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Abstract 

Background  The role of microRNA (miRNA) in modulating the function of cancer stem cells through diverse signal-
ing pathway has been evidenced. We here identified a role of microRNA (miRNA) family, specifically miR-148/152, in 
gastric cancer and delineated its functional effects on gastric cancer stem cells.

Methods  Bioinformatics analysis was conducted to analyze expression of integrin α5 (ITGA5) which was verified 
through expression determination in clinical tissue samples. Next, the upstream regulatory factors of ITGA5 were 
determined. CD44+EpCAM (high) cells sorted from AGS cells subjected to gain-of-function experiments, followed by 
evaluation of their capacity of colony formation, generation of tumorosphere, cell migration and viability in vitro and 
xenograft tumor formation in vivo.

Results  ITGA5 was elevated in gastric cancer tissues and confirmed as a target gene of the miR-148/152 family mem-
bers. The miR-148/152 family members were downregulated in gastric cancer tissues and cells. Decreased expression 
of miR-148/152 family members was also detected in gastric cancer stem cells. However, the raised expression led to 
reduced colony formation, tumorosphere, cell migration, cell viability, and drug resistance of CD44+EpCAM (high) 
AGS cells in vitro, and tumorigenesis in vitro. ITGA5 overexpression reversed the effect of the miR-148/152 family 
members.

Conclusions  This study demonstrates that the miR-148/152 family members may prevent gastric cancer stem cell-
like properties by targeting ITGA5, which can serve as an appealing target for gastric cancer treatment.
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Background
Gastric cancer is one of the most common malignant 
types of tumors, with more than one million annu-
ally diagnosed cases worldwide [1]. Despite marked 

improvements in diagnosis and prevention, gastric can-
cer is still ranked sixth in incidence and second in mortal-
ity across 185 countries in 2018 [2]. Surgical procedures 
such as laparoscopy-assisted distal gastrectomy and open 
distal gastrectomy are considered standard treatment 
options for gastric cancer at the early stage [3]. Unfortu-
nately, gastric cancer is usually asymptomatic in its early 
stages and is typically diagnosed when many patients are 
at the advanced stage, which renders the tumor inoper-
able at the time of diagnosis [4]. Cancer stem cells (also 
called tumor-initiating cells) are enriched in side popu-
lation (SP) cells and have the capability to maintain self-
renewal and differentiation properties, thus facilitating 
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tumor growth and enhancing metastatic potential [5]. 
Recent research supports the presence of cancer stem 
cells in solid tumors of various organs, including gas-
tric cancer [6]. The expanding research field of gastric 
cancer stem cell biology includes the characterization 
of candidate biomarkers with potential diagnostic and 
therapeutic implications. However, specific molecular 
mechanisms underlying cancer stem cell features remain 
under-studied.

Integrin α5 (ITGA5), a member of the integrin adhe-
sion molecule family, has been implicated in the metas-
tasis and oncogenesis of cancer [7, 8]. For instance, the 
expression of ITGA5 is elevated in colorectal cancer tis-
sues and cells and this elevation can enhance colorectal 
cancer cell growth and tumorigenesis while decreasing 
cell apoptosis [9]. More importantly, ITGA5 has been 
characterized to be upregulated in gastric cancer, and its 
high expression indicates the poorer survival of patients 
with gastric cancer [10]. Suppression of ITGA5 can sig-
nificantly inhibit stem-cell like properties in hepatocel-
lular carcinoma [11]. Nonetheless, the possible effect of 
ITGA5 on the gastric cancer stem-cell like properties 
remains elusive.

TargetScan database used in this study predicted 
ITGA5 as a putative target gene of the microRNA (miR)-
148/152 family members. Accruing evidence over the 
past few years indicate miRNAs as critical modulators 
of cancer stem cell generation and the maintenance of 
cancer stem cell characteristics. miRNAs are RNA tran-
scripts that are typically in the length of 18 to 24 nucleo-
tides. They may function as either tumor suppressors or 
oncogenes, by binding to their target mRNAs and thus 
regulating gastric carcinogenesis [12]. The miR-148/152 
family consisting of miR-148a, miR-148b, and miR-152 
is differentially expressed in gastric cancer tissues as 
compared to that of tumor-free gastric tissues, and is 
also shown to modulate the initiation of gastric cancer 
[13, 14]. In our previous study, bioinformatics analysis 
showed that the expression of ITGA5 was significantly 
increased in gastric cancer, and miR-148/152 fam-
ily members all had targeted binding sites with ITGA5. 
Therefore, we suspect that miR-148/152 family may have 
low expression in gastric cancer, while overexpression of 
miR-148/152 family members could target and inhibit 
the ITGA5 gene, thereby inhibiting the self-renewal abil-
ity, clonal formation ability and drug resistance of gastric 
cancer stem cells, and ultimately preventing the pheno-
typic formation of gastric cancer stem cells.

