 
into fractional contributions from each immune sub-
type that sum to 1, this method is not entirely adequate 
for separating tumor cell signatures from immune cell 
signatures since it does not include a tumor component 
in the final decomposition. Owing to a lack of normal 

tissue expression signatures for each corresponding TCGA 
cohort in our study, for each tumor bulk sample, we cor-
rected every immune cell proportions by only retaining 
the immune cell subtypes reported by CIBERSORTx that 
had a fractional contribution exceeding 10%. Subsequently, 
we defined the following immune features for Cox regres-
sion analyses by adding the latter corrected LM22 sub-
type fractional parts according to their corresponding 
immune lineage category: CD4 + T cells, CD8 + T cells, B 
cells, Macrophages, NK cells, and other Macrophages. For 
example, the B-cell category was defined as the sum of cor-
rected proportions for the following LM22 subtypes: “B 
cells memory”, “B cells naïve” and “Plasma cells”.

Computational identification of neopeptides
We used the pVAC-seq pipeline [33] with the MHCflurry 
and MHCpan binding strength predictors to identify 
neoantigens [34]. As required, we used the variant effect 
predictor from Ensembl to annotate variants for down-
stream processing by pVAC-Seq [35]. For each single-
residue missense alteration, HLA-I allele-specific binding 
affinities were predicted for all the wild-type and mutant 
peptide fragments of varying lengths (from 8 to 11 amino 
acids). The mutant peptide with the strongest bind-
ing affinity was kept for downstream analysis. The total 
potentially immunogenic neoantigen count was deter-
mined for each individual as the number of predicted 
mutant epitopes with a median IC50 score below 500. 
This feature, called “total neoantigen count”, was subse-
quently included in the Cox model of overall survival. 
Two additional neoantigen counts that were adjusted 
for HLA-I ASE loss status, “neoantigen count: affinity to 
lost allele” and “neoantigen count: affinity to kept allele”, 
were also included in the model. They were defined as the 
counts of identified neoantigens that had strongest bind-
ing affinity to the lost/kept HLA allele.

Results
Quantifying HLA allele‑specific expression using 
arcasHLA‑quant
As a consistency check, we verified that gene-specific 
quantification levels obtained with arcasHLA-quant by 
summing minor and major allele expression for each 
HLA-I gene (HLA-A, HLA-B, and HLA-C) were consist-
ent with expression levels as inferred through alternate 
methods [36] available on the TCGA portal (Pearson’s 
correlation coefficients in the range 0.94–0.96, p < 10−16 
across tumor subtypes, Additional file  1: Fig. S1). 
arcasHLA-quant also yielded consistent results with 
HLApers [13] in terms of HLA-I gene quantification 
(Additional file  1: Fig. S2) and minor allele frequency 
inference (Additional file  1: Fig. S3), which was calcu-
lated as the number of reads supporting the allele with 
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fewer reads over the total number of reads per HLA-I 
gene locus.

In order to evaluate the accuracy of HLA-I ASE loss 
calling, we took the TCGA normal cases as a negative 
control and the TCGA tumor cases with heterozygous 
loss of HLA-I genes at the DNA level as a positive control. 
We assumed that allelic loss at DNA level in the tumor 
would also be detectable at the level of mRNA expres-
sion. The positive control cases were manually validated 
LOHHLA calls with high confidence. Among 382 posi-
tive control cases, 324 were identified to have HLA-I ASE 
loss, which indicates an overall sensitivity of 84.8%. The 
positive control samples covered a wide range of tumor 
purity values (from 10% to > 90%). Among the 703 nega-
tive control cases which we took as a negative control, 15 
were called as HLA-I ASE loss, indicating a specificity of 
97.9% (688/703). The area under the receiver operating 
curve (AUC) is 0.921 (Additional file 1: Fig. S4).

HLA‑I allele‑specific expression loss is pervasive 
across tumor types
We first determined that HLA-I ASE loss is perva-
sive across TCGA tumor types (Fig. 2a): ASE loss was 

