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Simple Summary: Renal cell carcinoma (RCC) is a highly vascularized and immunogenic tumor, and
its treatment has been revolutionized by the development of immune-checkpoint inhibitors. However,
the clinical benefit of these agents is limited in patients with metastatic disease. The microbiome has
emerged a novel therapeutic target in recent years and has shown promising values. Understanding
the microbiome of the tumor microenvironment is essential for the treatment of RCC.

Abstract: Microbes play different roles in metabolism, local or systemic inflammation, and immunity,
and the human microbiome in tumor microenvironment (TME) is important for modulating the
response to immunotherapy in cancer patients. Renal cell carcinoma (RCC) is an immunogenic
tumor, and immunotherapy is the backbone of its treatment. Correlations between the microbiome
and responsiveness to immune checkpoint inhibitors have been reported. This review summarizes
the recent therapeutic strategies for RCC and the effects of TME on the systemic therapy of RCC.
The current understanding and advances in microbiome research and the relationship between
the microbiome and the response to immunotherapy for RCC are also discussed. Improving our
understanding of the role of the microbiome in RCC treatment will facilitate the development of
microbiome targeting therapies to modify the tumor microbiome and improve treatment outcomes.
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1. Introduction
1.1. Epidemiology and Classification of Renal Cell Carcinoma

Renal cell carcinoma (RCC) originates within the renal cortex and accounts for ap-
proximately 90% of primary malignant renal tumors. The incidence of RCC varies widely
from region to region, with the highest incidence reported in Western countries [1]. The
American Cancer Society estimated that approximately 79,000 new cases of kidney cancer
(50,290 in men and 28,710 in women) would be diagnosed and approximately 13,920 people
(8960 men and 4960 women) would die from this disease in the United States in 2022 [2].
Worldwide, more than 400,000 new cases of RCC and more than 170,000 deaths from kidney
cancer occur annually [3].

RCC comprises different subtypes with specific histopathological and genetic charac-
teristics. The 2016 World Health Organization (WHO) classification categorized RCCs into
three main histological types [clear cell RCC (ccRCC) (70–80%), papillary RCC (10–15%),
and chromophobe RCC (4–5%)]; however, RCCs comprise a broad spectrum of histological
entities [4]. The prognosis differs among the different RCC types, which are closely related
to the different treatment strategies for different subtypes. ccRCC is the most common his-
tological subtype, and approximately 40% of ccRCC patients develop metastases, resulting
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in a 5-year survival rate of 10% [5]. This year, the WHO published a new 2022 classification
that introduced a molecular-driven renal tumor classification [6]. This novel molecular clas-
sification includes SMARCB1-deficient medullary RCC, TFEB-altered RCC, Alk-rearranged
RCC, and ELOC-mutated RCC. Eosinophilic solid and cystic RCC is a novel morpholog-
ically defined RCC entity. The integration of classic histologic diagnoses with advanced
molecular techniques, such as methylation profiling, RNA sequencing, whole-genome
sequencing, or whole-exome sequencing, is a prerequisite for the design of personalized
therapeutic strategies. Although it is important to include a pathologist/molecular expert
on the design team of future clinical trials, many institutions do not yet have the advanced
molecular tools [6].

1.2. Treatment of Renal Cell Carcinoma

Complete surgical tumor resection is the standard of care for patients presenting with
localized RCC [1,7]. However, approximately one-third of patients treated with curative
intent will develop metastatic disease recurrence [8]. Earlier treatment for patients with
metastatic disease [including the initially diagnosed metastatic RCC (mRCC) patients]
relied on several cytokines, such as interferon alfa (IFN-α) and interleukin-2 (IL-2), which
aimed to activate the antitumor immune system [9]. However, because of the deficiencies
and severe side effects, systemic therapies including targeted therapy and immunotherapy,
have been strongly recommended since 2006 [5]. Tyrosine kinase inhibitors (TKIs), in-
cluding the mechanistic target of rapamycin (mTOR) inhibitors and a vascular endothelial
growth factor (VEGF) antibody, are the most widely used targeted drugs [1] and they
are considered as anti-angiogenic agents. Because RCC is a highly vascularized tumor,
anti-angiogenic therapies achieve disease stabilization or regression and prolonged sur-
vival in up to 30% of mRCC patients. The suggested immunotherapeutic strategies, which
are known as immune checkpoint inhibitors (ICIs), target and block the inhibitory T-cell
receptor PD-1 or cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) to restore tumor-
specific T-cell immunity [10]. PD-L1/L2, the ligands for the PD-1 receptor, and CD80/86,
the ligands for CTLA-4 are also common targets of ICIs [11]. The International Metastatic
RCC Database Consortium (IMDC) risk model is used to predict the survival of mRCC
patients treated with systemic therapy [1,12], and the updated 2022 European Association
of Urology (EAU) guidelines for mRCC treatment according to the IMDC risk recommend
the concomitant use of TKIs and ICIs or two kinds of ICIs. The management of mRCC from
the updated 2022 EAU guideline is shown in Figure 1.
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Figure 1. Management of mccRCC from the updated 2022 EAU guideline. Systemic treatment with a
combination of anti-angiogenetic agents (mainly TKIs) and immune checkpoint inhibitors (mainly
anti-PD-1/PD-L1/CTLA-4) is recommended for mccRCC patients. The combinations vary according
to the IMDC risk stratification of RCC. mccRCC, metastatic clear cell renal cell carcinoma; EAU,
European Association of Urology; IMDC, International Metastatic RCC Database Consortium; TKI,
tyrosine kinase inhibitor; VEGF, vascular endothelial growth factor.
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Although advances in systemic therapies have improved the life expectancy of pa-
tients with advanced metastatic disease, there is still an unmet need to identify novel
targeted therapies for mRCC patients [7]. The heterogeneous nature of RCC is an important
challenge that needs to be overcome. An improved understanding of the pathophysiology
of the disease has promoted research efforts to produce novel therapeutic agents targeting
specific biological pathways [13]. Most published trials have focused on clear cell carci-
noma subtypes, and there are no robust evidence-based recommendations for non-ccRCC
subtypes, which is an issue that needs to be addressed.