Materials and methods
Ethics statement
The study protocol was ratified by the Ethics Commit-
tee of the Fourth Affiliated Hospital of China Medical 

University and all procedures were compliant with the 
Declaration of Helsinki. All of the included subjects have 
submitted written informed consents. Animal experi-
ments were approved by the Animal Ethics Committee 
of the Fourth Affiliated Hospital of China Medical Uni-
versity and performed according to the Guide for the 
Care and Use of Laboratory animals published by the US 
National Institutes of Health.

Gastric cancer‑related gene expression datasets 
and differential gene screening
Gastric cancer-related gene expression datasets were 
retrieved from the Gene Expression Omnibus (GEO) 
database with “gastric cancer” as the key word. The R 
“inSilicoMerging” software package was used to merge 
multiple gastric cancer-related gene expression datasets 
[15]. The batch effect was removed using the previously 
described method [16] to obtain the matrix follow-
ing batch effect elimination. Differential analysis of the 
gene expression datasets was then conducted using the 
R “limma” package (version 3.50.0) [17] with |logFold-
Change| > 1 and adjusted p value < 0.05 as the threshold 
to screen the differentially expressed genes (DEGs).

The known genes related to gastric cancer were 
retrieved from the MalaCards database [18]. A gene 
interaction network was made employing the STRING 
database. miRNAs regulated by ITGA5 were predicted by 
the DIANA-microT-CDS [19], miRDB [20], mirDIP [21] 
and TargetScan (version 7.1) [22] databases. The top 30 
miRNAs from the conserved entry sites within the pre-
diction results from the TargetScan database (sorted by 
conserved branch length score) were selected for Venn 
diagram analysis. The used R software version is 4.0.5 and 
R Studio software version is 1.3.

Collection of clinical samples
Cancer and adjacent normal tissues (5–10 cm away from 
the cancer tissues) were surgically obtained from 52 
patients with gastric cancer (42 males and 10 females; 
32–68 years with a mean age of 48 years) admitted into 
Gastrointestinal Surgery of the Fourth Affiliated Hos-
pital of China Medical University from January 2013 
to January 2014. Inclusion and exclusion criteria were 
conducted as previously described [23]. On the basis of 
the American Joint Committee on Cancer tumor-node-
metastasis cancer staging system, 39 cases were at stage 
I–II, and 13 cases at stage III–IV; 36 cases with the tumor 
size < 5  cm and 16 cases with the tumor size ≥ 5  cm; 40 
cases with well-moderate differentiation and 12 cases 
with poor differentiation; 24 cases without lymph node 
metastasis and 28 cases with lymph node metastasis; 47 
cases without distant metastasis, and 5 cases with distant 
metastasis [24, 25]. The detailed information is shown in 



Page 3 of 13Li et al. Journal of Translational Medicine          (2023) 21:105 	

Additional file 2: Table S1. The samples were immediately 
frozen in liquid nitrogen after rinsed with normal saline 
and used for subsequent analysis. The follow-up duration 
ranged from 3 to 60 months, with a median follow-up of 
60 months.

Cell culture
Human gastric cancer cell lines MKN45, AGS, KATO-III, 
NCI-N87, and SNU-1, and normal immortalized gastric 
mucosal cells (GES-1) were grown in the Roswell Park 
Memorial Institute 1640 medium (Gibco, Carlsbad, CA) 
appended to 10% fetal bovine serum (FBS; Hangzhou 
Sijichun Co., Ltd., Hangzhou, Zhejiang, China), 100  U/
mL penicillin and 100  mg/mL streptomycin (Gibco) in 
a 5% CO2 incubator at 37  °C. GES-1 and MKN45 cells 
were procured from Shanghai Zhong Qiao Xin Zhou Bio-
technology Co., Ltd., (Shanghai, China) and the remain-
ing cells from Shanghai Institute of Cell Biology, Chinese 
Academy of Sciences (Shanghai, China).

