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Simple Summary: To provide insights into the role of the extracellular matrix (ECM) in health and
pathological conditions, it is important to identify tissue-specific proteins, their interacting networks
and functions. Latest discoveries suggest that multiple tumors express, and use to their advantage,
atypical ECM components that are not found in the cancer tissue of origin. The aim of this review was
to summarize and critically assess available information on the expression and function of atypical
carcinoma-, bone- and cartilage-specific components of the extracellular matrix. To the best of our
knowledge, this topic has not previously been covered by any published review, and thus provides a
novel perspective for devising strategies to target tumor stroma as anti-cancer therapeutic options.

Abstract: The extracellular matrix (ECM) is the complex three-dimensional network of fibrous
proteins and proteoglycans that constitutes an essential part of every tissue to provide support for
normal tissue homeostasis. Tissue specificity of the ECM in its topology and structure supports
unique biochemical and mechanical properties of each organ. Cancers, like normal tissues, require
the ECM to maintain multiple processes governing tumor development, progression and spread. A
large body of experimental and clinical evidence has now accumulated to demonstrate essential roles
of numerous ECM components in all cancer types. Latest findings also suggest that multiple tumor
types express, and use to their advantage, atypical ECM components that are not found in the cancer
tissue of origin. However, the understanding of cancer-specific expression patterns of these ECM
proteins and their exact roles in selected tumor types is still sketchy. In this review, we summarize the
latest data on the aberrant expression of bone and cartilage ECM proteins in epithelial cancers and
their specific functions in the pathogenesis of carcinomas and discuss future directions in exploring
the utility of this selective group of ECM components as future drug targets.

Keywords: bone; cartilage; extra-cellular matrix (ECM); ectopic expression; cancer

1. Introduction

The identification of extracellular matrix (ECM) proteins and their underpinning
tissue-specific networks is a key step towards providing insights into the role of the ECM in
health and pathological conditions. The ECM is a three-dimensional supramolecular entity,
with a unique composition and topology, that provides architectural/mechanical support
and biochemical cues for tissue morphogenesis, differentiation and homeostasis. Although
the ECM composition can be broadly described as a combination of water, proteins and
polysaccharides (the proportions of which are defined by the functional requirements of the
tissue [1]), the importance of the ECM is clearly demonstrated by its role in tumorigenesis
and metastasis [2–4]. The ECM provides a dynamic and reciprocal dialogue between
cells (e.g., epithelial, fibroblast, adipose and endothelial cells) and various matrix compo-
nents; cells can remodel the ECM, whilst the matrix can influence cell behavior (“dynamic
reciprocity” [5]). The loss of correct matrix organization, crosstalk and homeostasis is a
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hallmark of solid tumors, with both non-malignant and malignant cells contributing to
matrix deposition and remodeling.

In cancer, remodeling of the interstitial ECM results in matrix stiffness, biophysi-
cal/biochemical changes that alter signaling pathways, cell migration and tumor progres-
sion. Indeed, tissue fibrosis, inflammation (which potentiates stromal fibroblast activation)
and cancer are inextricably connected [6], with desmoplasia being commonly observed in
several solid tumors. A correlation between desmoplasia and cancer is well recognized
in breast cancer [7], pancreatic cancer [8] and metastatic lymph nodes [9]. In fact, estab-
lishment of this tumor-supportive microenvironment is required for the maintenance of
multiple processes that govern tumor development, progression and metastasis, which
includes: changes in the abundance and composition of ECM components; modifications at
the post-translational level; proteolytic degradation, followed by formation of matrikines;
and architectural remodeling of ECM for opening cell migratory passages [2]. A large body
of experimental and clinical evidence has shown that altered expression of matrices in
tumors is associated with cancer onset and progression and reduced response to treatment
due to altered apoptosis [10]. The latest evidence also suggests that multiple cancer types
express, and use to their advantage, atypical ECM components that are not found in the
cancer tissue of origin.

The exact composition and organization of the ECM vary between organs and dictate
its distinct functions. To allow tissue homeostasis and repair and adaptation to a changing
environment, the ECM is constantly renewed by fibroblasts synthesizing ECM components,
while also secreting ECM-degrading enzymes. Cancers, like normal tissues, actively modify
their ECM to serve their specific growth requirements. Additionally, the extreme plasticity
of tumor cells leads to the activation of corrupt transcription programs, resulting in the
production of atypical ECM components that are not found in the cancer tissue of origin,
but which are important for cancer pathogenesis and, thus, may represent specific targets
for cancer diagnosis and treatment.

Cancer that arises in the epithelia is the most common type and is found in most
organs of the human body. In this review, we summarize cancer-specific expression
patterns of bone and cartilage ECM proteins and their roles in specific tumor types as an
overview of these ectopically expressed ECM proteins in cancer is missing. We also discuss
future directions, exploring the utility of the identified ECM components as diagnostic
and prognostic markers, as well as novel therapeutic targets for cancer treatment. Outside
the scope of this review are the expression and function of atypical ECM components in
non-epithelial cancers that have also been documented.

2. Cancer-Related Functions of the ECM

The ECM is a complex meshwork of highly crossed-linked proteins that provides
architectural support, biochemical cues and anchorage for the cells that comprise the tis-
sue. There are two basic types of ECM, which are distinguished by their location and
composition [11], including the interstitial matrix and pericellular matrix (a layer that
surrounds cells; for instance, the basement membrane). The interstitial matrix constitutes
the bulk of the ECM, while the basement membrane interacts directly with the epithelium
and endothelium to which epithelial cells can anchor, providing cues for the establish-
ment of apico-basal polarity and cell differentiation. Although ECM can be deposited
by any cell type, the major producers are fibroblasts and myofibroblasts, which are the
primary mediators of fibrosis [12]. The potent stimulator of fibrosis is the transforming
growth factor beta (TGF-β1) that can enhance expression of the ECM remodeling gene
ACTA2 (alpha-smooth muscle actin (α-SMA)) [13], PLOD2, encoding procollagen-lysine,
2-oxoglutarate 5-dioxygenase 2 that is required for collagen deposition [14,15] and nu-
merous other pro-fibrotic proteins. The secretion of both pro-fibrotic and inflammatory
factors, such as transforming growth factor alpha, TGF-β1, fibroblast growth factor 2
(FGF2), platelet-derived growth factor and epidermal growth factor, is orchestrated by
cancer cells, and they can induce differentiation of stromal cells into cancer-associated
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fibroblasts (CAFs) to support tumor growth [16]. CAFs can exhibit heterogeneity and are
believed to have multiple origins (e.g., tissue-resident or bone-marrow-derived fibroblasts
and adipocytes [17,18]), and produce large amounts of structural ECM proteins, including
fibrillar and non-fibrillar collagens, elastic fibers, glycoproteins and proteoglycans. These
proteins provide a supportive framework, with laminin and fibronectin forming bridges
between these structural components to strengthen it and to connect cells with the ECM
and increase matrix stiffness around the tumor [19].