2. The Tumor Microenvironment in Renal Cell Carcinoma Biology and Therapy

The tumor microenvironment (TME) is the ecosystem that surrounds a tumor, and it
is composed of immune cells, the extracellular matrix, blood vessels, and fibroblasts; it pro-
vides the factors necessary for cancer growth, invasion, and angiogenesis [14,15]. Because
the tumor and the TME interact and influence each other, effective cancer treatments rely
on a combination of drugs that target multiple components of TME, such as the vascular
system that feeds the tumor cells, the immune system that fights or helps the tumor cells,
and the cancer cells themselves [16]. Thus, in the treatment of RCC, which is a highly
immunogenic and pro-angiogenic cancer, it is critical to understand the TME because it
affects the response to treatment. The aim of current treatments for mRCC is to block the
nutrition suppliers, namely, “angiogenesis,” and to attack the enemies, the “tumor cells,”
using a proper double-edged sword, which is the “immune system.” The interplay between
the immune system and angiogenesis in RCC is described in Figure 2.
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Figure 2. Interaction between angiogenesis and the immune system in renal cell carcinoma. (A) Com-
ponents of the TME in renal cell carcinoma. (B) Role of TME factors in regulating angiogenesis and
the immune system. The systemic targeting therapies according to their roles include anti-angiogenic
agents targeting FGFR, VEGFR, PDGFR, mTOR, and Met and immune checkpoint inhibitors targeting
PD-1, PD-L1, and CTLA-4, which are mainly used in clinical practice. TME, tumor microenvironment;
ICAM-1, intercellular adhesion molecule 1; VCAM-1, vascular cell adhesion molecule 1; FGF and
FGFR, fibroblast growth factor and fibroblast growth factor receptor; VEGF and VEGFR, vascu-
lar endothelial growth factor and vascular endothelial growth factor receptor; PDGF and PDGFR,
platelet-derived growth factor and platelet-derived growth factor receptor; MDSC, myeloid-derived
suppressor cell; NK cell, natural killer cell; Treg cell, regulatory T cell; APC, antigen-presenting cell;
MHC, major histocompatibility complex; TCR, T cell receptor; IL, interleukin; IFN, interferon.

Angiogenesis is one of the hallmarks of cancer, and malignant tumors secrete mul-
tiple angiogenic growth factors simultaneously. These factors, which are involved in
tumor growth and survival, are targeted by anti-angiogenesis treatments, mainly TKI
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therapies, including the anti-VEGF, anti-mTOR, and the recently introduced anti-MET
[also tyrosine-protein kinase Met or hepatocyte growth factor receptor (HGFR)], anti-RET,
anti-platelet derived growth factor receptor (PDGFR), and anti-fibroblast growth factor
receptors (FGFRs); these therapies have become a weapon of fundamental importance [17].
In addition, angiogenesis promotes metastasis by inducing the formation of abnormal
neovessels, which provide an escape route for the tumor cells to enter the circulation [18,19].
These abnormal vascular networks influence the TME and form a hostile microenvironment
characterized by hypoxia and acidosis, which in turn promotes tumor angiogenesis and
reduces the effect of anti-tumor treatments such as immunotherapy [19,20]. The hypoxic
TME creates an inhospitable environment for immune cells; it induces immune tolerance
and immune escape by interfering with the tumor-killing function of effector cells and
preventing their homing to the TME; and it promotes immune-suppressive circumstances
in part by increasing checkpoint molecules [21]. To prevent this vicious cycle in the TME of
RCC, normalization of tumor vasculature by restoring the balance of pro-angiogenic and
anti-angiogenic factors is an essential concept that may produce a hostile microenvironment
and activate the immune system [19,20].