Luciferase assay
Artificially synthesized wild type ITGA5 (ITGA5-Wt) 
and ITGA5-mutant (ITGA5-Mut) were transfected 
into HEK293T cells in the presence of the miR-148/152 
mimic. Luciferase activity was assayed employing a dual-
luciferase reporter assay system kit (RG005, Beyotime 
Biotechnology Co., Ltd., Shanghai, China) [26].

Cell sorting by flow cytometry and transient transfection
CD44+EpCAM (high) SP cells were isolated from 
AGS cells by flow cytometric cell sorting, as previously 
described by Gao et  al. [27]. SP and non-SP cells were 
assayed for the generation of tumorosphere and the 
detection of stemness-related gene expression profiles 
(CD133, CD44, OCT-4, MDR1, EpCAM, ABCG2, and 
CD24). The plasmids (Ruibo, Guangzhou, Guangdong, 
China) of miR-148a mimic, miR-148b mimic, miR-152 
mimic, sh-ITGA5, and oe-ITGA5 were introduced into 
CD44+EpCAM (high) cells with the help of the Lipo-
fectamine 3000 reagent (L3000001, Thermo Fisher, 
Waltham, MA). The concentration of the used plasmids 
was 80 nM. After transfection for 6 h, the cells continued 
to culture for 48  h with new medium and collected for 
subsequent experimentations.

Colony formation assay
A single cell suspension of CD44+EpCAM (high) cells 
was grown with 10% FBS-supplemented Dulbecco’s mod-
ified Eagle’s medium (DMEM) (renewed every 4 days) in 
a 6-well plate (1 × 103 cells/well). Two weeks later, colo-
nies were subjected to 4% paraformaldehyde fixation and 
0.1% crystal violet staining (Sigma). Afterwards, photo-
graphs were taken and the number of clones was counted 

using ImageJ software. The number of clones > 50 cells 
was counted employing a microscope at a low magnifica-
tion [28].

Sphere‑forming assay
CD44+EpCAM (high) cells were seeded in a commer-
cially available 24-well ultra-low-attachment plate at 1000 
cells per well and left to grow in serum-free DMEM-F12 
for 5  days. A Nikon EclipseTE2000-S microscope was 
used to observe the generation of tumorospheres and 
the number of tumorospheres was calculated: sphere-
forming rate (%) = the average number of tumor spheres 
in each well/the number of cells seeded in each well 
(1 × 103) × 100% [29].

Transwell assay
CD44+EpCAM (high) cells were prepared into a suspen-
sion of 1 × 105 cells/μL using 100 μL serum-free DMEM 
and were then added to the upper chambers. After cells 
were incubated for 12 h at 37  °C, they were later trans-
ferred to the lower chambers containing 10% FBS-sup-
plemented DMEM and were fixed for 30 min with 100% 
paraformaldehyde and stained for 15  min with 0.1% 
crystal violet. Stained cells were counted in five random 
microscopic fields per well [30].

CCK‑8 assay
Cell viability was examined in a commercially avail-
able CCK-8 kit (96992, Sigma, Shanghai, China). 
CD44+EpCAM (high) cells were cultured for 0, 1, 2, 3, 
and 4 days and 10 µL CCK-8 solution was added to each 
well at the end of cell culture and was left to incubate 
for an additional 4  h [31]. In addition, CD44+EpCAM 
(high) cells were incubated with different concentrations 
of 5-fluorouracil (5-FU) (2, 4, 6, and 8 nM) for 48 h, fol-
lowed by examination of cell viability [32].

