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Simple Summary: Endocrine-disrupting chemicals (EDCs) are environmental pollutants with hetero-
geneous chemical structures and various sources that, once absorbed by the body, can interfere with
endogenous hormonal actions. Extensive studies have been conducted correlating EDC exposure and
human health, and interest in their effects on the health of domestic pets is increasingly becoming
an issue of public concern. Dogs and cats can be exposed to EDCs in indoor and outdoor domestic
environments through ingestion, inhalation, and transdermal absorption, with diet considered the
primary source. Their exposure has been associated with several health disorders comparable to
those described in humans, including thyroid and reproductive disorders, diabetes, heart and kidney
diseases, and various types of cancer. The human–pet relationship implies sharing much of the same
environment, thus including exposure to EDCs. Therefore, dogs and cats have been suggested as
potential sentinels for human environmental exposure to contamination. It is becoming clear that
exposure to EDCs is a matter of concern for pet health just as for humans, and the impact of this has
been boosted by the growing attention to pet well-being. Any move towards a “risk-sharing” attitude
in public health could, thus, benefit both humans and animals.

Abstract: Over the past few decades, several pollutants classified as environmental endocrine-
disrupting chemicals (EDCs) have become a matter of significant public health concern. Companion
animals play a major role in human society, and pet ownership is substantially increasing worldwide.
These intimate human–pet relationships imply sharing much of the same environment, thus including
exposure to similar levels of EDCs in daily routine. Here, we review the current knowledge on the
sources and routes of exposure to EDCs in domestic indoor and outdoor environments and discuss
whether endocrine disruption is a health concern in pets. We summarize the phenomenon of
endocrine disruption, providing examples of EDCs with a known impact on dog and cat health.
Then, we propose an overview of the literature on the adverse effects of EDCs in domestic pets,
with a special focus on the health of reproductive and thyroid systems. Finally, we explore the
potential role of companion animals as unintentional sentinels of environmental exposure to EDCs
and the implications for public health risk assessment in a “shared risk” scenario. Overall, this review
supports the need for an integrated approach considering humans, animals, and the environment as
a whole for a comprehensive assessment of the impact of EDCs on human and animal health.

Keywords: endocrine-disrupting chemicals (EDCs); dog; cat; companion animals; reproduction;
thyroid; human–animal interactions

1. Introduction

The Industrial Revolution started the contamination of the environment with various
classes of pollutants, and this has dramatically increased, arousing substantial concern for
environmental health globally. Over the past few decades, several pollutants classified
as environmental have raised questions of significant public health concern. Endocrine-
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disrupting chemicals (EDCs) are among those posing significant threats for human and
animal health.

According to the Endocrine Society, an EDC is defined as “an exogenous chemical or
mixture of chemicals that interferes with any aspect of hormone action” [1]. From a mecha-
nistic point of view, EDCs may mimic or interfere with endocrine homeostasis binding to
hormone receptors on which they act either as agonists or antagonists. However, this basic
knowledge of interference with hormones’ actions has expanded to include interactions
with transcription factors, nuclear receptor coactivators, or even transgenerational effects
by targeting germ cell lines [2]. Acting on endocrine systems through diverse mechanisms,
EDCs can affect the reproductive and neuroendocrine systems, mammary gland develop-
ment, and thyroid function [1]. They may also be involved in metabolic dysfunctions and
obesity, as well as in the development and progression of endocrine-related cancers [3].

The molecules with endocrine-disrupting properties differ widely in chemical struc-
ture and include naturally occurring substances (e.g., phytoestrogens), synthetic molecules
of anthropogenic origin (e.g., plasticizers, organohalogen compounds, industrial solvents,
and pharmaceuticals), and heavy metals.

The relationships between EDCs and human health have been widely studied over
the last 50 years, but interest in their effects on the health of domestic animals is much
more recent and constantly expanding. This reflects people’s growing attention to pet
health. Pet ownership is substantially increasing in most industrialized countries, and
these animals are increasingly often considered “members of the family” [4]. Thus, any
issue related to animal welfare is increasingly recognized, and care for companion animals
is reaching high levels [5]. In addition, the close human–pet relationship implies sharing
much of the environment, thus including exposure to similar levels of EDCs. Dogs and
cats have, therefore, been suggested as unintentional sentinels of contamination in the
human environment.

Finally, in addition to the environment, food too is an important source of EDCs, and
the safety of the huge global industrial pet food market is a potential emerging problem,
arousing increasing concern not only for public opinion.

Here, we review the literature regarding exposure to EDCs in pet dogs and cats and
the related adverse health effects and discuss the potential role of pets as environmental
and health sentinels for human exposure.

2. Endocrine Disruptors with Known Risk for Domestic Pet Health

Hundreds of individual chemicals of anthropogenic or natural origin are known or
suspected to act as EDCs. The list is long, and the chemical properties that dictate the
sources of exposure and their environmental fates, vary widely (for a review: [3]). The
present review focuses on classes of EDCs with known impacts on dogs’ and cats’ health.
Table 1 summarizes the class, chemical structure, common uses, and health effects of the
EDCs discussed.

Table 1. Class, chemical structure, common uses, and health effects of EDCs in domestic pets.