detected in every tumor type analyzed, most promi-
nently in kidney chromophobe (KICH), with a fre-
quency of 86%, followed by another eight tumor types 
that exhibited frequencies greater than 40%, includ-
ing cervical squamous cell carcinoma (CESC, 58%), 
adrenocortical carcinoma (ACC, 50%), stomach adeno-
carcinoma (STAD, 48%), head and neck squamous cell 
carcinoma (HNSC, 46%), esophageal adenocarcinoma 
(ESCA, 45%), diffuse large B-cell lymphoma (DLBC, 
43%), thymoma (THYM, 43%) and lung adenocarci-
noma (LUAD, 42%). Five tumor types showed a mark-
edly lower incidence of HLA-I ASE loss rates, including 
lower-grade glioma (LGG, 16%), glioblastoma (GBM, 
12%), pheochromocytoma and paraganglioma (PCPG, 
11%), uterine carcinosarcoma (UCS, 7%) and testicu-
lar germ cell tumors (TGCT, 6%). In order to limit ASE 
loss calling errors due to extremely low purity levels, 
we filtered out TCGA samples with purity below 0.1 
(Additional file  1: Fig. S5). Overall, HLA-I ASE loss 
was attributable to HLA-A in 27% of cases, to HLA-B 
in 22% and to HLA-C in 25% of cases, with loss at all 
three genes occurring at a rate of 13% (Additional file 1: 
Fig. S6).

Fig. 2  Pervasiveness of HLA-I allele-specific expression loss. a Proportions of HLA-I ASE loss across TCGA subtypes (orange bars) as inferred using 
arcasHLA-quant. Blue (orange) bars represent proportions of cases where expression loss is (not) accompanied by somatic DNA loss, as inferred 
by LOHHLA on WES data. b HLA-I ASE comparison between tumor and normal cases in TCGA cohorts. HLA-I ASE is captured by the minimal raw 
minor allele frequency among the three HLA-I genes (minimal raw MAF). Numbers in the parentheses indicate the normal and tumor case numbers 
respectively. Only the TCGA cohorts with more than 10 normal cases are shown. Significance labels: “ns” or nothing labeled: p > 0.05; “*”: p < 0.05; “**”: 
p < 0.01; “***”: p < 0.001; “****”: p < 0.0001
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We then investigated whether HLA-I ASE loss was 
accompanied by somatic DNA lesions (e.g., chromo-
somal or focal deletions) at the corresponding HLA-I 
locus. Using LOHHLA [12], we found that only a fraction 
of ASE losses showed evidence of DNA haplotype loss 
(Fig.  2a). The maximal proportion of DNA-to-expres-
sion-only loss was found in ACC (70%), while THCA had 
the smallest such proportion (under 4%). Our results sug-
gest that a major proportion of HLA-I ASE loss in cancer 
may occur through epigenetic or other expression regula-
tory mechanisms instead of somatic DNA lesions.

We further compared HLA-I expression between the 
TCGA tumor samples and the paired normal samples, 
where available. We found that TCGA tumor samples 
had significantly lower minor allele frequency in most 
cohorts (Fig.  2b). We posited that the extensive allelic 
imbalance observed in many tumors was primarily due 
to the tumor component in each of the bulk samples 
analyzed.

We also studied the association between HLA-I 
ASE loss and microsatellite instability (MSI) in TCGA 
cohorts [37]. Due to the low reported frequency of MSI, 
only three cohorts (UCEC, COAD, and STAD) had 
more than 20 MSI cases (Additional file  2: Table  S1). 
We found that the MSI cases consistently had higher 
HLA-I ASE loss frequency compared with non-MSI 
cases in the three cohorts: 53% vs 30% in COAD (odds 
ratio, OR = 2.65, p = 1.8 × 10−4; Fisher’s exact test); 65% 
vs 52% in STAD (OR = 1.69, p = 0.075; Fisher’s exact 
test); and 38% vs 25% in UCEC (OR = 1.75, p = 5.5 × 
10−3; Fisher’s exact test).

Disrupted HLA-I expression can also result from the 
accumulation of somatic mutations in HLA-I [5]. How-
ever, somatic mutations in HLA-I are relatively infrequent 
in TCGA, varying from below 1% incidence in BRCA and 
GBM, to around 5% in BLCA, LUAD, and SKCM, and 
up to 10% in HNSC [7, 27]. Using a comprehensive list 
of HLA-I mutations in TCGA [31], we identified 58 non-
sense HLA-I mutation events. Nonsense mutations in 
HLA-I genes are expected to lead to a severe imbalance 
of mRNA from the mutant allele, as compared to the 
wild-type allele, through nonsense-mediated decay. Con-
sistent with this assumption, we found an enrichment 
of HLA-I ASE loss in the cases with nonsense HLA-I 
mutations (OR = 2.34, p = 2.8 × 10−3; Fisher’s exact test; 
Additional file  2: Table  S2a). Several factors may limit 
such an analysis: (a) the nonsense mutations may not be 
clonal, but only sub-clonal; (b) there may be issues with 
coverage in both DNA and RNA data; and (c) nonsense 
mutations result in premature termination of translation 
and it is not a priori clear that mRNAs are degraded or 
eliminated at such a rate so as to be detectable in RNA-
seq. Despite these obstacles in detecting HLA-I ASE loss 