ccRCC is extensively infiltrated with leukocytes such as CD8+ T cells, CD4+ T cells,
and natural killer (NK) cells, as well as myeloid cells including macrophages and neu-
trophils [22]. The immune function in ccRCC can be suppressed by the inhibitory effects
of regulatory T (Treg) cells and myeloid cell types such as myeloid-derived suppressor
cells (MDSCs), macrophages, and neutrophils in the TME [5]. Such a TME restricts the
effectiveness of immune surveillance as well as the activity of ICIs. However, inhibition of
antitumor immune responses mostly depends on the expression of key receptors, namely,
“immune checkpoints” on the surface of T cells that prevent full T cell activation [22]. The
most studied immune checkpoints are CTLA-4 and PD1, along with its ligand PD-L1 [22–24].
Few patients with RCC derive durable benefits from ICIs, underscoring the need to identify
reliable biomarkers to predict the response to ICIs and to develop new therapeutic targets.
Improving our knowledge of the functions of immune mediators within the TME in RCC
could assist in developing novel therapies.

3. The Microbiome as a Novel Member of the Tumor Microenvironment in Renal
Cell Carcinoma

Recently, unexpected guests, the microbiota have emerged as an important part of
the TME in many types of cancer and are shown to affect tumorigenesis and tumor pro-
gression [25]. The TME is an attractive niche for microbial growth, and microorganisms
in human tumors have been identified for over a century [26]; however, because of tech-
nological limitations, the breadth of microorganisms and the depth of their influence has
only been moderately appreciated to date. The development of sequencing techniques
has improved the study and manipulation of the intratumoral microbiome to enhance the
clinical response to cancer treatments.

3.1. What Is the Microbiome?

Since 2007, the Human Microbiome Project (HMP) has been charged with the mission
of facilitating the comprehensive characterization of the human microbiome and analyzing
its role in the human health and disease [27]. The creation of the HMP accelerated the
development of technologies for exploring the human microbiome and promoted the
prosperity of this research field formally.

The human microbiome is the collective genomes and by-products of all microor-
ganisms such as bacteria, viruses, and fungi that inhabit the human body [28]. These
microbiotas are located throughout the human body but largely in the human mouth, skin,
and gut to affect digestion, shape the immune system, and even influence one’s mood and
behavior [29–31]. The microbiome in the human body is extensive, containing at least a
100-fold greater number of unique genes than the human host genome, and the distribu-
tion of commensal microbes across anatomical sites reveals distinct microbial communi-
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ties [25,27]. These microbes form an evolutionary partnership with humans and influence
most of the essential physiological functions, such as metabolism, tissue development,
and host defense [32]. Accordingly, studies have identified correlations between the mi-
crobiome and metabolic disorders, cardiovascular diseases, neurological disorders, and
even psychological disorders such as schizophrenia [33–35]. The role of the microbiome in
cancer has been increasingly investigated in recent years.

3.2. How Does the Microbiome Affect Cancers?

The link between the tumor microbiome and cancer is mediated by four main mech-
anisms, as follows: (1) tumor microbiome-induced gene mutations directly promote
tumorigenesis; (2) the tumor microbiome regulates oncogenes or oncogenic pathways;
(3) the tumor microbiome modulates the host immune system; and (4) the tumor mi-
crobiome produces small molecules or metabolites that influence cancer development,
progression, and response to therapeutic agents [25,28]. The origin of the tumor micro-
biome remains unclear. If the tumor microbiome is directly related to tumor formation,
tumor microbiomes with latent oncogenic features may exist in the human body waiting for
a stimulus to induce tumorigenesis. On the other hand, the TME could attract microbiota to
accumulate after tumor formation through multiple mechanisms. Considering that immune
escape is one of the features of cancer cells, microorganisms could avoid immune clearance
under the “shelter” of the inadequate strength of immune cells inside the tumor. The
hypoxic condition in tumors provides an ideal environment for the survival of anaerobic
bacteria. The highly nutritious conditions inside tumor tissues also attract bacteria and
provide metabolites such as ribose and aspartic acid. In addition, the highly disorganized
neovascularization, slow blood flow, and blood leakage inside the tumor can facilitate
the movement of bacteria from the blood circulation to the tumor tissue [36–38]. The
interaction between the tumor microbiome and the TME not only promotes tumorigenesis
and progression but also regulates the response to cancer immunotherapy.