Class of Chemicals Class Chemical Structure Reported Health Effects in Pets References

PBDEs Persistent organic pollutant
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2.1. Persistent Organic Pollutants

Persistent organic pollutants (POPs) are a wide group of organohalogen substances of
anthropogenic origin that are resistant to environmental degradation and have very long
half-lives (months to many years). Over recent decades, it has become clear that various
POPs may act as EDCs in animals and humans [23]. These include several organochlo-
rine pesticides (e.g., dichlorodiphenyltrichloroethane, (DDT)), industrial chemicals (e.g.,
polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and perflu-
oroalkyl substances (PFAS)), as well as unintentional byproducts of industrial processes
(e.g., dioxins). As a general rule, POPs share a number of common properties: (i) Resistance
to environmental degradation and very long half-lives (months to many years). Their
persistence and widespread application has led to POPs becoming ubiquitous in biotic and
abiotic environments [24–33]. (ii) Lipophilic, accumulate in lipophilic tissues, and biomag-
nify through the food chain [34–36]. They have been detected in adipose tissue, serum, and
breast milk samples collected worldwide of a variety of species, including humans [37–47].
Furthermore, their lipophilicity means they can easily cross the placenta, and preferential
accumulation of selected POPs has been observed in offspring [48–50]. (iii) Volatile at cer-
tain temperatures and undergo long-range atmospheric transport, reaching places far from
the site of their first use. In fact, many POPs can be measured in unspoiled environments
far from the site of release due to the fact of long-distance transport through water and
air currents and/or via migratory animals spending part of their life in polluted regions,
which may become part of food webs in other uncontaminated areas [4].

2.1.1. Polybrominated Diphenyl Ethers

Polybrominated diphenyl ethers are synthetic brominated compounds used as flame
retardants in a range of polymer-based commercial and household products, such as textiles,
furniture, and electronics, as well as construction materials to boost their flame resistance
and meet increasingly strict fire safety standards [51]. The widespread use of PBDEs,
starting in the 1970s, has resulted in persistent environmental contamination despite penta-
and octa-brominated formulations being phased out in both the US and EU in 2004 [52,53].

The PBDEs’ main effects are endocrine disorders, with the thyroid gland as the primary
target. This is due to the resemblance of the structures of PBDEs and their metabolites
to thyroid hormones (THs), which leads to multiple methods of interference, such as



Animals 2023, 13, 378 4 of 21

competitive binding to serum transporters replacing thyroxine, reduction of protein activity
involved in TH transport, and deregulation of TH metabolic enzymes [54,55]. It has been
suggested that the adverse effects of PBDEs in neurobehavioral disorders and reproductive
function may be linked to altered thyroid gland function due to the key role of THs in
regulating multiple physiological functions. However, competitive inhibition of some
PBDE congeners with the androgen receptor (AR) has been described both in vivo and
in vitro, and this is likely to be at the basis of dysregulation of the development and function
of androgen-dependent tissues [56].

2.1.2. Polychlorinated Biphenyls

Polychlorinated biphenyls are synthetic organochlorine compounds that comprise
209 individual congeners identified according to the number and position of chlorine
substitutions on the biphenyl backbone. Since the 1930s, PCBs have been mass produced
worldwide for a variety of industrial purposes because of their nonflammability, chemical
stability, and low electrical conductivity. The production and use of PCBs were banned in
most industrialized countries by the end of the 1970s due to the growing concern regarding
human health risks and environmental hazard. However, because of their long half-life and
resistance to environmental degradation, they still linger ubiquitously in both terrestrial and
aquatic environments. Furthermore, they are still gradually released worldwide into the
environment because of improper disposal and incineration, leakage from landfills [57,58],
and port activities [59,60].

From a mechanistic point of view, one of the most widely known classifications of the
action of PCBs is based on physical structure and likeness to dioxin. Coplanar PCBs may
exert dioxin-like effects through interaction with the aryl hydrocarbon receptor (AhR) [61]
and are recognized as the most toxic congeners [62]. Noncoplanar PCBs make up a more
varied group of congeners that are considered nondioxin-like because they have little or no
activity at the AhR [63].

Related to the different degrees and patterns of chlorination, PCB congeners alter the
activity of a panel of cytochrome P450 isoenzymes responsible for phase 1 activation of
various drugs, carcinogens, and steroids [64,65] and may have carcinogenic, neurotoxic, and
endocrine-disrupting activity. Their endocrine-disrupting effects mainly involve thyroid
function through interference with the TH receptor [66] and reproductive function, exerting
estrogenic, anti-estrogenic or anti-androgenic activity depending on the congener [67].

2.1.3. Per- and Polyfluoroalkyl Substances

Per- and polyfluoroalkyl substances are a family of more than 3000 structures of highly
fluorinated substances, including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid
(PFOA), and perfluorohexane sulfonate (PFHxS). PFAS can serve as surfactants, friction
reducers, and water/dirt/oil repellants [68,69] and are, therefore, commonly used in the
production of various everyday objects, such as food containers, kitchenware, clothes
cleaning products, and electronic elements [70].

As regards their endocrine-disrupting activity, PFAS can potentially directly or indi-
rectly impair the normal function of the reproductive and thyroid systems. However, there
are still gaps in the literature regarding the mechanisms of action. PFAS may alter steroid
hormone production or secretion, including that of estradiol, progesterone, and testos-
terone, and interfere with the gonadotropin endocrine balance [71–73]. In addition, PFAS
can alter prolactin and human chorionic gonadotropin levels [74]. Finally, PFAS also act on
normal thyroid function by dysregulating thyroid-stimulating hormone, triiodothyronine,
and/or thyroxine levels [75,76].

