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Abstract

Colonoscopy is a gold standard procedure but is highly operator-dependent. Automated polyp 

segmentation, a precancerous precursor, can minimize missed rates and timely treatment of colon 

cancer at an early stage. Even though there are deep learning methods developed for this task, 

variability in polyp size can impact model training, thereby limiting it to the size attribute of the 

majority of samples in the training dataset that may provide sub-optimal results to differently sized 

polyps. In this work, we exploit size-related and polyp number-related features in the form of text 

attention during training. We introduce an auxiliary classification task to weight the text-based 

embedding that allows network to learn additional feature representations that can distinctly adapt 

to differently sized polyps and can adapt to cases with multiple polyps. Our experimental results 

demonstrate that these added text embeddings improve the overall performance of the model 

compared to state-of-the-art segmentation methods. We explore four different datasets and provide 

insights for size-specific improvements. Our proposed text-guided attention network (TGANet) 

can generalize well to variable-sized polyps in different datasets. Codes are available at https://

github.com/nikhilroxtomar/TGANet.
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1 Introduction

Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths [16] 

worldwide. However, high operator-dependence and subjectivity during gold standard 

colonoscopic procedures remain high. This is also due to the complex topology of organ, 

severe artefacts, constant deformation of organ, debris and stool etc. Even though cleansing 

of the bowel is done to improve detection rates of cancer and cancer precursor lesions such 

as polyps, the missed rate is still high that accounts for 26.8% for polyps located on the right 

colon and 21.4% to polyps on the left colon [10,12]. In addition, the missed rate for flat 

or sessile polyps (diminutive polyps) is grim (nearly 32.7%). An automated system is thus 

clearly needed to minimize the operator subjectivity and missed rate. Semantic segmentation 

can classify each pixel into a class category, allowing the opportunity to learn meaningful 
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semantic representations of polyps and their complex surroundings. Several methods do 

exist in the literature [3,7,14] but most them focus on exploiting only localized spatial 

context. However, the nature and occurrence of polyps in colonic mucosa can be confused 

with colonic folds. Exploiting associated attributes such as size and occurrence (one or a 

few) could be used to infer and improve segmentation for hard samples.

Encoder-decoder networks has been widely used for polyp segmentation using various 

modifications to boost network performance [3,7,14]. PraNet [3] applied area and boundary 

cues in reverse attention to focus on the polyp boundary regions. The high-level feature 

aggregation and boundary attention blocks in the network help to calibrate some of 

the misaligned predictions and improve the segmentation accuracy. Similarly, HRENet 

[14] designed an informative context enhancement (ICE) technique and adaptive feature 

aggregation (AFA) module and trained the model on their edge and structure consistency 

aware loss (ESCLoss), and obtained superior performance. Other works such as PolypSeg 

[18] and MSRFNet [15] uses modules incorporating multiple-scale information. An adaptive 

scale context module (ASCM) and semantic global context module (SGCM) was used in 

PolypSeg [18]. The ASCM tackles the size variations among the polyp and improves the 

better feature representation capability, while SGCM enhances the feature fusion between 

the high-level and low-level features and remove noise in the low-level features to improve 

the segmentation accuracy. Similarly, MSRFNet [15] integrated cross-scale fusion modules 

to propagate both high resolution and low-resolution features and an added shape stream 

network to prune polyp boundaries.

Most of these works in the literature [3,14,15] focuses on size variation, boundary curves, 

background regions, dense skip connections and dense residual scale fusions that can boost 

performance. However, these adjustments are made using additional layers and explicit 

extensions of networks and their connections. This adds to the complexity of the model that 

can adversely affect the generalization of test samples coming from a similar distribution 

and require a large dataset. In addition, it can also affect images with underrepresented 

polyp sizes. In this work, we propose incorporating a text guided attention mechanism using 

a simple byte-pair encoding for the attributes comprising polyp number and its size. In 

addition, we use the same encoder layer of the network to provide weights for each of these 

attributes.

The main contributions of the presented work include - 1) text guided attention to learn 

different features in the context of the number of polyps presence (one or many) and 

size (small, medium and large), 2) feature enhancement module to strengthen the features 

of the encoder and pass them to the decoder, and 3) multi-scale feature aggregation to 

capture features learned by different decoder blocks. We have evaluated our TGANet on 

four publicly available polyp datasets and compared it with five SOTA medical image 

segmentation methods.

2 Method

The proposed TGANet is a polyp segmentation architecture with text guided attention 

that enables to enhance feature representations such that the polyps present in images are 
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segmented optimally independent of their size variability and occurrence. Our TGANet 

architecture consists of various components that are shown in Figure 1 and elaborated below.