In vivo tumor formation by CD44+EpCAM (high) cells
Totally, 48 specific pathogen-free male BALB/c nude 
mice (aged: 3–5 weeks; weighing: 18–20 g; Experimental 
Animal Center of Sun Yat-sen University) were housed 
at a constant temperature of 25–27  °C with humidity of 
45–50%. The mice were then subcutaneously injected 
with 0.1 mL resuspension containing 1 × 106 cells stably 
transfected with mimic-NC, miR-148a mimic, miR-148b 
mimic and/or miR-152 mimic into the right side of the 
back (n = 8 mice for each treatment). After inoculation, 
the length and width of the tumor in mice were measured 
using digital calipers every 4 days, followed by calculation 
of the tumor volume and construction of a growth curve. 
All mice were euthanized 25 days after inoculation, and 
the tumor was removed and weighed [33].
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Immunohistochemical staining
Tumor sections from nude mice with CD44+EpCAM 
(high) cell xenografts were deparaffined, hydrated, 
blocked, and incubated with rabbit polyclonal antibod-
ies to ITGA5 (1: 100, ab150361, Abcam, Cambridge, 
UK) at 4 °C overnight, followed by incubation with goat 
anti-mouse IgG (1: 1000, ab6785, Abcam) for 30  min. 
Five fields of view at 200× magnification were ran-
domly selected for visualization for each replicate using 
an inverted microscope (CX41-12C02, Olympus, Tokyo, 
Japan) [34].

RT‑qPCR
Extracted tissue and cell RNA contents by TRIzol rea-
gents (Takara, Dalian, Liaoning, China) were used to gen-
erate cDNA employing the PrimeScript RT reagent Kit 
(RR047A, Takara). Quantification of miRNA and mRNA 
expression was performed using SYBR green-based RT-
qPCR. Primer information is listed in Additional file  3: 
Table  S2. The expression of miR-148a, miR-148b and 
miR-152 was normalized to that of U6 while the expres-
sion of the remaining genes to GAPDH. The fold changes 
were calculated employing the 2−△△CT method [35].

Western blot
Total protein was extracted from cells using PMSF-
containing RIPA lysis buffer (R0010, Solarbio, Beijing, 
China) and then separated with 10% SDS-PAGE and 
then wet-transferred onto the membrane. The membrane 
was probed with primary rabbit antibodies to ITGA5 (1: 
1000, ab150361, Abcam) and GAPDH (1: 2500, ab9485, 
Abcam) and re-probed with horseradish peroxidase-
labeled secondary antibody goat anti-rabbit IgG. Visuali-
zation of immunoreactive bands was performed with the 
help of enhanced chemiluminescence reagents (BB-3501, 
Amersham Pharmacia, Little Chalfont, UK) [35].

Statistical analysis
All data (mean ± standard deviation) were suggestive of 
three independent experiments (each in triplicate). Com-
parisons of data between two groups with normal dis-
tribution and homogeneity of variance were made using 
independent sample t-test while the comparison between 
gastric cancer tissues and adjacent normal tissues was 
done using paired t-test. Data comparisons between mul-
tiple groups were completed employing one-way analysis 
of variance (ANOVA) with Tukey’s post hoc test. Tumor 
volume at different time points was assayed by repeated 
measures of ANOVA and optical density values at dif-
ferent time points were assayed by Bonferroni-corrected 
two-way ANOVA. Pearson’s correlation coefficient 

was adopted for evaluation of the correlation between 
two indicators. Survival curves were constructed using 
Kaplan–Meier’s method, and statistical differences were 
evidenced by a log-rank test. All statistical analyses were 
processed utilizing SPSS 21.0 software (IBM, Armonk, 
NY), with p < 0.05 deemed as statistical significance.

Results
Bioinformatics prediction reveals that miR‑148/152 
family members may be involved in the occurrence 
and development of gastric cancer by targeting ITGA5
We downloaded gastric cancer-related gene expression 
datasets GSE2685, GSE13911, GSE19826, GSE26942, 
and GSE79973 from the GEO database and merged 
the expression data of these gene expression datasets 
(Fig. 1A) to determine the DEGs in gastric cancer sam-
ples. UMAP graph described that the samples between 
each dataset had batch effects (Fig. 1B). After removing 
the batch effect, the results of the UMAP graph revealed 
that the samples among the datasets were clustered and 
intertwined with each other (Fig. 1C), indicating the bet-
ter removal of the batch effect. The results of differential 
analysis of the merged gene expression datasets using the 
R “limma” package revealed 2342 DEGs (Additional file 4: 
Table S3). These DEGs were then intersected with the top 
10 known genes related to gastric cancer obtained from 
the MalaCards database, with ITGA5 identified (Fig. 1D).