2.2. Plasticizers

Phthalates and bisphenol A (BPA) are plasticizers that provide shape and flexibility to
plastic products [77,78]. Phthalates are diesters of phthalic acid that are used as plasticizers
in polyvinyl chloride products to make flexible plastics for building materials, medical
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devices, and food processing or packaging, or as solvents, fixatives, and adhesives in
personal care products and cosmetics. BPA is a phenolic chemical that has been used for
over 50 years in the manufacture of polycarbonate plastics and epoxy resins for consumer
and food product packaging, including canned foods. These chemicals may leach out
of the plastic—especially when containing warm food and drinks—into the food chain,
causing toxic effects. Unlike POPs, plasticizers are not lipophilic and do not accumulate
to any substantial degree in the body. They have a very short half-life (hours), are readily
decomposed in the environment, and rapidly metabolized in the body [4]. Exposure to
plasticizers varies, but since they are widely used in mass consumption products and the
food industry, it occurs on a more or less daily basis. In humans, the majority of people
tested have measurable levels of metabolites in their urine. Furthermore, both human
and animal studies have demonstrated that phthalates and BPA cross the placenta, and
metabolites are detectable in breast milk [79,80], posing a significant risk for developing
organisms. In particular, organs that depend on a constant influx of hormones for proper
functioning, such as the gonads, are especially vulnerable to the endocrine disruptor effects
of plasticizers, predominantly during windows of susceptibility, such as fetal development,
infancy, and puberty. Maternal exposure to phthalates and BPA has been associated with
epigenetic reprogramming in gametes and early embryos, with the effects manifesting later
in life, increasing the risk of disease [81–83].

In this context, prenatal exposure to phthalates promotes the transgenerational inheri-
tance of both female and male reproductive dysfunctions [84,85]. This constant exposure,
rapid metabolism, and the fact that the metabolites themselves have endocrine-disrupting
activity [86–88] poses a further challenge for the assessment of phthalate and BPA endocrine-
disrupting activity and can lead to underestimation unless the correct timing and biomark-
ers are used for analysis.

Much of the reported endocrine disruptor activity for phthalates and BPA has been
related to their ability to interfere with estrogens, androgens, and THs; however, the
mechanisms still have to be fully elucidated. As an example, the phenolic groupings in
the BPA structure determine its ability to bind to estrogen receptors (ERs) and stimulate
estrogen-dependent gene expression [89,90]. This can also interfere with estrogen’s physio-
logical activity through membrane estrogen receptors and nongenomic mechanisms [91].
In addition to its estrogenic activity, BPA can bind to the AR and result in anti-androgenic
responses [92]. Phthalates, too, can bind to both estrogen and AR and stimulate or inhibit
ERs, but they have only inhibitory effects on ARs [93].

Both BPA and phthalates can significantly affect thyroid function [90,94]. However,
both positive and negative correlations have been described between the urinary or serum
levels of these classes of plasticizers and thyroid function [95–97]. Therefore, hypothetically
plasticizers may behave as both a thyroid receptor (TR) agonist and a TR antagonist [98] or
may also interfere with TH action by a nongenomic mechanism [99].

2.3. Natural Occurring Xeno-Estrogens

Chemicals structurally and/or functionally similar to mammalian estrogens and their
active metabolites are produced naturally by many plants (phytoestrogens) and fungi
(mycoestrogens). Phytoestrogens are secondary plant metabolites and have been classified
into three major classes: isoflavones, coumestans, and lignans [100]. Mycoestrogens are
natural estrogens produced by fungi and are thought to be harmful to animals when
consumed in contaminated feed.

The main mycoestrogen that can potentially occur in food is zearalenone (ZEA), a
potent xenoestrogen produced by some Fusarium and Gibberella species. ZEA is heat-
stable and is found worldwide in many cereals, such as maize, barley, oats, wheat, rice, and
sorghum [101]. Soy is the richest source of phytoestrogens, while cereals and grains are
most likely the main sources of mycoestrogen contamination [102].

Xenoestrogens (XEs) can exert wide ranging estrogenic effects by mimicking or block-
ing endogenous hormones and altering the feedback loops in the brain, pituitary, gonads,
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and thyroid. XEs were originally thought to act solely on nuclear estrogen receptors (nERs).
Recent research has shown, however, that XEs can also have estrogenic effects through
non-nuclear receptors, transcriptional coregulators, and enzymatic pathways [103].

3. Sources and Routes of Exposure to EDCs in Pets

Dogs and cats can be exposed to EDCs in indoors and outdoors, in relation to the
owner’s lifestyle, and both their living environment and dietary habits can contribute
to the total body burden of EDCs through varying routes: ingestion, transdermal, and
inhalation [104–107] (Figure 1). Oral ingestion is considered the main route of exposure to
many environmental chemicals [104,108,109], with industrially formulated food the main
source for pets [110].
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Several EDCs were detected in both dry and wet pet food [7], and this is of particular
concern considering that the market for pet food is constantly growing, with sales in
2021 reaching approximately 10 million tons in the USA [111] and 8.5 million tons in the
EU [112]. A recent study in France reported contamination of industrially formulated dry
cat food with phthalates (2292 ng g−1 for total phthalates), with diisononyl phthalate and
di(2-ethylhexyl) phthalate (DEHP) as the prevailing compounds; with PCBs (1.7 ng g−1

for total PCBs), with PCBs 153 and 42 prevailing; and with PBDEs (0.088 ng g−1 for
total PBDEs), with PBDE47 and then PBDE153/154 as the main representatives [113].
Similar concentrations of total PCBs were found in cat food in Japan [114] and Spain [115]
and of phthalates in Italy [116]. The mean concentration of PBDEs (2.6 µg kg−1) was
found in cat food in the USA [117] and might be explained by the use of penta-BDE
commercial mixtures in that country as flame retardant in furniture, baby products, and
carpet padding foam [118].
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Levels of BPA are measurable in most dog and cat canned foods, and studies confirmed
that the BPA in food originated from the can’s coating [119,120]. The BPA levels have ranged
from 13 to 136 ng g−1 for canned cat food and 11 to 206 ng g−1 for dog food [119].