The increased deposition of collagenous proteins and changes to fiber alignment leads
to the alteration of ECM homeostasis, representing key characteristics of cancer that are
associated with poor survival rates [20–23]. The perturbation of ECM homeostasis affects
the biochemical and biophysical properties of the matrix, both of which are crucial for
normal tissue function. For example, in breast cancer, three tumor-associated collagen
signatures have been identified: densely packed collagen around the tumor, spheroidal
shells surrounding deposited collagen, and linear outgrowths of collagen leading into the
breast parenchyma [24,25]. It has been shown that breast cancer becomes more invasive
upon increased collagen bundling, with invasion of ductal breast cancer cells into collagen
matrices mediated by lysyl oxidase-like 3 that reinforces local matrix stiffness [22]. More-
over, ECM fiber alignment can enhance cell-ECM interactions and facilitate the migration
of cancer cells [26]. Once synthesized, the ECM proteins undergo post-translational modifi-
cations that affect matrix interactions with other molecules and cancer cell motility [27].
Concentration gradients for haptotactic migration or pattern formation can be created by
binding of the ECM proteins to soluble/secreted factors and growth factors [28]. This
interaction is bidirectional [29] and is critical for cell–ECM interactions.

Cancer cell–ECM interaction can activate several pathways related to mechanotrans-
duction, mediated by integrins, discoidin domain receptors and syndecans [30,31]. For
example, sensing and adaptation to tissue stiffness occurs by binding breast myoepithelial
cells to fibronectin, either through constitutively expressed integrin α5β1 in healthy tissue,
or selectively expressed αvβ6 in cancer [32]. Indeed, integrins have a close relationship
to force, conveying mechanical stresses bidirectionally across the plasma membrane and
transducing mechanical forces into chemical signals [33]. The cell–ECM contact guides cell
polarization, including intracellular location of the nucleus and the microtubule organizing
center, and this is controlled by lamin A/C that acts as a mediator in ECM sensing and
signal transduction [34]. Transmission of the mechanical stress (e.g., osmotic compression)
to the cells is mediated by the ECM and this impacts cell proliferation and migration in a
3D environment [35]. Moreover, the ECM aids in the spatial organization of intercellular
junctions; the magnitude of intra-/intercellular forces, controls cell–cell interactions [36]
and serves as an adhesive substrate for cell migration.

The ECM components undergo proteolytic and non-proteolytic degradation as part of
the remodeling process. This includes replacement of normal ECM with tumor-derived
ECM. Multiple target-specific proteases [37] support cancer-cell motility by opening mi-
gratory tracks and reducing the mechanical stress on migrating cells. For instance, the
overexpression of matrix metallopeptidase 11 (MMP-11) in macrophages increases mi-
gration of human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells
by activating the MAPK pathway via binding of the chemokine CCL2 to its receptor on
cancer cells, followed by activation of the MAPK pathway and upregulation of MMP-9 [38].
Single cell invasion can be suppressed by the dense matrix, while collective cell migration
is less sensitive to its density, with MMP secretion increasing the rates of cell migration
independent of cell–cell adhesion [39]. In addition, there are several types of cellular
proteolytic surface structures rich in filamentous actin, β1 integrin and MT1-MMP that
can cleave and realign ECM to facilitate migration [40]. Growth factors can be tethered to
the ECM, protecting them from degradation, and be activated by proteases allowing their
spatial-temporal availability required for tumor progression. Moreover, ECM molecules
can be cleaved by proteases, producing a range of bioactive fragments, which regulate nu-
merous biological processes [41] and can be shed into the circulation [42]. These fragments,
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together with other ECM molecules, can serve as diagnostic and prognostic markers in
different epithelial cancers.

It is important to note, however, that due to limited availability of a robust methodol-
ogy for the assessment of the precise ECM composition of both normal tissues and cancers,
knowledge of the ECM landscape and the specific functions of its individual members is
still sparse.

3. Matrisome Components/Classes

The matrisome or global composition of the ECM is composed of ~300 unique matrix
macromolecules, which can be classified into core matrisome and matrisome-associated
proteins [43,44]. Core ECM proteins represent ~1–1.5% of the mammalian proteome,
excluding alternatively spliced isoforms, and comprise glycoproteins, collagens and pro-
teoglycans [45]. The matrisome-associated proteins include ECM-affiliated proteins (i.e.,
architecturally similar to the ECM proteins or those that associate with them), ECM reg-
ulators (e.g., remodeling enzymes, proteases and crosslinkers) and secreted factors [45].
Although the ECM of different source tissues shares common proteins, there is a subset of
matrisome proteins that display tissue-specific expression (also known as the ‘matrisome
signature’) [45], which can be remodeled upon metastasis and chemotherapy [46]. The pro-
teins are secreted both by cancer cells and stromal cells. These tumor- and stroma-derived
ECM molecules also differ in cancers with different metastatic potential [47].

The proteolytic processing of some ECM components leads to the production of
bioactive fragments, such as matrikines or matricryptins, that can mediate cancer-cell
invasiveness. There are two major classes of matrikines; natural matrikines and cryptic
matrikines that are inactive in the mature/secreted form until undergoing conformational
changes [48]. The major sources of matrikines are collagens, glycoproteins, elastin and
laminins [49].

Bone and cartilage are two specialized forms of connective tissues, which are composed
of cells embedded within a matrix. Cartilage, bone, tendon and ligaments are all composed
of an ECM made of collagens, proteoglycans and specialized glycoproteins that are actively
synthesized, precisely assembled and subsequently degraded by the resident connective
tissue cells.

3.1. Bone-Specific Matrisome

The two main types of bone composition are cortical and trabecular bone. These two
types have differing structural properties, affecting the way in which each responds to
mechanical loading [50]. Constant remodeling of bones is carried out throughout life to
maintain robust structure and function. Differing from that of other connective tissue, bone
is separated by a layer of osteoblasts that are connected by tight and gap junctions. These
osteoblasts mainly produce lamellar type I collagen that is extremely dense and heavily
cross-linked by several enzymes [51,52].