from nonsense mutations, we were still able to observe a 
significant enrichment (Additional file 2: Table S2a), fur-
ther reinforcing the validity of our approach for assess-
ing HLA-I ASE loss. We performed the same analyses 
on HLA-I missense mutations [27]. Interestingly, HLA-I 
ASE loss was also significantly enriched in the cases 
with HLA-B missense mutations (OR = 2.46, p = 5.4 × 
10−3; Fisher’s exact test; Additional file 2: Table S2b). The 
enrichment maintained significance when looking solely 
at the HLA-B missense mutations corresponding to con-
tact residues (OR = 3.49, p = 0.012; Fisher’s exact test; 
Additional file 2: Table S2c), which was defined by [27] as 
the mutations in HLA positions that are in actual physi-
cal contact with the peptide. We also found that HLA-I 
ASE loss had significant enrichment in the cases with 
B2M missense mutations (OR = 2.35, p = 0.018; Fisher’s 
exact test; Additional file 2: Table S2d).

We assessed whether the presence of HLA-I ASE loss 
resulted in any survival time impact across tumor types. 
Specifically, a multivariate Cox regression stratified by 
tumor type was conducted as a pan-cancer analysis to 
investigate the clinical significance of HLA-I ASE loss. A 
total of 27 tumor sample features were taken as covari-
ates, including age at diagnosis, tumor purity and ploidy 
estimates, and several immune-related and microenvi-
ronmental features (Additional file 1: Fig. S7). While we 
noticed that age at diagnosis, tumor ploidy, and mac-
rophages were significantly associated with shorter over-
all survival, HLA-I ASE loss did not show a significant 
pan-cancer effect in this model (Additional file 1: Fig. S7). 
We also conducted univariate cox-regression models for 
every TCGA cohort but found no significant cohort-wide 
association after correcting for multiple hypothesis test-
ing (Additional file 1: Fig. S8). However, HLA-I ASE loss 
showed a trend towards worse survival in KIRP (n = 264 
cases; HR = 1.38, nominal p = 0.021; Additional file 1: Fig. 
S8a). The same trend was observed when the predicted 
neoantigen count was added to the regression model 
(HR = 1.43, p = 7.11 × 10−3; Additional file  1: Fig. S8b). 
Additionally, HLA-I ASE loss showed a trend towards 
poorer prognosis in PDAC when the predicted neoan-
tigen count was considered (n = 130 cases; HR = 1.24, 
nominal p = 0.058; Additional file  1: Fig. S8b). The dif-
ference in prognosis between cases with HLA-I ASE loss 
and those without HLA-I ASE loss was sharper among 
the patients with overall survival shorter than 24 months 
(Additional file  1: Fig. S9). Finally, among patients with 
heterozygous genotypes at all three HLA-I loci, there 
was a marked difference in prognosis as well (LR = 6.28; 
p = 0.01; log-rank test; Additional file 1: Fig. S10). Next, 
we evaluated these association trends with survival, 
observed at cohort level, by further dissecting our analy-
sis into molecular subtypes and tumor stage.
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HLA‑I allele‑specific expression loss is associated 
with decreased overall survival in the basal‑like PDAC 
subtype
We interrogated the potential associations between 
HLA-I ASE loss in pancreatic cancer and the well-char-
acterized classical/basal-like transcriptional subtypes 
[22, 38–40]. We found that ASE loss was present in both 
PDAC subtypes with some enrichment in the basal-like 
tumors (OR = 1.59, p = 0.21; Fisher’s exact test) which 
was not significant. Moreover, detection of HLA-I ASE 
loss in the basal-like subtype, but not in the classical one, 
was associated with worse survival (LR = 6.88, p = 0.01; 
log-rank test; Fig.  3a, b), suggesting the existence of a 

basal-like subcategory of PDAC characterized by HLA-I 
ASE loss and poorer prognosis. This result was basically 
consistent with alternate definitions of transcriptional 
subtypes in PDAC (Additional file 1: Fig. S11-12). We also 
noticed that HLA-I ASE detected at AJCC stage 2B had a 
significant association with shorter survival (LR = 5.19, 
p = 0.02; log-rank test; Additional file 1: Fig. S13). Addi-
tionally, HLA-I ASE loss was detected in earlier stages 
too, although without a noticeable effect (Additional 
file 1: Fig. S13).