Following Western blot analysis, we found a high level 
of ITGA5 in gastric cancer tissues (Fig.  1E). Moreover, 
similar high expression of ITGA5 was detected in five 
gastric cancer cells relative to GES-1 cell, among which 
AGS cells showed the highest ITGA5 expression; thus 
AGS cells were selected for further experiments (Fig. 1F).

ITGA5 was highly expressed in CD44+EpCAM+ cells
In order to explore the expression of ITGA5 in gas-
tric can cer stem cells, SP sorting by flow cytometric 
analysis showed that in AGS cell lines, CD44+EpCAM+ 
cells accounted for 1.0% (Fig.  2A). CD44+EpCAM+ 
cells and CD44−EpCAM− cells were sorted out by 
flow cytometry, and the sphere-forming assay showed 
that CD44+EpCAM+ cells had stronger sphere-
forming ability than CD44−EpCAM− cells (Fig.  2B). 
Determination utilizing RT-qPCR revealed that com-
pared with CD44−EpCAM− cells, the expression of 
CD133, CD44, OCT-4, MDR1, EpCAM and ABCG2 in 
CD44+EpCAM+ cells was significantly increased, while 
the expression of CD24 was significantly decreased 
(Fig.  2C). In addition, we found that the expression 
of ITGA5 in CD44+EpCAM+ cells was lower than 
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that in CD44−EpCAM− cells (Fig.  2D). Therefore, 
CD44+EpCAM+ cells were selected as gastric cancer 
stem cells for subsequent experiments.

Silencing ITGA5 inhibited the stem cell properties 
of CD44+EpCAM+ cells
We then explore the effect of ITGA5 on gastric can-
cer stem cells. We found that the colony formation and 
sphere-forming abilities were reduced following sh-
ITGA5 treatment, while oe-ITGA5 treatment led to 
opposite trends (Fig.  3A, B). Besides, we also identified 
that cell migration, viability and drug resistance were 
inhibited upon sh-ITGA5 treatment, while oe-ITGA5 

treatment led to opposite trends (Fig.  3C–E). Further 
expression determination using RT-qPCR revealed 
that expression of CD44 and EpCAM was reduced but 
CD24 expression was increased upon sh-ITGA5 treat-
ment, while oe-ITGA5 treatment led to opposite trends 
(Fig. 3F). Collectively, silencing of ITGA5 suppressed the 
stem cell properties of CD44+EpCAM+ cells.

The miR‑148/152 family genes may be involved 
in the progression of gastric cancer by targeting ITGA5 
regulation
To further understand the upstream regulatory 
mechanism of ITGA5 in gastric cancer, we first used 
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Fig. 1  Bioinformatics prediction of gastric cancer-related miRNAs and genes. A A UpSet plot of the merged GSE2685, GSE13911, GSE19826 and 
GSE26942 gene expression datasets. The left histogram shows the total amount of elements contained in each original gene expression dataset, the 
below intersection dot refers to the corresponding datasets on the left, and the connection between the dots indicates the presence of intersection 
between the corresponding datasets. B UMAP diagram before batch effect removal. C UMAP diagram after batch effect removal. D Venn diagram 
of the DEGs in gastric cancer tissue samples from GSE2685, GSE13911, GSE19826 and GSE26942 gene expression datasets and the known genes 
related to gastric cancer from the MalaCards database. E Detection of ITGA5 expression in gastric cancer and adjacent normal tissue by Western 
blot (N means adjacent normal tissue, T means gastric cancer tissue, sample number is 4). F The expression of miR-148a, miR-148b, and miR-152 in 
gastric cancer cell lines (MKN45, AGS, KATO-III, NCI-N87, and SNU-1) and normal immortalized gastric mucosal cells GES-1 examined by RT-qPCR. 
*p < 0.05 compared with adjacent normal tissue samples or GES-1 cells
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bioinformatics databases such as DIANA to predict the 
upstream miRNA regulated by ITGA5. Then, the inter-
section of the prediction results of the four databases 
was taken (Fig. 4A). Finally, we obtained seven potential 
upstream miRNAs regulated by ITGA5 genes. Among 
the seven miRNAs, we noticed that three miRNAs, miR-
148a, miR-148b and miR-152, belong to the miRNA-
148/152 family, and they can function jointly as a miRNA 
family [36–38].