While ~90% of the bone ECM is composed of type I collagen, there are still quan-
titatively ~5% of the ECM protein components that present interesting properties [51].
Proteomic analysis of decalcified bone suggests that there are well over 100 ECM proteins
that make up these bone-specific ECM components [53,54]. It is the components of this
unique bone ECM that can induce the production of new osteoblast-lineage cells, such as
mesenchymal stem cells, osteocytes, and osteoclasts. The non-collagenous bone proteins
can be divided into four groups: γ-carboxyglutamate-containing proteins, proteoglycans,
glycoproteins and small integrin-binding ligands, N-linked glycoproteins (SIBLINs) [55].
The bone ECM also contains inorganic components of mainly calcium-deficient apatite and
trace elements [56].

3.2. Cartilage-Specific Matrisome

Another unique and multifaceted tissue is the cartilage, specially adapted to bear
compressive loads and significant shear force [57]. In the human body the cartilage is
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divided into elastic, fibrocartilage, fibroelastic or hyaline cartilage depending on the com-
position of the matrix [58]. The protein structure of these types of cartilage is primarily
composed of collagen type II, combined with an interlocking mesh of fibrous proteins and
proteoglycans, hyaluronic acid and chondroitin sulfate [59]. The cartilage space is subject
to a very harsh biochemical environment and is also devoid of blood vessels, lymphatics,
and nerves. Much of the cartilage matrix is then composed of tissue fluid, accounting for
~70–80% of the total cartilage weight [60]. These large, hydrated spaces of ECM are created
by aggrecan, the most abundant proteoglycan within cartilage [61].

Formation of the cartilage arises from the mesenchyme, with some of these cells
aggregating to form a blastema. Within this blastema, the secretion of the cartilage matrix
begins; the cells are now referred to as chondroblasts. A specialized and tough matrix is
formed and the cells encased within are then called chondrocytes [62]. This chondrocyte cell
type is responsible for the development, maintenance and repair of the cartilage ECM [60].
The chondrocytes are responsible for fluid exchange within the matrix as well and account
for ~1–6% of the total ECM mass within the cartilage [63]. While self-repair in cartilage is
uncommon, the ECM is continuously remodeled [59,64], producing mechanical, electrical
and chemical signaling that can have an effect on the key functions of chondrocytes [62].

Ectopic expression of these unique bone and cartilage matrix proteins [56] has been
reported in non-skeletal tissues as well as in epithelial tumors (Figure 1, detailed summary
in Table 1). Their presence in solid tumors, at sites where they present no homeostatic
function, poses an intriguing question as to their regulation and function in carcinomas.
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4. Bone- and Cartilage-Specific ECM Components in Cancer Progression, Spread
and Invasion
4.1. Collagenous Proteins

The ectopic expression of bone [56] and cartilage [65] collagenous proteins has been
reported in various epithelial tumors. Collagens are characterized into 28 types, with all
containing specific amino acid sequences encoding one or more triple-helical domains [66].
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The ECM of bone and cartilage is composed predominantly of a fibril-forming collagen [67],
which provides structural and functional integrity of the tissue under physiological condi-
tions, and ‘minor collagens’, which are present at low quantities but have vital functions.
However, deposition of a fibrotic, collagen-rich ECM within TME can result in cancer
establishment and progression and failure in the therapeutic response [68].

Collagen type II is the most abundant fibril-forming collagen of hyaline, fibrocartilage
and elastic cartilages, representing ~50% of the protein and 80–95% of the total collagen
content [69]. Collagen type IIA (containing an additional exon 2 in the NH2-propeptide
that encodes a von Willebrand factor C domain) and IIB are produced by alternative
splicing of exon 2 in the pre-mRNA and are spatially expressed during development and
chondrogenesis, with collagen type IIA mRNA expressed in chondroprogenitor cells and
collagen type IIB expressed by chondrocytes [69]. Like other fibril-forming collagens (i.e.,
types I, III, V, XI, XXIV and XXVII), collagen type IIB is synthesized as a procollagen form
that is cleaved by ADAMTS-3 (ADAM metallopeptidase with thrombospondin type 1
motif 3) to remove the NH2-terminal propeptide domain prior to its incorporation into
fibrils in the matrix [70,71]. The NH2-propeptide of collagen type IIB can induce death
of chondrosarcoma (hCh-1), cervical cancer (HeLa) and breast cancer (MDA-MB231) cell
lines via interaction between the RGD sequence present in the propeptide and the cellular
integrins αVβ3 and αVβ5 [72]. Unlike collagen type IIB, collagen type IIA is deposited
into the ECM as pN-procollagen, without removal of the NH2-propeptide, which is used
for binding of growth factors, such as bone morphogenetic protein (BMP-2) and TGF-β1
through the von Willebrand factor C domain [73]. Collagen type II is synthesized and
secreted by stromal fibroblasts, forming a collagen-rich ECM that supports endothelial cell
migration and angiogenesis in high-grade serous carcinoma, as a response to increased
levels of the initiator methionine tRNA (tRNAi

Met) [74].
A minor fibril-forming collagen type V is one of the predominantly secreted collagens

in the bone matrix and is essential for the fibrillation of collagen types I and III. COL5A1
has been shown to be upregulated in multiple epithelial cancers [75], including lung
adenocarcinoma metastasis [76] and invasive ductal carcinoma with distant metastasis [77],
while COL5A2 is overexpressed in bladder cancer [78]. Colorectal tumors co-express
COL5A2 and COL11A1 [79], with COL5A2 protein binding to DDR1 and upregulating
the WNT/β-catenin and PI3K/mTOR signaling pathways [80]. Co-expression of the high
(COL5A1)2/low (COL5A2) heterotrimer has been identified as an unfavorable prognostic
factor for patients with tongue squamous cell carcinoma [81]. A decrease in collagen type V
is linked to a decrease in tumoral and microvessel apoptosis, as well as reduction in collagen
types I and III in non-small-cell lung cancer [82]. Ablation of α3(V) in MMTV-PyMT mice
slows tumor growth within mammary glands [83]; this agrees with previous findings
showing that this protein is overexpressed in breast cancer invasive ductal carcinoma and is
regulated by TGF-β1 [77]. Production of collagen type V increases during the progression
of pancreatic ductal adenocarcinoma, and this is mediated by pancreatic stellate cells in the
stroma [84], promoting cell migration and actin polymerization via the COL5A1-PPRC1-
ESM1 axis, as has been shown in glioblastoma [85].