2.1 Encoder module

TGANet is built upon a pre-trained ResNet50 [4] as backbone encoder network for which 

we use its four different encoding blocks, ei, i ∈ 1 2 3, 4. These blocks are consecutively 

used for our auxiliary attribute classification task and for main polyp segmentation task. 

For the text-attribute classification, we use the output from the fourth encoder block as two 

classification task modules separately, i.e., number of polyps (one or many) and their size 

(small, medium and large). Here, softmax probabilities σpolyp
no ( . ) and σpolyp

sz ( . ) are predicted. 

For the main segmentation task, we take the output from each ResNet50 block and passes 

them through the feature enhancement module (FEM, fi, i ∈ 1, 2, 3, 4) that is responsible 

for strengthening the features by applying multiple dilated convolutions and an attention 

mechanism.

2.2 Feature enhancement module

Feature enhancement module (FEM) (see Figure 1 (b)) begins with four parallel dilated 

convolutions Conv with a dilation rate r = {1, 6, 12, 18}. Each dilation is followed by a 

batch normalization BN and a rectified linear unit ReLU which we refer as CBR. The output 

features are passed through a channel-attention module CAM [17] to capture the explicit 

relationship between the feature channels. The highlighted features from these four dilated 

convolutions are then concatenated and passed through a Conv3×3 followed by BN layer and 

added with the original input features through a Conv1×1. The resulting features are then 

followed by a ReLU activation function, and a spatial attention mechanism SAM [17] is 

applied to suppress the irrelevant regions.

2.3 Label attention

Label attention module is designed to provide learned text-based attention to the output 

features of the decoder blocks in our TGANet. Here, we use three label attention modules, 

li, i ∈ 1, 2, 3, as soft channel-wise attention to the three decoder outputs that enables 

larger weights to the representative features and suppress the redundant ones. The first label 

attention module uses the output of the embedding fusion ℰ(.) obtained by element-wise 

dot product between the softmax probability concatenation {σone, σmany, σsmall, σmedium, 

σlarge} with the encoded text embedding. Say,  = {one, many, small, medium, large} be 

the attributes that are encoded using byte-pair encoding [5] and denoted by encode with 

ajk  as vector embedding for each attribute j of length |k|, then ℰ(.) that is given by:

ℰ = σj ⊙ ajk, ∀k . (1)

The output of the label attention module is referred to as label features lf in this paper.
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2.4 Decoder

The decoder in the proposed TGANet is comprised of three different decoder blocks di, 

i ∈ 1, 2, 3, of which each takes the input features to upsample it and pass it through 

some convolutional layers to produce the output. This output is refined using the label 

attention module li and passed to the subsequent decoder blocks di (see Figure 1 (c)). The 

first decoder block takes the output of the fourth FEM f4 to upsample it using bilinear 

interpolation by a factor of two, and then it is concatenated with the output features from 

the third FEM f3. The resulting concatenated feature is passed through a Conv1×1-BN-ReLU 

referred as CBR followed by a sequence of three Conv3×3-BN, further accompanied by their 

multiple residual connections and a ReLU activation function with subsequent convolutional 

block attention module represented as di
cbam. An element-wise multiplication is done to 

allow additional soft-attention from the computed label features lf using a sigmoid function 

for each decoder block output di
out, i ∈ 1, 2, 3 given by:

di
out = di

cbam ⊙ σ Conv−ReLU − Conv lf , ∀i ∈ 1, 2, 3 (2)

2.5 Multi-scale feature aggregation

Multi-scale feature aggregation (MSFA) module (see supplementary Figure 1) is used to 

fuse multi-scale feature representations at various decoder outputs di
out, i ∈ 1, 2, 3 that allows 

to capture learned features. We take the first two features d1
out, d2

out  and pass them through 

a bilinear upsampling to ensure that all three features have the exact spatial dimensions 

followed by linear 1 × 1 convolution layers, BN and ReLU activation before concatenation. 

To boost the capture of non-linear features we further apply a series of convolutional layers, 

BN and ReLU together with multiple residual connections for improved flow of information. 

The output is represented as mf which is responsible for our predicted segmentation map 

Imask
pred  given by: Imask

pred = σ Conv1 × 1 mf .

Joint loss optimization: We jointly minimize loss for both the auxiliary classification 

tasks (cross-entropy losses, CEloss1, CEloss2) and the segmentation task (binary cross 

entropy, BCEloss3 and dice loss, DSCloss4) with equal weights.