3.3. The Microbiome in Renal Cell Carcinoma

The microbiome of RCC is the least studied among genitourinary cancers [39,40]. In
2004, a population-based analysis by the Iowa Cancer Registry found that a history of
urinary tract infection of the bladder or kidney is associated with an increased risk of
developing RCC, particularly in men who smoke, suggesting the presence of complex
interactions between bacteria and epidemiological risk factors in RCC [41]. In 2019, the
first attempt at characterizing the microbiome in renal tissue was achieved by Stefan et al.
using 10 formalin-fixed paraffin-embedded tissue samples from five RCC patients with no
history of urinary tract infections in the last 6 months [42]. The study revealed that both
healthy kidneys and RCC tissues contained a plethora of specific microorganisms, and the
microbiome differed significantly between benign and malignant tissues. However, because
of the small sample size, further validation is necessary for a large cohort. More recently,
a study from China analyzed the composition of the gut microbiota in 51 ccRCC patients and
40 healthy controls using 16S rRNA sequencing. The results showed that Blautia,
Streptococcus, [Ruminococcus]_torques_group, Romboutsia, and [Eubacterium]_hallii_group
are dominant and positively associated with ccRCC [38]. In particular, Streptococcus lutetiensis
promotes ccRCC proliferation, migration, and invasion in-vitro via the TGF-signaling path-
way, which could be a target for RCC treatment. The main limitation of this study was the
16S rRNA sequencing method used, which can only identify the microbiota composition at
the genus level. Thus, to identify the exact strains, a more precise detection method such as
metagenomic sequencing can be applied in future evaluation. The same genus, Streptococcus,
(but a different species, the epidermidis), was more abundant in primary ccRCC tumors
than in the thrombus or normal adjacent tissues in another study [43]. In contrast to these
studies, which indicated that the diversity of the microbiome is increased in RCC, a study
showed that species diversity is decreased in RCC tissues [44]. The study demonstrated
that 25 taxa increased and 47 decreased in RCC tissues compared with normal tissues;
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among them, the class Chloroplast and the order Streptophyta showed a considerable
ability to discriminate RCC tissues from normal tissues. These RCC studies focused on
ccRCC, which is the largest group, and other RCC subtypes need to be included in the
analysis. A comparison of the three main subtypes of RCC (ccRCC, pRCC, and chRCC)
and normal controls was recently performed to identify the specific microbiome in each
group and to detect new prognostic markers of RCC using tumor microbiome and stromal
inflammatory markers [45]. The study showed that the alpha diversity was significantly
altered when comparing the normal kidney with all types of RCC tissues, and the bacterial
burden was higher in adjacent normal tissues than that in tumor tissues. It is worth not-
ing that this study offered the first theory that there is a noteworthy correlation between
bacterial burden and the content of PU.1+ macrophages and CD66b+ neutrophils in RCC.
Specifically, tumors with a high content of PU.1+ and CD66b+ cells in the stroma have a
lower bacterial burden, and in those tumors with a high bacteria burden, patients with
a relatively increased number of PU.1+ cells and CD66b+ cells suffered poor prognoses.
The associations forecast the potential of the tumor microbiome in combination with the
properties of stromal cells as prognostic markers.

4. The Microbiome and Immunotherapy of Renal Cell Carcinoma

Earlier detection of small renal masses is associated with a significant stage migration
of RCC at presentation, and the development of novel therapies increases the life expectancy
of RCC patients. Except for the potential contribution of the microbiome to the etiology of
RCC, studies have provided information on the responsiveness of RCC to certain drugs
such as ICIs and TKIs. Resistance to ICIs is associated with impaired immune modulation
caused by intrinsic or extrinsic factors including complex components of TME and their
associations in the TME. Tumor cell-intrinsic factors that contribute to immunotherapy
resistance include the expression or repression of certain genes and pathways in tumor cells,
such as constitutive PD-L1 expression, loss of tumor antigen expression, and alterations in
the antigen-presenting and processing machinery that prevent immune cell infiltration or
function within the TME. These mechanisms may exist at the time of initial presentation,
which constitutes primary resistance, or evolves later after an initial response, thus forming
part of adaptive resistance mechanisms. The tumor cell-extrinsic factors include inhibitory
immune checkpoints (CTLA-4, PD1, and others), T cell exhaustion and phenotype change,
immune suppressive cell populations (Tregs, MDSCs, and type II macrophages), and the
release of cytokines and metabolites in the TME [46].

4.1. The Microbiome Related to the Response to ICI

Recent studies identified a specific microbiome in patients who are sensitive to ICIs.
Of five studies that used different sequencing methods, four identified the same bacterium,
Akkermansia muciniphila, that was associated with the response to ICIs [47–50]. This may
be related to an immune regulatory function of A. muciniphila, resulting in an increase in
CXCR3+CCR9+CD4+ T cells and the upregulation of IL-12 and the function of dendritic cells
(DCs) to improve the effect of PD-1 inhibitors [47,51]. This immunomodulatory effect may
be related to the production of metabolites, mainly short-chain fatty acids (SCFAs) released
by A. muciniphila. SCFAs regulate tumorigenesis either by suppressing the activity of
histone deacetylase to inhibit transcription factors involved in tumorigenesis or indirectly
by modulating inflammation [52]. Alistipes putredinis, also discovered by Routy et al.,
modulates the host immune system by recruiting unique memory CD8+ T cells and NK
cells to the periphery to enhance the PD-1 blockade effect [47]. Bacteroides, Bifidobacterium,
Firmicutes, and Faecalibacterium sp. are also associated with the response to ICIs in RCC
patients [48]. Bacteroides species induce adaptive T-cell-mediated immune responses by
producing capsular polysaccharides [53]. Bifidobacterium also induces immune responses by
increasing tumor-infiltrating lymphocytes, promoting the maturation of DCs, up-regulating
the expression of IFN-γ and pro-inflammatory cytokines, and priming tumor-specific CD8+