Collagen type IX is an integral cartilage ECM protein that belongs to the FACIT
collagen subfamily and is present in the chondrocytes of growth plate cartilage, adult
articular cartilage and intervertebral discs. mRNA, encoding collagen type IX, is alterna-
tively spliced, generating isoforms that display a temporospatial expression pattern during
mouse embryonic development [86]. Genetic variants in the COL9A1 gene (i.e., rs550675)
have shown an association with oral squamous cell carcinoma in the male population [87].
Epithelial–mesenchymal transition (EMT), invasion and migration in gastric cancer is me-
diated by ubiquitin-specific protease 3, which interacts with and deubiquitinates/stabilizes
COL9A3 and COL6A5 [88]. High expression levels of both ubiquitin-specific protease 3
and COL9A3, compared to those of only one or low expression levels, result in the worst
outcomes for patients with gastric cancer [88].
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Collagen type X is a homotrimeric protein that constitutes ~1% of total collagen in
adults and is produced by hypertrophic chondrocytes, with exclusive localization in the
hypertrophic cartilage and the calcified zone of articular cartilage [89–91]. Bioinformatics
analysis has demonstrated that COL10A1 is upregulated in breast cancer, with expression
levels positively correlated with estrogen receptor, progesterone receptor, HER2 and nodule
status [92]. Collagen type X localizes to tumor vasculature [93] and directly interacts with
the prolyl 4-hydroxylase beta polypeptide in breast cancer [94], promoting malignant
progression. Similarly, high levels of COL10A1 have been observed in gastric cancer,
representing a key independent predictor of poor outcomes [95], probably because of
COL10A1-mediated upregulation of lymphoid enhancer-binding factor 1 and Wnt2 [96].
Immune infiltration in pancreatic cancer correlates with high COL10A1 expression levels,
with a new TUG1/miR-144-3p/COL10A1 axis identified upstream of the non-coding RNA
pathway [97]. The progression and invasion of colorectal cancer can be promoted by
visinin-like 1 protein via targeting of COL10A1 [98].

Collagen type XII is a homodimer found in association with type I collagen-containing
fibrils, with a known amplification of the COL12A1 gene and overexpression in colorectal
cancer [99,100]. This collagen is expressed by osteoblasts and localizes to areas of bone
formation and tendon. There are two splice variants of collagen type XII, ‘large’ XIIA and
‘small” XIIB, that have differential expression [101]; however, their functional significance is
yet to be discovered. Collagen type XII is secreted by CAFs and regulates the organization
of collagen type I, creating a pro-invasive environment for cancer dissemination [102].
Enrichment analysis of genes in the COL12A1 neighborhood in colorectal cancer identified
focal adhesion and PI3K-AKT signaling pathways [99]. A positive correlation was found
between elevated levels of COL12A1 and tumor invasiveness, metastasis, and advanced
clinical representation of gastric cancer [103].

Collagen type XXIV is a fibril-forming collagen, expressed by differentiating os-
teoblasts in the forming skeleton and has a possible role in the formation of a mineralization-
competent bone matrix [104]. There are two spliced products that differ in 5′-untranslated
sequences [105]. The mRNA expression of COL24A1 is significantly upregulated and asso-
ciated with tumor size in patients with squamous cell carcinoma of the head and neck [106].
Similarly, COL24A1 is upregulated in hepatocellular carcinoma compared to normal hepatic
tissue and is indicative of poor prognosis for cancer patients [107].

4.2. Proteoglycans

The small leucine-rich proteoglycans (SLRP; 18 members categorized into five classes)
are major non-collagen components of the ECM that bind to various extracellular recep-
tors/ligands (e.g., TGF-β1, collagens, fibronectins, etc.) through their bare β-sheets that are
present on the concave surface of leucine-rich receptors and regulate cell-matrix homeosta-
sis [108]. These proteins are functionally involved in bone development and homeostasis,
including cell proliferation, formation of connective tissue, organic matrix deposition, min-
eral deposition and bone remodeling [109,110]. Although biglycan, asporin and decorin
(key constituents of the bone ECM) belong to the class I SLRP, they possess both pro-
and anti-tumorigenic potential and have different roles in the pathogenesis of different
cancers [111]. Upregulation of biglycan (BGN; also known as proteoglycan-1 and dermatan
sulfate PG-1) has been reported in multiple types of solid tumors, including prostate [112],
pancreatic [113], gastric [114], colon [115], endometrial [116–118], bladder [119] and breast
cancers [120]. For instance, in prostate cancer, the expression of biglycan is linked to
TMPRRS2:ERG fusion, PTEN deletion and androgen receptor levels [112]. In pancreatic
cancer, biglycan is overexpressed, leading to the inhibition of TGF-β1-responsive and
-unresponsive cancer cells through induction of G1-arrest, associated with an increase in
p27 and reduction in cyclin A and proliferating cell nuclear antigen [113]. While invasion
and metastasis of gastric cancer is significantly increased upon upregulation of biglycan
that activates the focal adhesion kinase (FAK) signaling pathway (inducing phosphoryla-
tion of FAK and Paxillin) [114], tumor angiogenesis has been linked to biglycan-mediated
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regulation of vascular endothelial growth factor (VEGF), correlated with activation of the
ERK signaling pathway in colon cancer [115]. In addition to sequestering in the ECM,
biglycan can exist as a soluble molecule upon cleavage from the ECM (proteolytic digestion
or secreted by activated macrophages) that acts as a damage-associated molecular pattern
(DAMP) protein [121]. Biglycan is a ligand for macrophage toll-like receptor 2 (TLR2) and
TLR4, with induced signaling leading to the activation of p38, p42/44, NF-kB, MyD88
and subsequent generation of tumor necrosis factor alpha and macrophage inflammatory
protein 2 [122]. Tumor cell intravasation and metastasis can be promoted by biglycan
through the NF-kB and ERK signaling pathways [123].

Another member of the class I SLRP, asporin [111], has been identified as a potential
diagnostic marker at the gene level for colorectal [124] and gastric cancers [125,126]. Al-
though asporin is upregulated in pancreatic ductal [127], prostate [128,129] and breast [130]
cancers, it acts as a tumor-suppressor gene in triple-negative breast cancer [131]. In scir-
rhous gastric cancer, asporin is predominantly secreted by CAFs and this leads to the
activation of Rac1 through interaction with CD44 [132]. The most significant cancer-related
pathways regulated by asporin are FGF2, TGF-β1, BMP-2, epidermal growth factor receptor
(EGFR) and CD44 [133].