Then, to identify the role of the miR-148/152 family 
members in gastric cancer, we first analyzed the expres-
sion of miR-148a, miR-148b, and miR-152 in 52 pairs 
of clinical gastric cancer tissue samples. As depicted by 
RT-qPCR, the expression of miR-148a, miR-148b, and 
miR-152 was lower in gastric cancer tissues than that in 
adjacent normal tissues (Fig.  4B). In addition, Kaplan–
Meier curve analysis results suggested that the overall 
survival of gastric cancer patients with low expression of 
miR-148a, miR-148b and miR-152 was shorter than that 
in patients with high expression of miR-148a, miR-148b 
and miR-152, respectively (Fig. 4C–E). Pearson analyzed 
the correlation between miR-148/152 family genes and 
ITAG5 genes in clinical samples indicated that miR-
148/152 family genes were negatively correlated with 
ITAG5 genes in gastric cancer tissues (Fig. 4F).

Furthermore, RT-qPCR data presented that miR-
148a, miR-148b and miR-152 all exhibited lower expres-
sion in gastric cancer cells than those in GES-1 cells, 

with the AGS cells showing the lowest expression of the 
above three factors (Fig.  4G) and thus selected for sub-
sequent experiments. We also found that the expression 
of miR-148/152 family genes in CD44+EpCAM+ cells 
was lower than that in CD44−EpCAM− cells (Fig.  4H). 
TargetScan database predicted binding sites of the miR-
148/152 family members in the 3’UTR of ITGA5 mRNA 
(Fig. 4I). In addition, the luciferase activity of ITGA5-Wt 
was reduced in presence of miR-148a mimic, miR-148b 
mimic or miR-152 mimic while that of ITGA5-Mut 
was unchanged (Fig.  4J). Western blot results indicated 
that expression of ITGA5 was diminished in AGS cells 
treated with miR-148a mimic, miR-148b mimic or miR-
152 mimic (Fig. 4K). In brief, low expression of the miR-
148/152 family members was detected in the gastric 
cancer tissues and cells and the miR-148/152 family can 
target ITGA5 gene.

ITGA5 overexpression facilitated the cancer stem cell‑like 
traits in CD44+EpCAM+ cells
We found above that ITGA5 was target gene of the miR-
148/152 family members. Then, we validated the role 
of ITGA5 in CD44+EpCAM+ cells. It was evident that 
reduced colony formation and sphere-forming abili-
ties were detected upon mimic of miR-148a, miR-148b, 
and miR-152; while further oe-ITGA5 treatment caused 
opposing trends (Fig.  5A, B, Additional file  1: Fig. S1A, 
B). Besides, mimic of miR-148a, miR-148b, and miR-152 

Fig. 2  ITGA5 is highly expressed in CD44+EpCAM+ cells. A The proportion of CD44+EpCAM+ cells by SP sorting using flow cytometric analysis. B 
Sphere-forming ability of CD44−EpCAM− cells and CD44+EpCAM+ cells examined by sphere-forming assay (scale bar: 100 μm). C The expression 
of CD133, CD44, OCT-4, MDR1, EpCAM, ABCG2, and CD24 in CD44−EpCAM− cells and CD44+EpCAM+ cells examined by RT-qPCR. D Expression of 
ITGA5 in CD44−EpCAM− cells and CD44+EpCAM+ cells examined by RT-qPCR. *p < 0.05 compared with CD44-EpCAM− cells. Measurement data are 
expressed as mean ± standard deviation. Comparisons between two groups were analyzed using unpaired t-test. The cell experiment was run in 
triplicate independently
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led to enhanced cell migration, viability and drug resist-
ance; while further oe-ITGA5 treatment caused oppos-
ing trends (Fig.  5C–E, Additional file  1: Fig. S1C). The 
results of RT-qPCR also showed that mimic of miR-148a, 
miR-148b, and miR-152 reduced expression of CD44 and 
EpCAM but elevated CD24 expression; while further 
oe-ITGA5 treatment caused opposing trends (Fig.  5F). 
These findings provided evidence of the promotive action 
of ITGA5 on the stem cell-like traits of CD44+EpCAM+ 
cells.