Diet is also the most important route of exposure to xenoestrogens in pets. Soy, which
is rich in phytoestrogens, is a common pet food ingredient [102,121], and cereals and grains
are a major source of mycotoxin contamination. It is commonly known that dry dog food
contains larger amounts of cereals than wet dog food, and some studies, in fact, proved
that dry dog food is contaminated with mycotoxins, including ZEA, at higher levels and
frequency than wet dog food [122,123].

In addition to diet, other important routes of EDC ingestion in pets include chewing
and mouthing objects. For example, phthalate and BPA present in dog chewing toys and
bumpers can leach into saliva contributing to the body burden in pet dogs [124]. Fur-
thermore, it has been observed that in addition to absorption through the gastrointestinal
tract, BPA can also enter the body by direct absorption through the oral mucosa [125]. In
humans, chewing and mouthing behaviors are largely confined to toddlers and have been
acknowledged as sources of oral exposure to chemicals in toys, other children’s products,
and household dust [126].

Intergovernmental organizations (such as the EU), countries, and some local govern-
ments regulate the chemicals in children’s and other consumer products in order to mini-
mize the exposure of infants and children to chemicals that may pose health risks [127,128].
In contrast, only very general regulation to prevent the use of hazardous substances are
defined by the Consumer Product Safety Commission concerning the production of pet
chewing or mouthing objects [124]. It is noteworthy that amounts of BPA and phthalates
leaching from dog toys showed similar levels to those measured in children’s toys before
regulatory restrictions entered into force [124].

Another significant exposure route to different EDCs is house dust, especially for
indoor-living cats because of their intense licking and grooming behavior [8,9,129]. Accord-
ingly, serum PBDE concentrations in client-owned outdoor cats were significantly lower
than in indoor cats, suggesting that house dust is a primary route of exposure to PBDEs in
household cats [8,9]. It has also been recently confirmed that dust is an important exposure
pathway to PFASs for cats, and the levels are similar in humans and pet cats [15,16,130].

While much has been written of the effects of EDCs from oral exposure, research is
increasingly documenting their presence in air, which opens a debate on the risk from
inhalation as a route of exposure. EDCs have been found in both outdoor and indoor air
as volatile organic compounds (VOCs) or semi-volatile organic compounds (SVOCs) in
the gas phase or attached to particulate matter (PM2.5 and PM10) [131,132]. In outdoor
air, EDCs derive from agricultural and industrial activities, waste incineration, and from
petrol and diesel fumes [131]. Therefore, the type and quantity of pollutants vary according
to geographical location, urban versus rural sites, and with climate variations [133,134].
Indoor air, although supplied by outdoor air, can be additionally polluted by domestic
activities, such as heating, cooking, tobacco smoking, and usage of chemical-based con-
sumer products, especially from those in aerosol formats. The pollutant indoor air burden
is further influenced in the modern world through reduced ventilation and dependence on
air conditioning systems [132]. Many EDCs are indeed measurable often at higher levels
in indoor than in outdoor air [135,136], indicating the indoor air microenvironment as
the greatest inhalation exposure to EDCs for both humans and co-inhabitants companion
animals [137]. The sources, origins, and partitioning of EDCs in air are reported in Table 2.
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Table 2. Sources and air partitioning of endocrine-disrupting chemicals in air.

Chemical Source of Air Pollution Air Partitioning References

PBDEs Soft furnishings

• Distributed between the gas phase and PM,
with the percentage of particle-bound
PBDEs increasing with the increasing
bromination number

• Higher levels in urban than rural areas
• Higher concentrations in indoor air than in

outdoor air

[138,139]

PCBs

Hazardous waste sites;
improper dumping of wastes;
leaks or fires from electrical
transformers or capacitors;
waste incineration and
open burning

• Found in both gas and PM phases
• Higher levels in urban than rural areas
• Higher concentrations in indoor air than in

outdoor air (10 to 100,000 fold)
[140–142]

PFAS
Stain resistance coatings in
soft furnishings, fabrics, and
floor waxing

• More abundant in the PM than in the gas
phase, with an increasing propensity for
PM with the carbon chain length

• Indoor air concentrations half as high as
outdoor air

• Highly concentrated in indoor dust

[143–145]

BPA

Plastic consumer goods,
bottles, sports equipment,
coating pipes and food cans,
thermal paper, and burning of
plastic materials

• Found almost exclusively in PM10
• Higher levels in urban than rural areas
• Higher atmospheric concentrations in cold

season
[146–148]

Phthalates
Plastics consumer goods,
personal care products, and
air fresheners

• Ubiquitous in indoor air
• More volatile phthalates (e.g., DBP) present

in the gas phase and heavier phthalate (e.g.,
DEHP) predominant in PM

• Higher air concentrations at high ambient
temperatures

[86,137,149,150]

Despite the considerable body of evidence documenting the presence of EDCs in both
outdoor and indoor air, many questions are still open, for example, the relative importance
of the inhalation of EDCs in the gaseous versus PM format and the role of PM of different
sizes as vehicles. It has also been suggested that for some semi-volatile EDCs, dermal
uptake from air may be greater than uptake from inhalation [151].