T cells [54,55]. A high level of CD8+ T cells is associated with longer survival in melanoma
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patients [56], suggesting that RCC patients with increased Bifidobacterium are more sensitive
to ICIs. Faecalibacterium sp. induces the proliferation of CD4+ or CD8+ T cells, increases the
production and differentiation of Treg cells, and upregulates the expression of inducible
T cell costimulatory, thereby decreasing the risk of ICI-related colitis and improving the
response to ICIs in melanoma patients [57]. Along with Firmicutes, these microbiome
components improve the clinical outcome of patients treated with ICIs by producing SCFAs
and regulating the immune response. In patients with mRCC, Stenotrophomonas maltophilia
and Corynebacterium sp. are increased in ICI responders [58]. These data led to the design
of a phase I randomized, prospective, open-label clinical trial (NCT05122546) in 2021
to investigate the efficacy of oral administration of live Clostridium butyricum MIYAIRI
588 (CBM 588) in combination with first-line ICIs (ipilimumab and nivolumab combo)
in patients with intermediate or poor-risk mRCC, and to evaluate whether this could
modulate the gut microbiome of these patients [59]. CBM588 is a bacterial strain that
restores Bifidobacterium sp. in the microbiome. The initial results of this clinical trial showed
that patients who received ICIs plus CBM-588 had better progression-free survival (PFS) and
overall survival (OS) than those treated with ICIs alone. Analysis of the microbiome identified
several increased (Bifidobacterium sp., Bifidobacterium longum, and Butyricimonas faecalis) and
decreased (Desulfovibrio sp.) microorganisms in responders receiving CBM-588 [59]. No
differences in toxicities were observed. This clinical trial is ongoing, with an estimated
completion date in November 2023 [60]. The identified microbiome associated with ICI
responses and the possible mechanisms are depicted in Figure 3.
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of the microbiome identified several increased (Bifidobacterium sp., Bifidobacterium longum, 
and Butyricimonas faecalis) and decreased (Desulfovibrio sp.) microorganisms in responders 
receiving CBM-588 [59]. No differences in toxicities were observed. This clinical trial is 
ongoing, with an estimated completion date in November 2023 [60]. The identified micro-
biome associated with ICI responses and the possible mechanisms are depicted in Figure 3. 

 
Figure 3. Microbiome related to the response to ICI. Several microbiomes were identified to improve 
the responses to ICIs directly by stimulating primary and adaptive immune responses to kill tumor 
cells and indirectly by inducing the release of SCFAs to activate immune responses. The microbiome 
induced the overexpression of T cell costimulatory, which activates T cells involved in anti-tumor 

Figure 3. Microbiome related to the response to ICI. Several microbiomes were identified to improve
the responses to ICIs directly by stimulating primary and adaptive immune responses to kill tumor
cells and indirectly by inducing the release of SCFAs to activate immune responses. The microbiome
induced the overexpression of T cell costimulatory, which activates T cells involved in anti-tumor
responses. SCFA, short chain fatty acid; NK cell, natural killer cell; Treg cell, regulatory T cell; APC,
antigen-presenting cell; MHC, major histocompatibility complex; TCR, T cell receptor; IL, interleukin;
IFN, interferon; MMP9, matrix metalloproteinases 9; CXCR3, C-X-C motif chemokine receptor 3;
CCR9, C-C motif chemokine receptor 9. ↑ represents the increased expression of T cell costimulatory.
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4.2. Effects of Environmental Factors That Alter the Gut Microbiome on ICIs

Several factors that alter the composition of the gut microbiome affect the interaction
of the microbiome with the immune system, thus determining the hosts’ response to
treatment. Environmental factors such as the administration of antibiotics or proton pump
inhibitors (PPIs) are the most important factors affecting the response to ICIs. A study that
included 603 RCC patients treated with ICIs from ten study groups showed that antibiotics
decrease PFS and OS rates [47,49,61–70]. The study indicated that there is a controversial
link between PPIs and anticancer agents including ICIs, which may be due to the dysbiosis
of the gut microbiota; however, the link is not strong [71,72]. A retrospective study that
examined the impact of antibiotics and PPIs on the efficacy of and tolerance to ICIs in
different cancers including RCC showed that the use of antibiotics and PPIs alone or in
combination has a negative impact on PFS and OS [73]. However, a different study showed
no association between the concomitant use of PPIs and ICIs and the survival outcomes of
patients with mRCC [74]. The effect of TKIs combined with antibiotics targeting Bacteroides
species was evaluated by Hahn et al., and the results showed that PFS was increased in RCC
patients receiving first-line VEGF-TKIs with antibiotics [75]. However, further research is
warranted, because the exact mechanisms by which the immune checkpoint inhibitors and
antibiotics affect each other remain unclear.