Next, we validated widespread HLA-I ASE loss in an 
independent cohort of 96 laser-capture micro-dissected 
pancreatic ductal adenocarcinoma samples [21] where 

Fig. 3  HLA-I allele-specific expression loss in basal-like and classical transcriptional subtypes of pancreatic adenocarcinoma. Survival curves in a 
TCGA-PDAC basal-like subtype; b TCGA-PDAC classical subtype; c CUMC-Epithelial PDAC basal-like subtype; and d CUMC-Epithelial PDAC classical 
subtype. Cases with ultra-low purity (< 0.1) were filtered out. Log-rank scores and p-values are indicated
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RNA-seq was performed separately on cleanly delin-
eated epithelial and stroma compartments (CUMC 
cohort: CUMC-E for epithelial samples and CUMC-S 
for the stroma; see Cohort descriptions in Methods). 
Indeed, HLA-I ASE loss was strongly associated with the 
tumor epithelial compartment (OR = 3.95, p = 9.7 × 10−6; 
Fisher’s exact test), which further supports our hypoth-
esis that HLA-I ASE loss occurs in the cancer cells. Con-
sistent with our previous TCGA analysis, HLA-I ASE 
loss was linked with shorter survival when detected in 
CUMC-E (LR = 3.97, p = 0.05; log-rank test; Additional 
file  1: Fig. S14). At the transcriptional subtype level in 
CUMC-E, HLA-I ASE loss was significantly associated 
with shorter survival in the basal-like tumors (LR = 8.03, 
p = 0.005; log-rank test; Fig.  3c), while no significant 
trend was observed in the classical subtype (LR = 0.00, 
p = 0.95; log-rank test; Fig.  3d). Combining the power 
of both the TCGA-PDAC and the CUMC-E basal-like 
cohorts strengthened the association with poor survival 
for HLA-I ASE loss cases (p = 1.02 × 10−3, Fisher’s com-
bined probability test). Altogether, our findings indicate 
that HLA-I ASE loss is a prognostic marker of shorter 
overall survival in the basal-like subtype of pancreatic 
ductal adenocarcinoma.

We performed a similar analysis in TCGA-KIRP strati-
fied by subtypes (P-e.1a, P-e.1b, P-e.2, and P.CIMP-e) and 
stages (I, II, III, and IV), without identifying any new sub-
type associations (Additional file 1: Fig. S15).

HLA‑I allele‑specific expression loss is associated with poor 
outcomes in anti‑PD‑1 immunotherapy‑treated metastatic 
melanomas
Finally, we hypothesized that HLA-I ASE loss may be a 
factor in the efficacy of immune checkpoint blockade 
immunotherapies. We revisited a previously published 
metastatic melanoma cohort [23] with pre- (n = 46) and 
on- (n = 29) Nivolumab therapy samples (see the “Cohort 
descriptions” section) and inferred HLA-I ASE loss 
as described before. Excluding samples with ultra-low 
tumor purity (below 0.1), we found ASE loss in both pre- 
and on-therapy samples with frequencies around 37% 
(Fig. 4). Furthermore, ASE loss was associated with worse 
overall survival regardless of whether it was assessed 
before or during therapy. The group with on-therapy 
ASE loss showed a slightly greater effect on prognosis 
(LR = 2.85, p = 0.09; log-rank test; Fig. 4).

It has been previously reported that HLA class I 
homozygosity can reduce overall survival with immune 
checkpoint blockade [29] (Additional file  1: Fig. S16). 
As such, we also analyzed the impact of HLA-I ASE loss 
separately for individuals heterozygous at all three HLA-I 
genes. For these individuals, HLA-I ASE loss was asso-
ciated with significantly worse prognoses (LR = 6.03, 

p = 0.01; log-rank test; Fig.  4) when expression loss 
occurred on-therapy (1 month after the start of therapy 
[23]). To a large extent, the association with decreased 
survival for heterozygous individuals was observed even 
before therapy, although these results are not as conclu-
sive (LR = 2.76, p = 0.10; log-rank test; Fig.  4). The sur-
vival impact for the fully heterozygous cohort was also 
observed when we took neoantigen predictions into 
account (LR = 6.91, p = 0.01; log-rank test; Additional 
file  1: Fig. S17). Results with the full cohort (includ-
ing cases with ultra-low tumor purity) showed the same 
trend towards worse prognosis, particularly for heterozy-
gous individuals with on-treatment ASE loss (LR = 4.06, 
p = 0.04; log-rank test; Additional file 1: Fig. S18). Inter-
estingly, among the heterozygous individuals with 
on-treatment samples and RECIST v1.1 [41]-defined 
response (n = 17), there were only 3 responders (com-
plete or partial), none of which exhibited HLA-I ASE loss 
(OR = inf., p = 0.21; Fisher’s exact test). Among pre-treat-
ment samples, HLA-I ASE loss resulted in slightly lower 
odds of responding to subsequent treatment (OR = 0.67, 
n. s.; Fisher’s exact test). In addition, survival associa-
tions were not explained by factors such as sample purity 
(Additional file  1: Fig. S19). In conclusion, our results 
highlight a potential significant clinical impact of HLA-I 
ASE loss on the efficacy of anti-PD-1 immunotherapy in 
metastatic melanoma.