4. Health Effects of Exposure to EDCs in Domestic Pets

A variety of EDCs (e.g., PCBs, organochlorine pesticides, dioxin-related compounds,
phthalates, BPA, PBDEs, and PFASs) have been reported in cat and dog tissues, includ-
ing genitals, adipose tissue, blood, urine, and fur [16,108,109,114,152,153]. However, in
comparison with the large number of studies regarding EDCs and the health status of
humans and wildlife, published studies on EDCs’ adverse effects in cats and dogs are scarce.
Nevertheless, it is now recognized that concurrent with elevated exposure to environmental
chemicals, there has been a steady increase in pet diseases that may be related to the effects
of pollutants, such as cancer, thyroid disorders, diabetes, heart diseases, kidney diseases,
and reproductive failure [7,154–156].

Here, we provide an overview of the current knowledge on EDC-related adverse
health effects in domestic pets, focusing on the accumulating data linking exposure to
EDCs to reproductive disorders and disturbed thyroid homeostasis.
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4.1. Reproductive Disorders

In humans, reports of declining sperm counts over the last 50 years, together with
epidemiological studies of the increased incidences of testicular cancer and genital tract
abnormalities, strongly suggest an environmental adverse effect on male reproduction, with
exposure to EDCs the most likely cause [157–159]. Specifically, there have been significant
increases in cryptorchidism and hypospadias, which present at birth, and poor semen
quality and testicular germ cell cancer (e.g., seminomas and their precursors and carcinoma
in situ lesions), which manifest in young adulthood [160,161]. These changes all seem
related and have been grouped under the common name of testicular dysgenesis syndrome
(TDS) [162]. TDS has also been reported in various wildlife species, including fish, reptiles,
birds, and mammals [163,164], suggesting that environmental factors might play a role
in its pathogenesis. These disorders may have a common origin in fetal life and result
from the disruption of embryonic programming of gonad development [162,165]. Thus, in
utero exposure to EDCs with estrogen-like or anti-androgenic activities (e.g., phthalates,
bisphenol A, PCBs, and some pesticides) have been both epidemiologically and experi-
mentally linked to TDS lesions in several species [166–170], likely through interference
with the physiological secretion of testosterone by fetal Leydig cells [167]. Recently, it has
been suggested that developmental exposure to EDCs may lead to TDS also in male dogs.
Exposure to DEHP or polychlorinated biphenyl 153 (PCB 153) increased cryptorchidism
and affected sperm quality [7,10]. In addition, exposure to PBDE congeners was negatively
correlated with the Sertoli cell number and male germ cell proliferative activity [6].

Finally, over the last 50 years, in parallel to what has been seen in humans, the
incidence of canine testicular cancer has risen significantly [11,12]. Seminiferous tubule
abnormalities and testicular germ cell neoplasia in situ comparable to human TDS have
also been described in dogs [12]. These observations strongly suggest that exposure to
EDCs may lead to TDS in dogs.

Reduced sperm counts have been widely used as an index of mammalian male sub-
fertility. Meta-analytical studies indicate a 50% global reduction from 1938 to 2011 in
sperm counts in humans [171–173]. Interestingly, the trend of the worsening of human
semen quality over time is similar in dogs that live in a human household, where a 30%
decline in sperm motility was observed over a 26 year period [7]. One can, therefore,
hypothesize that temporal trends in semen quality in humans and dogs may be due to the
shared environmental factors. Declining sperm quality has been linked with exposure to
anthropogenic chemicals that have endocrine-disrupting activity [170], and a number of
studies have shown that EDCs are present in adult testes and semen in various species,
including humans and dogs, suggesting that these chemicals have a direct acute effect
on sperm [7,174,175]. In dogs’ testes and ejaculate, DEHP and several PCB and PBDE
congeners have been reported in a range of concentrations that have been demonstrated to
perturb sperm viability, motility, and DNA integrity [7]. Interestingly, the same chemicals
have been reported in different brands of commercial dog foods, suggesting food as a
source of exposure [7].

In comparison with the large number of studies regarding EDCs’ effects on male
reproductive health, very few studies have investigated their adverse effects in female
reproduction, especially in pets. Bitches are monoestrous and fairly often suffer repro-
ductive tract disorders, such as prolonged estrous, no estrous, or ovarian cysts [176]. It is
believed that the specific hormonal regulation of reproductive processes in bitches, which
involves long progesterone and prolactin cycles and high sensitivity to endogenous and
exogenous estrogens, is believed to have an important role in the etiopathogenesis of those
disorders [177,178]. Experimental studies showed that ZEA, a mycoestrogen often found
in pet food [179–181], affects female reproductive organs [19,182]. Changes in bitches’ re-
productive systems were mainly in the ovaries and the uterus, including the degeneration
of cells, inhibition of biological activity in the ovaries, and edema and extravasations in the
uterus [18]. Exposure to low doses of ZEA has been linked with permanent uterine dys-
function, frequently leading to the spontaneous endometritis–pyometra complex [20–22].
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Recently, Sumner et al. [183] reported known environmental toxicants, including sev-
eral PCB and PBDE congeners, present in dog ovary, in some cases at higher concentrations
than in the testis. Both PCBs and PBDEs have been measured in the milk of nursing bitches.
The transfer of lipophilic compounds into the milk is a known route by which lactating
animals reduce the load of chemicals in their adipose tissue [184]. At the same time, how-
ever, the primary source of nutrition for the neonate becomes a source of exposure to the
“maternal legacy” of lipophilic chemical contaminants and may lead to perturbation of
reproductive development in pups. It was reported that the litters of maternal Arctic sled
dogs fed seal blubber as a source of environmental toxicants presented a skewed sex ratio
in favor of females [185].

A relationship between the feminization of dog litters and exposure to endocrine-
active contaminants was also suggested by Lea et al. [7]. Investigating the outcome of a
breeding program of assistance dogs, they reported a correlation between the altered sex
ratio in litters in favor of females and the temporal decline in semen quality in stud dogs
related to exposure to chemical contaminants.