The miR‑148/152 family members suppressed 
the tumorigenesis of gastric cancer stem cells in vivo
Finally, we established subcutaneous xenotransplanted 
tumor models of CD44+EpCAM (high) cells. As depicted 
in Fig.  6A–C, overexpression of miR-148a, miR-148b, 

and miR-152 inhibited the growth of subcutaneous 
xenotransplanted tumors of gastric cancer stem cells in 
nude mice. Next, we determined the expression of ITGA5 
in tumor tissues derived from subcutaneous xenotrans-
planted tumors by RT-qPCR and immunohistochemistry 
(Fig. 6D, E) and found that elevation of the above three 
factors decreased the expression of ITGA5 in tumor tis-
sues. In addition, the expression of miR-148/152 family 
members was negatively correlated with that of ITGA5 in 
tumor tissues (Fig. 6F). Moreover, combined treatment of 
miR-148a mimic, miR-148b mimic, and miR-152 mimic 
showed a more profound influence than either treat-
ment alone (Fig. 6A–F). Overall, the miR-148/152 family 
members exerted inhibitory effects on the tumorigenesis 
in  vivo of gastric cancer stem cells by downregulating 
ITGA5.

Fig. 3  Silencing ITGA5 inhibits the stem cell properties of CD44+EpCAM+ cells. A Numbers of colonies of CD44+EpCAM+ cells following 
overexpression of ITGA5. B Sphere-forming ability of CD44+EpCAM+ cells examined by sphere-forming assay. C Numbers of migrated 
CD44+EpCAM+ cells following overexpression of ITGA5. D Viability of CD44+EpCAM+ cells following overexpression of ITGA5 measured by CCK-8 
assay. E Drug resistance of CD44+EpCAM+ cells following overexpression of ITGA5 measured by CCK-8 assay. F Expression of CD44, EpCAM and 
CD24 in CD44+EpCAM+ cells following overexpression of ITGA5 measured by RT-qPCR. *p < 0.05 compared with sh-NC. #p < 0.05 compared with 
oe-NC
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Discussion
In recent years, gastric cancer stem cells have attracted 
an increasing amount of research attention due to their 
potential diagnostic and therapeutic value and impli-
cations in immune microenvironment and metastasis 
[39, 40]. Multiple miRNAs in gastric cancer stem cells 
appear significant to the development of effective treat-
ment modalities for gastric cancer [41]. In the present 
investigation, we explored the functional role of the 
miR-148/152 family members in mediating gastric can-
cer stem cell-like properties. Our experimental data 
evinced that the miR-148/152 family members exerted 
anti-tumor actions by suppressing colony formation, 

self-renewal and migrative properties, and drug resist-
ance of gastric cancer stem cells through inhibition of 
ITGA5.

Fundamentally, miR-148a/b and miR-152 were lowly 
expressed in gastric cancer tissues and cells and were 
associated with poor prognosis in patients with gastric 
cancer. The expression of miR-148a has been found to be 
inhibited by over fourfold in gastric cancer tissues than 
that in matched non-tumorous tissues, contributing to 
advanced tumor-node-metastasis stage and lymph node-
metastasis, while forced expression of miR-148a corre-
sponds to weakened migrative and invasive properties 
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of malignant cells [42]. Likewise, restored expression of 
miR-148b has been documented to exert tumor-sup-
pressive effects in gastric cancer by curbing cancer cell 
proliferation in vitro and tumorigenicity in vivo [43]. An 
antagonistic function of miR-152 complementation in the 
mediation of gastric cancer cell proliferation and motil-
ity has also been detailed previously [44]. Both miR-148a 
and miR-152 have been found to be poorly expressed in 
gastric cancer tissues, which is highly suggestive of their 
clinical significance in the malignancy [45]. Similar to our 
finding, low expression of the miR-148/152 family was 
indicative of poorer oncologic outcomes of patients with 
hepatocellular carcinoma (HCC) and non-small cell lung 
cancer, and is considered as a prognostic biomarker [46, 
47] that supports our results in gastric cancer.