3 Experiments and results

3.1 Datasets

To evaluate the performance of our TGANet, we have used four publicly available polyp 

segmentation benchmark datasets including Kvasir-SEG [9], CVC-ClinicDB [1], BKAI[11], 

and Kvasir-Sessile [8] (details are presented in supplementary Table 1). Relevant to our 

experiment, Kvasir-Sessile [8] contains 196 small, diminutive, sessile and flat polyps that are 

less than 10 mm in size.
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3.2 Implementation Details

All models are trained on NVIDIA GeForce RTX 3090 GPU, and images are resized to 

256 × 256 pixels with 80:10:10 training, validation, and testing splits except for Kvasir-

SEG, where we adopted the official split of 880/120 for training and testing. Simple data 

augmentation strategy including random rotation, vertical flipping, horizontal flipping, and 

coarse dropout are used. All models are trained on a similar hyperparameters configuration 

with a learning rate of 1e−4, batch size of 16, and optimized with Adam optimizer. An early 

stopping mechanism and ReduceLROnPlateau is used to prevent models from overfitting.

Standard medical image segmentation metrics such as mean intersection over union (mIoU), 

mean Sørensen–dice coefficient (mDSC), recall, precision, F2-score and frame per second 

(FPS) are used.

3.3 Results

We have compared our results with five SOTA methods that include UNet [13], HarDNet-

MSEG [6], ColonSegNet [7], DeepLabv3+ [2], and PraNet [3]. These algorithms are widely 

used baselines in both polyp segmentation and general medical image segmentation. The 

quantitative results are presented in Table 1.

Results on Kvasir-SEG: Table 1 shows that TGANet outperforms all the SOTA methods 

with a mIoU of 0.8330 and mDSC of 0.8982. Our TGANet outperforms most competitive 

PraNet [3] by 1.58% in mIoU and 1.45% mDSC.

Results on CVC-ClinicDB: For CVC-ClinicDB dataset, TGANet outper-forms all SOTA 

methods reporting the highest mIoU and mDSC of 0.8990 and 0.9457, respectively. Our 

method outperformed the most competitive DeepLabV3+ [2] with a mIoU of 0.17% and 

mDSC of 0.66%.

Results on BKAI: Table 1 shows the comparison of the result on the BKAI dataset 

that show that our proposed TGANet obtains mIoU of 0.8409 and mDSC of 0.9023 and 

outperforms the best performing DeepLabV3+ [2] by 0.95% on mIoU and 0.86% on mDSC.

Results on Kvasir-Sessile: Kvasir-Sessile dataset is clinically most relevant as it has 

flat and sessile polyps. On this dataset, it can be observed (see Table 1) that our TGANet 

surpasses all the other methods in all the evaluation metrics. It outperforms the best 

performing PraNet [3] by a large margin of 2.39% on mIoU and 2.44% on mDSC. Similarly, 

almost 10% improvement is observed compared to the DeepLabV3+ [2] in this case which is 

a significant improvement.

Results on cross dataset: To explore the generalization capability of our proposed 

TGSNet, we train the model on Kvasir-SEG and test it on the CVC-ClinicDB. The cross-

dataset test (Table 1) also suggested improvements compared to all SOTA methods and 

obtained an increment of 0.56% on mIoU and 0.54% on mDSC compared to the SOTA 

DeepLabv3+ [2].
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Results on size and number-based sampled polyps: To show the effectiveness of 

our proposed TGANet, we evaluated test samples of Kvasir-SEG-based on the attributes 

used in training. It can be observed in Table 2 that our model outperforms the best SOTA 

methods for almost all cases. For the ‘small’, ‘medium’ and ‘many cases’, the improvement 

ranges from nearly 1–2%.

Our qualitative results (see Figure 2) demonstrate a clear improvement of our text-based 

attention method for different sizes and number polyp samples. It is evident that both 

PraNet [3] and DeepLabV3+ [2] failed to capture sample with two polyps (4th row) 

and also provided over segmentation for the small (1st row) and medium polyps (2nd 

row). Additionally, we have provided the total number of parameters, flops and FPS in 

supplementary material Table 2.

3.4 Ablation study

To validate the effectiveness and importance of the core components used in the network, we 

compare TGANet with its five variants, which is presented in Table 3. The results suggest 

that the introduction of the text guided attention along with the label boosts the performance 

of the network. The results show that TGANet improves the baseline without the label and 

classifier (#1) by 2.26% on mIoU and 1.96% on mDSC.

4 Conclusion

We proposed a text-guided attention architecture (TGANet) to tackle polyps’ variable size 

and number for robust polyp segmentation. We have used multiple feature enhancement 

modules connected with different encoder blocks to achieve this. An auxiliary task is 

learned together with the main task to compliment both the size-based and number-based 

feature representations and used as label attentions in the decoder blocks. Additionally, the 

multi-scale fusion of the features at the decoder enabled our network to deal with these 

attribute changes. Our experimental results demonstrated the effectiveness of our TGANet 

outperformed and provided higher segmentation performance on flat and sessile polyps that 

are clinically important.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig.1: 
Block diagram of the proposed TGANet
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Fig.2: 
Qualitative results comparison on the Kvasir-SEG dataset.
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Table 1:

Quantitative results on the experimented polyp datasets.