Aggrecan is deposited in cartilage, the aorta, discs and tendon, and has a role in the
viscoelasticity and tensile strength of cartilage together with collagen type II [134]. During
the progression of laryngeal squamous cell carcinoma, aggrecan undergoes significant
compositional and structural changes, with a stage-related loss of aggregable aggrecan
adjacent to apparently normal cartilage and strong presence in advanced stages [135].
Protein levels of this proteoglycan are increased and demonstrate primary localization in
tumor epithelial cells in human ovarian cancer tissues [136]. Increased expression levels of
aggrecanases (e.g., ADAMTS-1, -4 and -5) and the tissue inhibitor of metalloproteinase 3,
which regulates ADAMTS proteolytic activity, have also been seen in ovarian tumors [136].
In contrast, metastatin (also known as a hyaluronan-binding complex), which is released
from the aggrecan core protein, can restrict formation of tumor nodules in the lungs of
mice injected with B16BL6 melanoma or Lewis lung carcinoma cells [137]. This effect
can be explained by the inhibitory effect of metastatin on the migration/proliferation of
endothelial cells and VEGF-induced angiogenesis [137]. It is possible that the HA binding
motif, present in metastatin, is responsible for this anti-tumorigenic result [138].

Epiphycan belongs to the class III SLRPs, with a known role in cartilage development
and joint integrity maintenance [139]. This proteoglycan promotes formation of collagen
type I fibers [140]; there is limited information on its role in tumors. Research has shown
that epiphycan is differentially expressed in invasive stroma, when compared to the in situ
stroma of breast cancer [141]. Moreover, epiphycan has stronger expression in metastatic
ovarian cancer than in primary cancer and normal ovaries [142]. The growth and invasion
ability of ovarian cancer cells (i.e., SKOV3) can be impaired by EPYC-siRNA [142]. Two
proteins, phospholipase Cg2 and phosphatidylinositol 4,5-bisphosphate, have been identi-
fied as interacting partners of epiphycan, suggesting a role for this proteoglycan in signal
transduction [142].

4.3. Gamma-Carboxyglutamic-Acid-Containing Proteins

Although there is a substantial amount of evidence suggesting that vitamin K has
anticancer potential [143], matrix vitamin-K-dependent proteins have a pro-tumorigenic
role in cancer. Six out of fourteen human vitamin-K-dependent proteins play an essential
role in skeletal biology [144]. For instance, osteocalcin (also known as bone gamma-
carboxyglutamic-acid-containing protein) is the most abundant non-collagenous protein
in bone that has upregulated expression in several solid tumors, including ovarian, lung,
brain and prostate cancers [145]. Uncarboxylated osteocalcin promotes the development
of multiple cancers and has been suggested as a target for preventing bone metastasis in
triple-negative breast cancer [146]. Uncarboxylated osteocalcin enhances the proliferation
of MDA-MB-231 cells through the TGF-β1/SMAD3 signaling pathway and increases the
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metastatic potential of cancer cells via upregulation of MMP-2, MMP-13 and VEGF [146].
Although there is no significant difference in the median BGLAP mRNA and protein levels
between normal pancreas, chronic pancreatitis and ductal adenocarcinoma, osteocalcin
is strongly expressed in the cytoplasm and nuclei of tubular complexes and pancreatic
intraepithelial neoplasia lesions of diseased human tissues [147].

Mammalian Gla-rich protein (also known as unique cartilage matrix-associated protein
and upper zone of growth plate and cartilage matrix-associated protein) is expressed in
skeletal and connective tissues (e.g., bone, cartilage, skin and vasculature), and is associated
with soft tissue calcification pathologies [148,149]. Mineral formation might be directly
influenced by Gla-rich protein [148], as this protein has a high-density γ-carboxyglutamic
acid (Gla) domain (higher than in osteocalcin and matrix Gla protein) and, therefore,
has stronger binding capacity to calcium ions. Gla-rich protein binds calcium and plays
a role in modulating calcium availability in the ECM, acting as a negative regulator of
osteogenic differentiation [148,150]. Interestingly, microcalcifications found in breast cancer
share similar molecular mechanisms with arterial pathological mineralization, as well as
physiological mineralization in bone [151]. In human skin and breast cancers, there is a
specific accumulation pattern of carboxylated Gla-rich protein and undercarboxylated GRP;
carboxylated Gla-rich protein is lower in non-cancer cells, while uncarboxylated Gla-rich
protein has a stronger association with cancer cells [152]. Sites with microcalcifications
display high amounts of uncarboxylated Gla-rich protein in breast cancer and invasive
ductal carcinoma [152]. Overexpression of Gla-rich protein in triple-negative breast cancer
inhibits cancer cell migration, invasion and colony formation (MDA-MB-231 and 4T1
cells, compared to mock control) as well as decreasing tumor growth in in vivo xenograft
models [153].

Matrix Gla protein (five-to-six γ-carboxyglutamic acid residues) is secreted by chondro-
cytes and vascular smooth muscle cells and has an abnormal expression in various cancer
types [154]; however, its regulatory role in tumorigenesis is controversial [155]. MGP is
overexpressed in primary renal cell carcinoma, prostate carcinoma and testicular germ-cell
tumors [156], ovarian cancer [157] and precancerous cervical lesions [158]. In gastric cancer,
matrix Gla protein interacts with p-STAT5 in the nucleus of cancer cells, where it acts as
a transcriptional co-activator through the enhancement of STAT5 binding to target gene
promoters [159]. Oncogenic functions of the intracellular matrix Gla protein mainly depend
on the JAK2/STAT5 signaling pathway [159]; this protein promotes the proliferation and
survival of cancer cells. Matrix Gla protein promotes EMT of triple-negative breast cancer
cells and has shown upregulation in clinical breast specimens. These high expression levels
are associated with poor, relapse-free survival for triple-negative breast cancer [160] and
colorectal cancer patients [161].