4.2. Thyroid Disorders

The World Health Organization has reported that thyroid disorders (hypo- and hy-
perthyroidism) are among the most prevalent endocrinopathies in humans as well as in
domestic pets [23,186,187]. A number of environmental contaminants disrupt TH signaling
and homeostasis at numerous levels of hormonal action [188,189]. These include a range of
organohalogen compounds, such as PCBs, organochlorine pesticides (e.g., DTT), PBDEs
and PFAS, and the plasticizer BPA [190–193].

Feline hyperthyroidism (FH) is reported as one of the most common endocrine dis-
order in cats, especially in middle-aged and elderly subjects [194]. The frequency of the
diagnosis of FH has increased significantly since 1979 when it was first described as a dis-
tinct disease [7,195,196]. To date, it affects over 10% of older cats worldwide; though, the
prevalence of FH varies significantly by geographical region [194,197]. While the pathology
of FH has been exhaustively described [154,198–200], its etiology is still to be clarified.

Recently, it has been suggested that exposure to environmental thyroid-disrupting
chemicals may contribute to the etiopathogenesis of the disease. For example, it has been
observed that elevated total PBDE concentrations in home dust directly correlated with the
incidence of hyperthyroidisms in indoor cats [8]. In addition, the mix of PBDE congeners
in the serum of indoor cats was directly correlated with matched house dust samples [9].
Other compounds that can strongly disrupt thyroid function in cats are the per- and
polyfluoroalkyl substances, which are ubiquitous in indoor environments. Recent studies
indicate that serum from hyperthyroid cats had higher PFAS levels than hyperthyroid
cats [15,16]. The association of serum levels of PFAS with the dust concentrations in cats’
homes confirms that dust is an important exposure pathway in this species [130].

In addition to the environment, food may be a source of exposure for cats to PBDEs,
PCBs, and BPA, which have all been detected in cat food [104,119,120]. One large case-
control study reported an association between hyperthyroidism and cats fed from “pop-
top” cans where BPA was used to line the pop-top lids [17]. PCB and PBDE derivatives
were also found in fish/seafood-flavored canned cat food with the types and amounts
of chemicals and their metabolites consistent with those found in the fish used as raw
material [107,201]. A questionnaire-based case-control study in the UK found that one
of the risk factors for hyperthyroidism in cats was fish feed, which can contain high
concentrations of POPs [193,202].

Although studies suggest that the etiopathogenesis of FH is presumably multifactorial
and includes a combination of genetic, nutritional, and environmental factors rather than
any single etiological agent, the literature strongly suggests that EDCs may play a role in
its development by interacting synergistically with other factors in FH-prone individuals.

The effects of EDCs on thyroid homeostasis in domestic pets may be species-specific.
Indeed, whereas in cats a positive correlation has been observed between hyperthyroidism
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and EDC exposure, in dogs thyroid disease typically presents as hypothyroidism, and
studies showed a tendency to higher POP concentrations in hypothyroxinemic than in
euthyroxinemic dogs [13,14].

Species-specific effects on TH may be related to different detoxification metabolisms
in dogs and cats. PCBs are mainly metabolized in the liver to hydroxylated PCBs (OH-
PCBs) during phase I metabolism. Some OH-PCBs with a hydroxyl group in the para-
position with an adjacent chlorine atom are of particular concern on account of their
structural similarity to TH. In particular, competitive binding of OH-PCBs to the TH
transport protein transthyretin (TTR) in blood [203,204], may lead to the disruption of TH
homeostasis [205–207]. In PCB-exposed dogs, the effects on TH levels were mainly due
to the enhanced TH excretion and competitive binding of T4-like OH-PCBs to TTR [14].
However, serum patterns of OH-PCBs differ significantly between cats and dogs, with
higher chlorinated OH-PCBs (T4-like OH-PCB), the predominant OH-PCB congeners in
dog serum, while cats have higher levels of lower chlorinated OH-PCBs [208]. This might
be attributable to differences in the metabolic capacity for PCBs and in the activity of
CYP2B-like enzymes [209,210]. The binding affinity of lower-chlorinated OH-PCBs to
TTR is weak [211], which may account for the different sensitivities of dogs and cats to
EDC-related thyroid disruption.

5. Pet Dogs and Cats as Sentinels for Human Exposure

Sentinel species can be defined as animals that can be used to measure the extent
and the health consequences of exposure to environmental hazards when measurement
in human is impractical or unethical. The use of nonhuman organisms as early warning
systems for human health risk is not new. The miner’s canary used to monitor air quality
in coal mines is perhaps the most widely known example. Since then, interest in using
sentinel animals in the field of environmental monitoring has constantly grown, and there
is increasing pressure to unravel the links among animals, humans, and the environment
through a “shared risk” paradigm [212].

Various factors explain why companion animals offer advantages as sentinels for
human exposure and health. While environment/health outcome links in humans may
appear biologically plausible and common sensical, in practice they can be hard to prove.
Obstacles include lifestyle choices and habits, such as mobility, heterogeneity, and diverse
exposure histories. For example, the long latency of many chronic conditions means that
some people may not be diagnosed with a particular disease when they have already left an
environment that may mask clear causal links between the forces of environmental change
and human risk. In contrast, pets tend to be less mobile and may be exposed at higher levels
to a given environmental hazard than their cohabiting humans, whose lifestyle choices
may actively modify exposures.