Discussion
HLA-I plays crucial roles on neoantigen presentation in 
tumor cells and the disruption of HLA-I expression may 
result in immune escape and tumor progression. In this 
study, we investigated tumor HLA-I from the perspective 
of allele-specific expression (ASE). To evaluate this phe-
nomenon, we developed a pipeline to detect HLA-I ASE 
loss based on RNA-seq and WES data. As the expression 
imbalance was measured on the RNA level, our study is 
complementary to existing research that focuses on the 
loss of HLA-I germline heterozygosity (LOH) on the 
DNA level [12, 29, 42]. The viewpoint of allele-specific 
expression also differs from the studies in which the total 
HLA-I expression was considered [43].

Our work demonstrates that HLA-I ASE loss is a fre-
quent phenomenon across tumor types. Moreover, a 
large proportion of ASE loss cases may not necessarily 
result from somatic DNA deletions in HLA-I. In terms 
of impact on overall survival, HLA-I ASE loss did not 
show a significant association in the pan-cancer analy-
sis, while we noticed that age at diagnosis, tumor ploidy, 
and macrophage infiltration showed significant trends 
towards shorter overall survival. This is consistent with 
the general belief that these factors may play a role in 
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the dynamics of T-cell-directed anti-tumor responses. 
Despite the non-significant result in pan-cancer analysis, 
HLA-I ASE loss did have a significant association with 
prognosis in the basal-like PDAC subtype, as well as in 
metastatic melanoma under immune checkpoint block-
ade therapy.

As far as we know, this is the first comprehensive 
study quantifying the pervasiveness of HLA-I ASE in 
cancer. Further studies are anticipated to fully elucidate 
the transcriptional and epigenetic mechanisms driv-
ing this phenomenon. We also outline several paths for 
further investigation into the loss of HLA-I ASE. For 

instance, studies can be performed to evaluate how the 
overall survival is impacted by the number of neoanti-
gens with binding affinity to the kept or lost HLA-I allele 
for each tumor type. Second, with more detailed clini-
cal data, the impact on prognosis should be re-assessed 
in terms of progression-free survival, an alternative 
approach to capture the effect of treatment. Moreover, 
the relationship between HLA-I ASE loss and missense 
mutations in HLA, including the domains where mis-
sense mutations occur (peptide binding groove, TCR 
interaction site, trans-membrane domain, etc.), can be 
explored further.

Fig. 4  HLA-I allele-specific expression loss and poor outcomes to anti-PD-1 immunotherapy treatment for metastatic melanoma. Extensive HLA-I 
ASE loss was found in melanoma cohort pre- and on-treatment with Nivolumab. Heterozygous cases are those with heterozygous genotypes for all 
the three HLA-I genes
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In sum, the prevalence of ASE loss and the initial 
clinical impact that we have established here highlight 
the importance for further investigations on the role of 
HLA-I ASE in cancer, and the necessity of understanding 
the underlying mechanisms and the timing of this poten-
tially reversible lesion in tumor evolution.

Conclusions
In conclusion, we have studied the loss of heterogeneity 
of HLA-I genes across cancer types at the transcriptomic 
level. Using arcasHLA-quant, we inferred the allele-spe-
cific expression of HLA-I genes in the tumor and found 
that HLA-I ASE loss is pervasive across cancer types, 
with or without detectable somatic DNA lesions. Moreo-
ver, we showed that HLA-I ASE loss is significantly asso-
ciated with worse overall survival in pancreatic ductal 
adenocarcinoma with basal-like transcriptional sub-
type using TCGA data and an independent cohort from 
CUMC. Finally, a retrospective analysis on anti-PD-1 
immunotherapy-treated metastatic melanomas revealed 
an association between HLA-I ASE loss and poor prog-
nosis. Our findings highlight the necessity of further 
investigation on the roles that HLA-I ASE loss plays in 
human cancer and immunotherapy treatment.
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