4.4. Glycoproteins

Thrombospondins are mainly expressed in cartilage, but have also been detected in
bone and are produced by bone-resident cells (e.g., osteoblasts, endothelial and immune
cells) [162]. Thrombospondin 4 is one of the five members of the thrombospondin family
that has low expression in adult tissues, with a dramatic increase during tissue remodeling
and regeneration [163]. There is emerging evidence suggesting the involvement of throm-
bospondin 4 in gastric [164,165], breast [166] and prostate [167] cancers. In gastric tumors,
thrombospondin 4 is secreted by CAFs in high quantities, with transcription stimulated
by tumor cells [165], and this is associated with cancer metastasis [164]. The invasion of
cancer cells can be facilitated by activated stromal response, as has been shown in breast
tumors where thrombospondin 4 expression was significantly upregulated in both invasive
ductal carcinoma and invasive lobular carcinoma compared to normal stroma [166]. The
expression of thrombospondin 4 at high levels promotes cell proliferation and restricts the
apoptosis of prostate cancer stem cells by activating the PI3K/Akt pathway; this is coupled
with an increase in tumorigenicity in vivo [167]. In contrast, THBS4 mRNA expression is
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lower in colorectal tumors compared to matched normal tissues, with the protein typically
absent from normal epithelial and cancer cells [168].

Cartilage oligomeric matrix protein (COMP) is almost exclusively expressed in the
cartilage and has its main function in ECM assembly by interacting with collagen types I,
II and IX, matrilin 3 and fibronectin to promote collagen fibrillogenesis [169–171]. How-
ever, deposition of this protein in tumor stroma has been observed in breast cancer with
a more invasive phenotype, partly due to upregulation of MMP-9 and genes protecting
cancer cells from endoplasmic reticulum stress [172]. Remarkably, three peptides derived
from COMP do not have a role in the regulation of TGF-β1 signaling and angiogene-
sis [173]. In periampullary adenocarcinoma, cancer cells and the surrounding stroma
exhibit high COMP levels. These expression levels are strongly associated with more ag-
gressive pancreatobiliary-type (PB-type) exclusion of cytotoxic T-cells from the tumors and
the presence of a denser collagen matrix [174]. Likewise, COMP is upregulated in bladder
and colorectal cancers and is indicative of worse prognosis for the cancer patient [175,176].
Although it has been shown that COMP promotes cancer-cell proliferation via activation
of the PI3K/Akt/mTOR/p70S6K signaling pathway [176], more studies are required to
decipher the role of this protein in cancer progression and metastasis.

4.5. Small Integrin-Binding Ligand N-Linked Glycoproteins

Both bone sialoprotein (also known as integrin-binding sialoprotein) and osteopontin
(also known as secreted phosphoprotein 1) are bone matrix proteins, which are produced
by osteoblasts, osteocytes, hypertrophic chondrocytes and osteoclasts during bone mor-
phogenesis [177]. These proteins are trapped within mineralized matrices of bones and
dentin [178] and have been shown to be significantly upregulated in several epithelial
tumors [179], especially those with pathological microcalcifications and tendencies to
metastasize to bones. In normal tissues, SIBLINGs function as signal transducers, pro-
moting cell adhesion, motility and survival by binding to a variety of integrins and CD44,
and regulators of transcription through NF-κB, regulating cell proliferation and differen-
tiation [180]. Survival of bone-residing metastatic cells (MDA-MB-231) can be promoted
via ligation of integrin αvβ3 to sialoprotein-enriched mineralized bone [181,182]; the prolif-
eration of breast cancer cells is also regulated by bone sialoprotein [183]. The growth and
aggressiveness of colorectal cancer can be mediated by bone sialoprotein via activation of
the Fyn/β-catenin signaling pathway [184]. In non-small-cell lung cancer, levels of bone
sialoprotein strongly correlate with bone dissemination and worse overall survival [185].
Interestingly, expression levels of bone sialoprotein correlated with the level of osteopontin
in papillary thyroid carcinoma [186]. Indeed, expression of osteopontin in cancer cells
contributes to their invasive potential [187–191]. Osteopontin is a major non-collagenous
matrix protein, secreted by osteoblasts, osteocytes and other hematopoietic cells, which is
involved in osteoclast attachment to mineralized bone matrix and has multiple functions
maintaining cell homeostasis. In bladder cancer tissues, SPP1 is highly expressed and
functions of this protein can be mediated by activating the JAK1/STAT1 signaling path-
way [192]. Hepatocellular carcinoma uses osteopontin to generate reactive oxygen species
for cancer progression. This is facilitated via induction of the JAK2/STAT3/NOX1 signaling
pathway [193]. Osteopontin is a ligand for the integrin αvβ3, and, together with activated
RANKL, via Rho GTPase, CD44 and MMP-9, plays an important role in prostate cancer
cell migration [194]. The osteopontin/ αvβ3 signaling pathway, with the involvement of
ERK1/2, regulates expression of VEGF and, therefore, facilitates angiogenesis and prostate
cancer progression [195]. Plasma osteopontin can be used like a prostate-specific antigen to
predict treatment response in castrate-resistant, metastatic prostate cancer patients after
chemotherapy [196].

Dentine matrix protein 1 (DMP-1) is highly expressed by early and mature osteocytes,
acting as a transcription factor that nucleates apatite and regulates osteoid mineralization.
Data obtained have shown that DMP-1 is expressed in breast and lung cancers and has
significant inverse associations with tumor grades [197,198]. Remarkably, the presence
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of high levels of DMP-1 in primary breast lesions lowered the risk of developing bone
metastasis and reduced the migratory capacity of breast cancer cell lines [198]. DMP-1 can
induce expression of VE-cadherin, followed by inhibition of VEGFR-2 phosphorylation
and Src-mediated signaling, and, therefore, reduce tumor-associated angiogenesis [199].
However, in colon adenocarcinoma, DMP-1 binds and activates proMMP-9 and bridges
MMP-9 to CD44, αvβ3 and αvβ5 integrins on the cell surface, enhancing cancer cell invasion
and metastasis [200]. Another member of the SIBLING family, dentin sialophosphoprotein
(DSPP; isolated from dentine ECM and with low levels in bones), has been shown to be
upregulated in human oral squamous cell carcinoma [201]. Silencing of DSPP reduced the
viability and migration of OSC2 cancer cells and resulted in downregulation of MMP-2,
MMP-3, MMP-9, VEGF, Ki-67, p53 and EGFR [201]. Moreover, the loss of DSPP significantly
downregulated regulators of endoplasmic reticulum stress, including GRP78, SERCA2b,
PERK, IRE1 and ATF6, and MMP-20 [202]. DSPP is also ectopically expressed in high-
grade prostatic intraepithelial neoplasia and cancerous glands, with pathological stage
and Gleason score significantly associated with its expression levels [203]. The expres-
sion levels of DSPP have been shown to be lower in normal prostate and thyroid tissues
compared to their cancerous counterparts, and this labeling pattern matched MMP-20
expression [204]. DSPP can be processed into dentin sialoprotein (DSP; mainly expressed
in odontoblasts), which can bind to integrin β6 and regulate DSPP expression as well as
odontoblast homeostasis [205].