A summary of microbiome studies on RCC presented in Table 1.

Table 1. Comprehensive summary of microbiome studies in RCC.

Different Microbiome in Normal and RCC Tissues.

Study
Year of
Publica-

tion

Number of
Specimens Method Microbiome

Diversity in RCC
Specific Microbiome

in RCC
Specific Microbiome in Normal

Control

Heidler et al.
[42] 2019

Ten FFPE
tissue

samples
(malignant
tissues and
tumor-free
renal cortex
tissues) of
five RCC
patients

16S rRNA
sequencing Increased

• Cyanophora
paradoxa

• Spirosoma Navajo
• Phaeocystis

antarctica
• Euglena

mutabilis
• Mycoplasma

vulturii

• Microbacterium
• Pelomonas
• Staphylococcus
• Strepotococcus
• Leuconostoc garlicum
• Corynebacterium vitaeruminis
• Anaerococcus nagyae
• Ethanoligenens harbinense
• Neisseria bacilliformis
• Thermicanus aegyptius
• L. mesenteroides

Found in both normal and cancer tissues, but more frequent in
cancer tissues:

• Aeromonas salmonicida
• Pseudoalteromonas haloplanktis
• Parageobacillus toebii
• Trachelomonas volvocinopsis
• M. mycoides
• Halomicrobium mukohataei

Chen et al.
[38] 2022

Fecal
samples
from 51

ccRCC and
40 healthy
controls

16s rRNA
sequencing Increased

• Blautia
• Streptococcus
• [Ruminococcus]

_torques_group
• Romboutsia
• [Eubacterium]

_hallii_group

• Prevotella
• Lachnospira
• Lachnoclostridium
• Roseburia
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Table 1. Cont.

Different Microbiome in Normal and RCC Tissues.

Study
Year of
Publica-

tion

Number of
Specimens Method Microbiome

Diversity in RCC
Specific Microbiome

in RCC
Specific Microbiome in Normal

Control

Liss et al.
[43] 2020

Eighteen
fresh frozen

tissue
samples
(normal
adjacent

renal
parenchyma,
tumor, and
thrombus
tissues) of
six RCC
patients

Illumina
HiSeq 3000 Increased

More abundant in tumor specimens than in normal adjacent
kidney and tumor thrombus:

• Micrococcus luteus
• Fusobacterium nucleatum
• Streptococcus agalactieae
• Corynebacterium diphtheriae

Kovaleva et al.
[45] 2022

Forty FFPE
tissue

samples (10
ccRCC, 10
pRCC, and

10
chRCC; 10

normal
kidney
tissues)

16s rRNA
sequencing

Phylum level:
No differences

Tenericutes phylum in
ccRCC, pRCC

• Gemmatimonadetes
• Chloroflexi
• Fusobacteria
• Parcubacteria
• Verrucomicrobia phyla

Genus level:
Decreased

ccRCC:

• Cutibacterium
• Sphingomonas
• Roseomonas
• Staphylococcus
• Mesomycoplasma
• Massilia
•

Escherichia_Shigella
• Photobacterium

pRCC:

• Cutibacterium
• Corynebacterium
•

Escherichia_Shigella
• Clavibacter
• Enhydrobacter
• Phyllobacterium
• Mesomycoplasma
• Simplicispira,

chRCC:

•
Escherichia_Shigella

•
Novosphingobium

• Cutibacterium
• Psychrobacter
• Lactococcus
• Acinetobacter
• Jeotgalicoccus
• Corynebacterium

• Kocuria
• Phyllobacterium
• Micrococcus
• Cutibacteriu
• Corynebacterium
• Rothia
• Streptococcus
• Acinetobacter
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Table 1. Cont.

Different Microbiome in Normal and RCC Tissues.