The strength of epidemiological exposure studies in pets also lies in the relative
freedom from concurrent exposures, bias due to the fact of confounding and, to some
extent, exposure misclassification. In humans, the influence of cigarette smoking, alcohol,
or occupational exposures may mask an effect of community exposure to environmental
hazards [213]. Furthermore, pet dogs and cats have a shorter latency to the development of
an environmentally induced health condition, on account of their smaller bodies and short
lifespan [214,215], thus giving more insight into cause–effect relationships.

A particular advantage of pet cats as sentinels compared to other animals is that this
species, ranging from indoor-only house pets to feral cats, occupies a number of different
habitats. Sampling cats offers the combined advantage of monitoring both domestic species
and urban wildlife species, rather than using one species as an indoor sentinel and another,
with a different physiology, as an outdoor sentinel.

Pets may be particularly useful as sentinels for reproductive disorders. The routine
surgical neutering of hundreds of thousands of dogs and cats worldwide provides easy ac-
cess to surplus reproductive tissues, which can be used for research purposes. Furthermore,
access to the controlled breeding populations of dogs routinely sampled for sperm quality
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may provide a cost-effective means of sperm analyses without the social implications that
would accompany analogous human studies.

Finally, indoor pets may be particularly useful sentinels of chemical exposures for
children. Pets live close to the ground, chewing on domestic objects, and licking and
self-grooming—all habits similar to those of human toddlers, who spend a lot of time
crawling on floors, with much hand-to-mouth activity [216,217]. As an example, it has
been observed that increased floor contact time and grooming/mouthing behavior in both
cats and young children (age 1.5 to 5 years) led to dust consumption up to seven-fold more
than adult humans [218]. This correlates to POP serum levels in indoor cats as well as in
children at significantly higher levels compared to their matching adults [219,220].

These considerations strongly suggest domestic pets as being suitable to serving as
sentinels of human exposure to environmental pollutants and have, in fact, led numerous
authors to use epidemiological data on pet environmental exposure as an indicator for
human health risks [212,213,221–225]. However, the results have been variable and often
contradictory. Differences in body size, diets, behavioral patterns, and/or xenobiotic
metabolization systems might account for the range of findings.

Some authors suggested that cats are adequate sentinels of human exposure to
POPs [9,104,214], but others have not confirmed the role as sentinels of these contaminants
in dogs [115,226]. Several authors reported that dogs show much lower levels of some
POPs than other mammals (including cats and humans), even though dogs are exposed
to higher dietary levels when fed commercial food [108,114,115,226,227]. Dogs, unlike the
majority of mammals, efficiently metabolize and eliminate some POPs, which supports the
hypothesis that this species would not be a good sentinel for human exposure and points to
domestic cats as a better model to assess human exposure to these chemicals. However, the
use of cats as sentinels for human exposure to POPs must be assessed carefully. Cats are
hyper-carnivores and have a lower activity of certain cytochrome P450-enzymes involved
in phase I and II reactions, limiting their ability to metabolize certain xenobiotics [228].
Accordingly, higher levels of various organohalogen compound residues were found in
cats’ sera than in dogs [108,109] and humans [9,117,129].

Similarly, species-related differences have been observed for other classes of EDCs.
For example, phthalate concentrations in cat urine were significantly higher than in dog
samples from the same geographical area [215] due to the lower glucuronidation capacity
in cats than in other species [153]. These observations strongly suggest that cats may tend
to accumulate EDCs to a greater extent, because they are metabolically less equipped to
degrade pollutants than dogs and humans [109,115,153], indicating that cats also do not
fully represent human EDC exposure [229].

6. Conclusions

In summary, domestic pets are exposed to EDCs in indoor and outdoor environments
and in their diets, with sources and exposure routes similar to humans. Furthermore, health
effects comparable to those linked to human exposure to EDCs have been observed in cats
and dogs, as well as the higher occurrence of various types of cancer, hyperthyroidism, and
renal failure that have been associated with EDC contamination in diets.

The focus of the scientific community on the risks of EDCs still relies mainly on human
medicine, and the effects on companion animals are often disregarded. However, EDC
contamination is a global, ubiquitous public health problem and, on the basis of a “one
health” concept, focus on companion animals should be considered as well.

Clearly, pet dogs and cats may hold out considerable potential as sentinels for human
environmental exposure and point to a path for future research. However, there are still
critical gaps in knowledge that need to be addressed. Although pet animals occupy the
same environments as their owners and are expected to be exposed in broadly similar
ways, their exposures are not quite the same, and quantitative information on the relative
exposure risk is still incomplete. Formulations of pet and human foods are very different,
and animals’ metabolism and pharmacokinetics for EDCs may differ significantly from
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humans, which also implies different relationships between exposure, tissue concentrations,
and health outcomes. Moves towards a “shared risk” attitude in public health could, at
least, partly overcome the current scientific barriers and provide tools to link human and
animal environmental disease risks, with benefits for both human and animal health.
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18. Gajęcka, M.; Zielonka, Ł.; Gajęcki, M. The Effect of Low Monotonic Doses of Zearalenone on Selected Reproductive Tissues in
Pre-Pubertal Female Dogs—A Review. Molecules 2015, 20, 20669–20687. [CrossRef]
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159. Balabanič, D.; Rupnik, M.; Klemenčič, A.K. Negative Impact of Endocrine-Disrupting Compounds on Human Reproductive

Health. Reprod. Fertil. Dev. 2011, 23, 403–416. [CrossRef]
160. Toppari, J. Is Semen Quality Declining? Andrologia 1996, 28, 307–308. [CrossRef] [PubMed]
161. McLachlan, R.I.; Rajpert-De Meyts, E.; Hoei-Hansen, C.E.; de Kretser, D.M.; Skakkebaek, N.E. Histological Evaluation of the