Method Backbone mloU mDSC Recall Precision F2

Dataset: Kvasir-SEG [9]

U-Net [13] - 0.7472 0.8264 0.8504 0.8703 0.8353

HarDNet-MSEG [6] HardNet68 0.7459 0.8260 0.8485 0.8652 0.8358

ColonSegNet [7] - 0.6980 0.7920 0.8193 0.8432 0.7999

DeepLabV3+ [2] ResNet50 0.8172 0.8837 0.9014 0.9028 0.8904

PraNet [3] Res2Net 0.8296 0.8942 0.9060 0.9126 0.8976

TGANet (Ours) ResNet50 0.8330 0.8982 0.9132 0.9123 0.9029

Dataset: CVC-ClinicDB [1]

U-Net [13] - 0.8428 0.8978 0.9001 0.9209 0.8981

HarDNet-MSEG [6] HardNet68 0.8388 0.8967 0.8929 0.9216 0.8938

ColonSegNet [7] - 0.8248 0.8862 0.8828 0.9017 0.8826

DeepLabV3+ [6] ResNet50 0.8973 0.9391 0.9441 0.9442 0.9389

PraNet [3] Res2Net 0.8866 0.9318 0.9347 0.9479 0.9333

TGANet (Ours) ResNet50 0.8990 0.9457 0.9437 0.9519 0.9439

Dataset: BKAI [11]

U-Net [13] - 0.7599 0.8286 0.8295 0.8999 0.8264

HarDNet-MSEG HardNet68 0.6734 0.7627 0.7532 0.8344 0.7528

ColonSegNet [7] - 0.6881 0.7748 0.7852 0.8711 0.7746

DeepLabV3+ [2] ResNet50 0.8314 0.8937 0.8870 0.9333 0.8882

PraNet [3] Res2Net 0.8264 0.8904 0.8901 0.9247 0.8885

TGANet (Ours) ResNet50 0.8409 0.9023 0.9026 0.9208 0.9002

Dataset: Kvasir-Sessile [8]

U-Net [13] - 0.2472 0.3688 0.7237 0.3264 0.4635

HarDNet-MSEG HardNet68 0.1565 0.2558 0.5403 0.2236 0.3298

ColonSegNet [7] - 0.2113 0.3278 0.5234 0.3336 0.3868

DeepLabV3+ [2] ResNet50 0.5927 0.7078 0.7085 0.8225 0.7009

PraNet [3] Res2Net 0.6671 0.7736 0.8069 0.8244 0.7871

TGANet (Ours) ResNet50 0.6910 0.7980 0.7925 0.8588 0.7879

Training dataset: Kvasir-SEG – Test dataset: CVC-ClinicDB

U-Net [13] - 0.5433 0.6336 0.6982 0.7891 0.6563

HarDNet-MSEG [6] HardNet68 0.6058 0.6960 0.7173 0.8528 0.7010

ColonSegNet [7] - 0.5090 0.6126 0.6564 0.7521 0.6246

DeepLabV3+ [2] ResNet50 0.7388 0.8142 0.8331 0.8735 0.8198

PraNet [3] Res2Net 0.7286 0.8046 0.8188 0.8968 0.8077

TGANet (Ours) ResNet50 0.7444 0.8196 0.8290 0.8879 0.8207

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2023 February 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tomar et al. Page 11

Table 2:

mDSC for different sizes and polyp counts on Kvasir-SEG

Method small medium large one many

DeepLabV3+ [2][9] 0.8776 0.9003 0.8633 0.8922 0.8289

PraNet [3] 0.8826 0.9079 0.8900 0.9071 0.8106

TGANet 0.8869 0.9203 0.8769 0.9075 0.8378
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Table 3:

Ablation study of TGANet on Kvasir-SEG

No Method mIoU mDSC Recall Precision F2

#1 TGANet w/o label and classifier 0.8104 0.8786 0.8987 0.8970 0.8850

#2 TGANet w/o MSFA 0.8151 0.8832 0.9061 0.8999 0.8907

#3 TGANet w/o FEM TGANet w/o (label+classifier+ 0.8084 0.8766 0.8968 0.9010 0.8838

#4 MSFA+FEM) 0.8063 0.8747 0.8963 0.8971 0.8798

#5 TGANet (Ours) 0.8330 0.8982 0.9132 0.9123 0.9029
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