Study
Year of
Publica-

tion

Number of
Specimens Method Microbiome

Diversity in RCC
Specific Microbiome

in RCC
Specific Microbiome in Normal

Control

Wang et al.
[44] 2021

Forty-eight
tissue

samples
(malignant
and normal

adjacent
tissues) of

24 RCC
patients

16s rRNA
sequencing Decreased

• Phylum:

Chlorofexi

• Classes:

Nitriliruptoria,
Nostocophycideae

• Orders:

Deinococcales,
Actinomycetales,
Nitriliruptorales,
Nostocales,
Oceanospirillales

• Families:

Deinococcaceae,
Actinomycetaceae,
Gordoniaceae,
Pseudonocardiaceae,
Nitriliruptoraceae,
Nostocaceae,
Acetobacteraceae

• Genera:

Nitriliruptor,
Deinococcus,
Actinomyces, Gordonia,
Pseudoclavibacter,
Microlunatus,
Amycolatopsis,
Weissella,
Brevundimonas,
Phyllobacterium

• Phylum:

Cyanobacteria

• Classes:

Coriobacteriia,
Anaerolineae,
Chloroplast,
Erysipelotrichi, Gemmatimonadetes,
Pedosphaerae

• Orders:

Bifidobacteriales, Coriobacteriales,
Caldilineales,
H39,
SJA_15,
Streptophyta, Erysipelotrichales,
Gemmatimonadales,
Rickettsiales, Burkholderiales,
Enterobacteriales, Pedosphaerales

• Families:

Cellulomonadaceae,
Bifdobacteriaceae, Coriobacteriaceae,
Marinilabiaceae, Caldilineaceae, SHA_31,
Erysipelotrichaceae,
Bradyrhizobiaceae, Hyphomicrobiaceae,
mitochondria,
Alcaligenaceae,
Comamonadaceae, Myxococcaceae,
Enterobacteriaceae,
auto67_4W

• Genera:

Geothrix, Bifdobacterium, Paenisporosarcina,
Alloiococcus, Caloramator,
Allobaculum, Rhodoplanes,
Carludovica,
Novosphingobium, Dechloromonas,
Klebsiella,
Coxiella,
Pseudomonas

Differentially abundant taxa between normal and RCC groups:

• Pseudomonas
• Klebsiella
• Carludovica
• Phyllobacterium
• Rhodoplanes
• Allobaculum
• Chloroplast
• Streptophyta
• Rickettsiales
• Deinococcus
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Table 1. Cont.

Different Microbiome in Normal and RCC Tissues.

Study
Year of
Publica-

tion

Number of
Specimens Method Microbiome

Diversity in RCC
Specific Microbiome

in RCC
Specific Microbiome in Normal

Control

Differences in the Microbiome between Responders and Non-Responders to ICI Therapy

Study Year of
Publication

Number of
RCC

Patients
Method

Microbiome
Diversity in ICI

Responders

Specific Microbiome
in Responders Specific Microbiome in Non-Responders

Agarwal et al.
[50] 2020 22 16s rRNA

sequencing
No significant

difference

• Akkermansia
muciniphila

• Verrucomicrobiae
bacteria

Unspecified

Derosa et al.
[61] 2020 67

Whole
genome

sequencing
Increased

• Akkermansia
muciniphila

• Bacteroides
salyersiae

• Eubacterium
siraeum

• Clostridium Clostridioforme
• Clostridium hathewayi
• Erysipelotrichaceae bacterium

Routy et al.
[47] 2018 40

Shotgun
metage-
nomic

sequencing

Increased

• Akkermansia
muciniphila

• Alistipes sp.
• Eubacterium sp.
• Furmicutes sp.
• Intestinihomonas
• Ruminococcaceae

sp.

• Bacteroides nordii
• Parabacteroides Distasonnis
• Proteobacteria

Salgia et al.
[48] 2020 31

Shotgun
metage-
nomic

sequencing

Increased

• Akkermansia
muciniphila

• Bacteroides
eggerthii

• Barnesiella
intestine hominis

• Bifidobacterium
adolescentis

• Faecalibacterium
sp.

• Firmicutes
bacterium

• Odoribacter
splanchnicus

• Prevotella copri
• Prevotella sp.
• Ruminococcus

torques

• Bacteroides ovatus
• Eggerthelia lenta
• Flavonifractor plautii
• Fusicatenibacter
• saccharivorans

Meza et al.
[58] 2022 28 RNA

sequencing Unspecified

Cutibacterium acne, Moraxella osloensis and Pasteurella multocida
were abundant in both responders and non-responders.Increased
in responders:

• Stenotrophomonas maltophilia
• Corynebacterium sp.

Combination of Microbiome with ICI Therapy

Study Year of
Publication

Number of
RCC

Patients
Method Management Efficacy Outcome Microbiome Analysis
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Table 1. Cont.

Different Microbiome in Normal and RCC Tissues.

Study
Year of
Publica-

tion

Number of
Specimens Method Microbiome

Diversity in RCC
Specific Microbiome

in RCC
Specific Microbiome in Normal

Control

Dizman et al.
[59] 2022 29

Stool
metage-
nomic

sequencing

Ipilimumab
(anti-CTLA4) and

nivolumab
(anti-PD1) + live

bacterial
product CBM588

contains
Clostridium
butyricum

• Patients treated
with
“nivolumab–
ipilimumab
plus CBM588”
showed better
PFS and OS
than those
treated with
“nivolumab–
ipilimumab”.