ITGA5 was observed to be elevated in gastric cancer 
tissues and cells. Increase of ITGA5 acts importantly in 
the development of gastric cancer and is considered as 
a potential therapeutic target and biomarker [10, 48]. 
The involvement of ITGA5 in miRNA-based modula-
tion has been validated in diverse malignancies, includ-
ing colorectal cancer, glioblastoma and bladder cancer 

[49, 50]. For instance, ITGA5 has been implicated in the 
tumor-suppressive effects of miR-31 on gastric cancer as 
a target gene to repress tumor cell invasion and metasta-
sis. Targets of deregulated miRNAs have been identified 
as crucially important to understanding the underlying 
molecular mechanisms of gastric carcinogenesis in reg-
ulating malignant phenotypes [51]. As revealed in our 
study, ITGA5 was targeted by the miR-148/152 family 
and attenuated the antitumor potential of miR-148/152 
family against gastric cancer. miR-148b has also been 
found to target ITGA5 to mediate the tumorigenesis [52] 
of breast cancer. The miR-148/152 family has also been 
found to enhance breast cancer cell sensitivity to Adria-
mycin by negatively regulating Spindlin1 [53]. Further-
more, the reported regulatory mechanism appeared to 
have depressive effects on the biological properties of 
gastric cancer stem cells including: clone formation, self-
renewal and migrative properties, and drug resistance. 
Given the positive impact of cancer stem cells on self-
renewal, differentiation, and tumor formation, targeting 
cancer stem cells has been proposed as a promising ther-
apeutic modality to improve the prognosis of patients 

Fig. 5  ITGA5 overexpression maintains the gastric cancer stem cell-like traits. A Numbers of colonies of CD44+EpCAM+ cells treated with miR-148a 
mimic, miR-148b mimic, miR-152 mimic or their combination with ITGA5. B Numbers of tumorospheres of CD44+EpCAM+ cells treated with 
miR-148a mimic, miR-148b mimic, miR-152 mimic or their combination with ITGA5. C Numbers of migrated CD44+EpCAM+ cells treated with 
miR-148a mimic, miR-148b mimic, miR-152 mimic or their combination with ITGA5. D Viability of CD44+EpCAM+ cells treated with miR-148a mimic, 
miR-148b mimic, miR-152 mimic or their combination with ITGA5 measured by CCK-8 assay. E Drug resistance of CD44+EpCAM+ cells treated with 
miR-148a mimic, miR-148b mimic, miR-152 mimic or their combination with ITGA5 measured by CCK-8 assay. F The expression of CD44, EpCAM 
and CD24 in CD44+EpCAM+ cells treated with miR-148a mimic, miR-148b mimic, miR-152 mimic or their combination with ITGA5 measured by 
RT-qPCR. *p < 0.05 compared with mimic NC + oe-NC, #p < 0.05 compared with miR-148a mimic + oe-NC/miR-148b mimic + oe-NC/miR-152 
mimic + oe-NC. The cell experiment was run in triplicate independently
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with gastric cancer [54]. Likewise, miR-19b/20a/92a has 
been shown to facilitate clone formation and self-renewal 
abilities of CD44+EpCAM+ cells by targeting E2F tran-
scription factor 1 and homeodomain interacting protein 
kinase 1 [55]. ITGA5 has been reported to be overex-
pressed in human mesenchymal stem cells (hMSCs)-
treated HCC, and short interfering RNA against ITGA5 
blocks the hMSCs-induced migrative and invasive abili-
ties of HCC cells, emphasizing the crucial role of ITGA5 
in hMSCs-induced tumor metastasis [56]. Moreover, 
reduced expression of ITGA5, induced by re-expression 
of miR-205, reportedly inhibits cancer stem cell-like 
properties in triple-negative breast cancer [57].

Conclusions
In summary, the current study detailed the anti-carci-
nogenic action of the miR-148/152 family members in 
gastric cancer development through its interplay with 
ITGA5, thus offering a novel therapeutic target for 
developing effective treatment modalities against gas-
tric cancer (Fig. 7). Overall, our results also evinced that 
investigations concerning miRNAs are critical to under-
standing cancer molecular mechanisms and improving 
targeted therapies. However, experiments aimed at ana-
lytical validation and clinical utility of miRNAs are war-
ranted for the successful translation of miRNAs to be 
rendered as usable biomarkers.
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