Human Testis—Approaches to Optimizing the Clinical Value of the Assessment: Mini Review. Hum. Reprod. 2007, 22, 2–16.
[CrossRef] [PubMed]

162. Skakkebæk, N.E.; Rajpert-De Meyts, E.; Main, K.M. Testicular Dysgenesis Syndrome: An Increasingly Common Developmental
Disorder with Environmental Aspects. Hum. Reprod. 2001, 16, 972–978. [CrossRef]

163. Edwards, T.M.; Moore, B.C.; Guillette, L.J.; Olea, N.; McLachlan, J.; Page, D. Reproductive Dysgenesis in Wildlife: A Comparative
View. Int. J. Androl. 2006, 29, 109–121. [CrossRef] [PubMed]

164. Veeramachaneni, D.N.R.; Amann, R.P.; Jacobson, J.P. Testis and Antler Dysgenesis in Sitka Black-Tailed Deer on Kodiak Island,
Alaska: Sequela of Environmental Endocrine Disruption? Environ. Health Perspect. 2006, 114 (Suppl. S1), 51–59. [CrossRef]

165. Sharpe, R.M.; Skakkebaek, N.E. Testicular Dysgenesis Syndrome: Mechanistic Insights and Potential New Downstream Effects.
Fertil. Steril. 2008, 89, e33–e38. [CrossRef] [PubMed]

166. Fisher, J.S.; Macpherson, S.; Marchetti, N.; Sharpe, R.M. Human “Testicular Dysgenesis Syndrome”: A Possible Model Using
in-Utero Exposure of the Rat to Dibutyl Phthalate. Hum. Reprod. 2003, 18, 1383–1394. [CrossRef] [PubMed]

167. Sharpe, R.M. Pathways of Endocrine Disruption during Male Sexual Differentiation and Masculinization. Best. Pract. Res. Clin.
Endocrinol. Metab. 2006, 20, 91–110. [CrossRef]

168. Skakkebæk, N.E. Endocrine Disrupters and Testicular Dysgenesis Syndrome. Horm. Res. 2002, 57 (Suppl. S2), 43. [CrossRef]
169. Lottrup, G.; Andersson, A.M.; Leffers, H.; Mortensen, G.K.; Toppari, J.; Skakkebæk, N.E.; Main, K.M.; de Muinck Keizer-Schrama,

S.; Main, K.M.; Swan, S.; et al. Possible Impact of Phthalates on Infant Reproductive Health. Int. J. Androl. 2006, 29, 172–180.
[CrossRef]

170. Bay, K.; Asklund, C.; Skakkebaek, N.E.; Andersson, A.M. Testicular Dysgenesis Syndrome: Possible Role of Endocrine Disrupters.
Best. Pract. Res. Clin. Endocrinol. Metab. 2006, 20, 77–90. [CrossRef] [PubMed]

171. Carlsen, E.; Giwercman, A.; Keiding, N.; Skakkebaek, N.E. Evidence for Decreasing Quality of Semen during Past 50 Years. BMJ
1992, 305, 609–613. [CrossRef] [PubMed]

172. Swan, S.H.; Elkin, E.P.; Fenster, L. The Question of Declining Sperm Density Revisited: An Analysis of 101 Studies Published
1934–1996. Environ. Health Perspect. 2000, 108, 961–966. [CrossRef] [PubMed]

173. Levine, H.; Jørgensen, N.; Martino-Andrade, A.; Mendiola, J.; Weksler-Derri, D.; Mindlis, I.; Pinotti, R.; Swan, S.H. Temporal
Trends in Sperm Count: A Systematic Review and Meta-Regression Analysis. Hum. Reprod. Update 2017, 23, 646–659. [CrossRef]
[PubMed]

174. Kamarianos, A.; Karamanlis, X.; Theodosiadou, E.; Goulas, P.; Smokovitis, A. The Presence of Environmental Pollutants in the
Semen of Farm Animals (Bull, Ram, Goat, and Boar). Reprod. Toxicol. 2003, 17, 439–445. [CrossRef]

175. la Rocca, C.; Tait, S.; Guerranti, C.; Busani, L.; Ciardo, F.; Bergamasco, B.; Perra, G.; Mancini, F.R.; Marci, R.; Bordi, G.; et al.
Exposure to Endocrine Disruptors and Nuclear Receptors Gene Expression in Infertile and Fertile Men from Italian Areas with
Different Environmental Features. Int. J. Environ. Res. Public Health 2015, 12, 12426–12445. [CrossRef]

176. Walter, B.; Otzdorff, C.; Brugger, N.; Braun, J. Estrus Induction in Beagle Bitches with the GnRH-Agonist Implant Containing 4.7
Mg Deslorelin. Theriogenology 2011, 75, 1125–1129. [CrossRef]

177. Concannon, P.W. Reproductive Cycles of the Domestic Bitch. Anim. Reprod. Sci. 2011, 124, 200–210. [CrossRef]
178. Queiroga, F.L.; Pérez-Alenza, D.; Silvan, G.; Peña, L.; Illera, J.C. Positive Correlation of Steroid Hormones and EGF in Canine

Mammary Cancer. J. Steroid Biochem. Mol. Biol. 2009, 115, 9–13. [CrossRef]
179. Zwierzchowski, W.; Gajȩcki, M.; Obremski, K.; Zielonka; Baranowski, M. The Occurrence of Zearalenone and Its Derivatives in

Standard and Therapeutic Feeds for Companion Animals. Pol. J. Vet. Sci. 2004, 7, 289–293.
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