Bone metabolism is regulated by matrix extracellular phosphoglycoprotein/osteoblast
factor 45 (MEPE/OF45), which is secreted by differentiated osteoblasts and has a marked
increase in expression during osteoblast-mediated matrix mineralization. High levels of
MEPE in cancer cells correlate with their resistance to ionizing radiation and camptothecin.
This is mediated via interaction of MEPE with CHK1 that protects cells from DNA-damage-
induced killing [206]. However, the expression profile of this protein across different types
of malignancies has not been evaluated in detail to date.

4.6. Von Willebrand Factor A Domain-Containing Protein Family

Matrilins are oligomeric extracellular matrix adaptor proteins that mediate interac-
tions between collagen fibrils and other matrix constituents. Collagen fibrillogenesis in
cartilage is regulated by matrilin-1 and matrilin-3, which are predominantly expressed
in the cartilage [207]; however, their association with cancer remains mainly unclear and
requires further study. Matrilin-1 inhibits endothelial cell proliferation and migration
by downregulating angiogenesis-related gene markers, including PECAM1, VEGFR and
VE-cadherin [208]. Interestingly, MATN1 mRNA has been shown to be increased in brain
metastasis compared to primary breast cancer in which expression levels correlated with pa-
tient survival outcomes [209]. Matrilin-1 has limited processing in the cartilage compared to
matrilin-3 that is cleaved by ADAMTS-4 and ADAMTS-5 [210]. Upon formation of matrilin-
1/-3 hetero-oligomers, neither ADAMTS-5 nor ADAMTS-1 can digest it, probably due to
steric hindrance [210]. Matrilin-3 regulates cartilage homeostasis through the induction
of IL-1Ra, stimulation of COL2A1 and ACAN, and inhibition of MMP-13 and ADAMTS-4
and -5 in chondrocytes, suggesting a chondroprotective role for this protein [211]. The
expression level of matrilin-3 is significantly higher in gastric cancer than in normal tissues
and is indicative of poor prognosis in patients [212,213].
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Table 1. Expression of bone- and cartilage-specific matrix proteins in epithelial cancers.

ECM
Component Gene Protein Expression Carcinoma Prognostic Marker

Collagenous Proteins

Collagen II COL2A1
Specific for cartilaginous
tissues and the vitreous

humor of the eye.

Pro-tumorigenic in
high-grade serous

carcinoma [74]

Collagen V COL5A1, COL5A2,
COL5A3

Minor connective tissue
component of nearly

ubiquitous distribution,
found in tissues

containing type I collagen.

Pro-tumorigenic in breast
invasive ductal

carcinoma [77]; colorectal
cancer [80]; gastric cancer,

including renal
metastasis [214,215];

pancreatic ductal
adenocarcinoma, with
promotion of hepatic

metastasis [84];
co-expression of high

(COL5A1)2/low
(COL5A2) heterotrimer is

unfavorable in tongue
squamous cell
carcinoma [81].

Prognostic marker in
colorectal cancer

(unfavorable [80]), renal
cancer (unfavorable),
glioma (unfavorable),

urothelial cancer
(unfavorable) and lung
cancer (unfavorable).

Collagen IX COL9A1, COL9A2,
COL9A3

Expressed in hyaline
cartilage and vitreous of

the eye.

Pro-tumorigenic in gastric
cancer [88].

Prognostic marker in
endometrial cancer

(unfavorable).

Collagen X COL10A1

Hypertrophic
chondrocytes and

presumptive
mineralization zones of

hyaline cartilage.

Pro-tumorigenic in breast
cancer [93]; colorectal
cancer (in conjugation

with visinin-like 1
protein [98]).

Collagen XII COL12A1 Found in association with
type I collagen.

Pro-tumorigenic in breast
cancer [102]; gastric

cancer [103].

Prognostic marker in renal
cancer (unfavorable).

Collagen XXIV COL24A1

Expressed in
differentiating

osteoblasts [104] and
developing cornea [216].

Pro-tumorigenic in
squamous cell carcinoma

of the head and neck
(COL24A1 mRNA [106]);
hepatocellular carcinoma
(COL24A1 mRNA [107]).

Proteoglycans

Biglycan BGN
Expressed mainly in
tendon, cartilage and

bone.

Pro-tumorigenic in
endometrial cancer [118];
esophageal squamous cell

carcinoma [217]; gastric
cancer [218]; head and

neck squamous cell
cancer [219]; pancreatic
cancer [113]; urothelial

carcinoma of
bladder [220].

Prognostic marker in
colorectal cancer [221];

gastric cancer [222]; renal
cancer (unfavorable).

Asporin ASPN Expressed by osteoblasts.

Pro-tumorigenic in breast
cancer [130]; gastric

cancer [132]; pancreatic
cancer [127]; prostate

cancer [128,129].
Anti-tumorigenic in breast

cancer [131].

Prognostic marker in renal
cancer (unfavorable).

Aggrecan ACAN
Major component of

extracellular matrix of
cartilagenous tissues.

Pro-tumorigenic in
ovarian cancer [136].

Prognostic marker in renal
cancer (unfavorable).
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Table 1. Cont.

ECM
Component Gene Protein Expression Carcinoma Prognostic Marker

Epiphycan EPYC Expressed in cartilage and
testis [223].

Pro-tumorigenic in
ovarian cancer, with
higher expression in

metastatic cancer than in
primary cancer [142].

Prognostic marker in
pancreatic cancer

(unfavorable).

Gamma-carboxyglutamic Acid-containing Proteins

Osteocalcin BGLAP

Highly abundant bone
protein secreted by

osteoblasts. Constitutes
~1–2% of the total bone

protein.

Pro-tumorigenic in breast
cancer [146]; pancreatic

cancer [147].

Gla-rich protein UCMA

Expressed in the upper
immature zone of fetal

and juvenile epiphyseal
cartilage.

Both γ-carboxylated GRP
(cGRP)/undercarboxylated
GRP (ucGRP) are found in

healthy tissues, while
ucGRP is the predominant

form associated with
tumor cells in skin and

breast cancer [152].

Matrix Gla protein MGP

Expressed by
chondrocytes and vascular

smooth muscle cells.
Associates with the

organic matrix of bone
and cartilage.

Pro-tumorigenic in breast
cancer [154,160]; colorectal

cancer [161]; gastric
cancer [159].

Prognostic marker in renal
cancer (unfavorable).

Glycoproteins

Thrombospondin 4 THBS4

Expressed in the articular
cartilage, also been
detected in bone,

restricted to the osteoblast
lineage [224,225].

Pro-tumorigenic in breast
cancer [166]; gastric

cancer [164,165]; high
level of expression in stem

cells in prostate
cancer [167].

Anti-tumorigenic in
colorectal cancer [168].

Prognostic marker in
urothelial cancer

(unfavorable).

Cartilage oligomeric
matrix protein COMP

Expressed by osteoblasts
in bone and

cartilage during
embryogenesis [226].

Pro-tumorigenic in
periampullary

adenocarcinoma [174];
bladder cancer [175];

colorectal cancer [176].

Prognostic marker in renal
cancer (unfavorable),

colorectal cancer
(unfavorable), endometrial
cancer (unfavorable) and

urothelial cancer
(unfavorable).

Small Integrin-binding Ligand N-linked Glycoproteins

Bone sialoprotein IBSP

Major structural protein of
the bone matrix (~12%

non-collagenous proteins).
Expressed in hypertrophic
chondrocytes, osteoblasts,
osteocytes, osteoclasts and

trophoblasts.

Pro-tumorigenic in breast
and prostate cancers [227];

colorectal cancer [184];
non-small-cell lung
cancer [185]; thyroid

cancer [186].

Osteopontin SPP1
Expressed by osteoblasts,

odontoblasts and
osteocytes.

Pro-tumorigenic in
colorectal cancer [187];

head and neck
carcinoma [188];
hepato-cellular

carcinoma [193].

Prognostic marker in liver
cancer (unfavorable),

pancreatic cancer
(unfavorable) and cervical

cancer (unfavorable).
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Table 1. Cont.

ECM
Component Gene Protein Expression Carcinoma Prognostic Marker

Dentine matrix protein 1 DMP1

Expressed in odontoblasts,
ameloblasts and

cementoblasts, as well as
in fully differentiated
osteoblasts in bones.

Pro-tumorigenic in
colorectal cancer [200];

lung cancer [197]. Altered
DMP1 splicing in breast

cancer [228].

Dentin
sialophosphoprotein DSPP

Expressed by odontoblasts
and is proteolytically
processed to generate

dentin sialoprotein and
dentin phosphoprotein.

Pro-tumorigenic in
prostate cancer [203]; oral

squamous cell
carcinoma [229].

Matrix extracellular
phosphoglycoprotein MEPE

Expressed in odontoblasts,
osteoblasts, and

osteocytes.

High levels of MEPE in
cancer cells correlate with
their resistance to ionizing

radiation and
camptothecin [206].

von Willebrand Factor A Domain-containing Proteins

Matrilin 1 MATN1
Major component of the
extracellular matrix of
non-articular cartilage.

Pro-tumorigenic in
metastatic breast cancer
(MATN1 mRNA [209]).

Matrilin 3 MATN3
Major component of the
extracellular matrix of

cartilage.

Pro-tumorigenic in gastric
cancer [212].

Prognostic marker in
stomach cancer

(unfavorable), liver cancer
(unfavorable) and cervical

cancer (unfavorable).

5. Conclusions and Future Directions

Tumors create and develop the surrounding stroma to their specifications. CAFs are
the major contributor to these processes via their rich secretome with ECM proteins being
an important component. Recognition of the stromal compartment of carcinoma as an
important tumor element has long led to the appreciation of multiple opportunities for
targeting it as an additional option for cancer treatment. Targeting tumor-specific ECM
represents one such opportunity.

The experimental evidence reviewed here unequivocally demonstrates that atypical
expression of bone and cartilage ECM proteins is a common phenomenon. Of note, many
of these proteins play significant roles in bone and cartilage tissue development, further
emphasizing the ability of carcinomas to corrupt and modify tissue-specific developmental
programs for tumor advancement. Analyses of cancer gene expression datasets also show
that atypical ECM components have significant value as prognostic markers in numerous
epithelial tumors (Table 1).

It is evident from the literature that is summarized here that carcinoma-promoting
bone and cartilage-specific ECM proteins play very diverse functions in tumor development
and progression. Their most prominent homeostatic function, it is logical to suggest, given
the major roles of these proteins in tumors, is the regulation of the mechanical properties of
tumor tissue, such as its stiffness and viscoelasticity. Alterations of these properties affect a
multitude of critical cellular and biochemical processes within the tumor. It is important to
emphasize though that the functions of the bone and cartilage ECM proteins are likely to
encompass a broad range of signal transducing, mitogenic, metabolic and other roles in
carcinoma pathobiology, which are yet to be discovered.

Numerous strategies to target the ECM compartment have been suggested and ex-
plored (for recent reviews please see [230,231] and references therein). They include, for
example, eliminating cells such as CAFs that produce ECM proteins. This approach has
had very limited success so far, with the main reason most likely being the extremely high
heterogeneity of the CAF population, where specific, tumor-promoting CAF subsets have
only begun to be elucidated. Another popular approach has been to target ECM-modifying
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enzymes to alter the stroma structure and mechanical properties. Despite holding much
promise as anti-cancer drugs, agents that target ECM-modifying enzymes have also proved
to be mostly disappointing since the usefulness of non-selective MMP and LOXL inhibitors
is limited by their significant toxicity and failure to show any objective clinical response.
Therefore, considering the above, targeting tumor stroma-specific ECM with no known
homeostatic function in the tumor tissue of origin, such as bone and cartilage proteins in
carcinoma, seems like an attractive alternative strategy for future anti-cancer therapies.
Atypical ECM proteins may also represent attractive components for designing future drug-
delivery systems due to their limited tissue distribution and restricted homeostatic function.

From the published data reviewed here, it is clear that multiple bone and cartilage-
specific ECM components play significant roles in numerous types of carcinomas and,
thus, may represent attractive targets for novel stroma-targeting therapies. However,
numerous outstanding questions will need to be answered before designing such drugs
will become possible. Specifically, it is important to identify cellular populations that
produce these atypical ECM components and to discover what specific signals within
the tumor stimulate their production. Applying emerging proteomics and multiplex
spatial-imaging techniques will allow qualitative and quantitative assessment of the intra-
tumoral distribution of bone and cartilage ECM proteins, which is currently unavailable,
but may lead to the identification of novel ECM-based biomarkers for personalized cancer
treatments. Additionally, characterizing precise functions of these “unusual suspects” in
the tumor microenvironment will aid the development of more efficient and selective
stroma-targeting therapies for carcinomas and, potentially, other malignancies.
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