• No significant
difference in
toxicity was
observed
between the two
groups.

In patients receiving CBM588:

• Bifidobacterium sp., Bifidobacterium
longum and Butyricimonas faecalis
increased in responders.

• Desulfovibrio sp. decreased in
responders

Clinical Outcomes of Concomitant Use of Factors that Alter the Gut Microbiome (Antibiotics, PPI) with ICIs

Study Year of
Publication

Number of
RCC

Patients
Treatment Effect of Treatment

Giordan
et al. [49] 2021 33

Antibiotics/PPI+
post-

ICI(anti-
PD1)

Use of antibiotics and PPIs alone or combined negatively associated with PFS and OS.

Mollica
et al. [50] 2022

62 (Cohort
1);

156 (Cohort
2)

Pre-ICI: ip-
ilimumab

(anti-
CTLA4)

and
nivolumab
(anti-PD1) +
PPI (Cohort

1);
Pre-ICI:

nivolumab
(anti-PD1) +
PPI (Cohort

2)

Concomitant use of PPI with ICIs did not affect survival outcomes.

Tsikala-
Vafea et al.

[49]
2021

603:
121 [61]
12 [62]
35 [63]
55 [64]

146 [65]
29 [66]
67 [47]
25 [67]
65 [68]
48 [69]

Antibiotics
+ post-ICI The use of antibiotics was associated with shorter PFS and shorter OS.

Hahn et al.
[74] 2018 145

Pre-VEGF-
TKI

+ antibiotics
targeting

Bacteroides
species

Targeting stool Bacteroides sp. with antibiotics improves PFS in patients receiving
first-line VEGF-TKIs in a duration-dependent manner.

The Microbiome as a Prognostic Biomarker

Study Year of
Publication

Number of
Specimens Discoveries
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Table 1. Cont.

Different Microbiome in Normal and RCC Tissues.

Study
Year of
Publica-

tion

Number of
Specimens Method Microbiome

Diversity in RCC
Specific Microbiome

in RCC
Specific Microbiome in Normal

Control

Kovaleva
et al. [45] 2022

Seventy-
seven FFPE

tissue
samples (23
ccRCC, 19
pRCC and

24
chRCC; 11

normal
kidney
tissues)

• A negative correlation identified between bacterial burden and the stromal inflammatory markers
in kidney tumors.

• In ccRCC patients, higher bacterial burden and increased number of stromal cells were associated
with a poor prognosis.

RCC, renal cell carcinoma; ccRCC, clear cell RCC; pRCC, papillary RCC; chRCC, chromophobe RCC; FFPE,
formalin-fixed paraffin-embedded; VEGF, vascular endothelial growth factor; TKI, tyrosine kinase inhibitor; ICI,
immune-checkpoint inhibitor; PPI, proton-pump inhibitor; PFS, progression-free survival; OS, overall survival.

4.3. Fecal Microbiota Transplantation for RCC Treatment

Maintenance of gut homeostasis is essential for human health due to the bidirectional
feedback loop that exists between the host-associated microbiota and human health [76].
Many human diseases including cancer associated with the dysbiosis of gut microbiota [77–79].
Homeostasis and dysbiosis are not as simple as the presence or absence of specific microbial
species because the microbial communities show high diversity between individuals and
the complex interactions exist within a community of microbes, all of which can have a
marked impact on host health and disease and are difficult to replicate artificially with
therapeutics [80]. Several strategies, including dietary interventions, the use of probiotics
and antibiotics, and fecal microbiota transplantation (FMT) have been used to shape
the gut microbiota composition during homeostasis and aid in cancer treatment [81].
Anti-cancer effect of FMT is achieved by transplanting the feces from healthy donors
to diseased recipients to restore homeostasis with beneficial bacteria, which can have a
positive impact on the recipient’s immune system and response to treatment [81]. The
complex interactions among a whole community of microbes and the balance between
metabolites and immune cells, which is difficult to achieve with the administration of
single metabolites or microbes can be restored by FMT from healthy donors. The beneficial
effects of this approach made it a medical breakthrough in recent years [82]. In vivo
studies revealed that ICI-responsiveness could be acquired by transplanting feces from
ICI-responsive RCC patients into germ-free mice [61,83]. This response was found to be
diminished with the administration of antibiotics [61]; however, the decrease was reversible,
and the non-responding mice could be rescued by FMT from responding donors, as well
as by oral administration of immunostimulatory microbes [83]. The role of FMT in the
systematic treatment of RCC remains to be investigated scientifically and clinically. A
randomized clinical trial showed that FMT greatly relieves diarrhea induced by TKIs in
mRCC patients and indicated that A. muciniphila is commonly present in abundance in
both healthy donors and patients with improved outcomes [84]. Current clinical trials are
investigating the effect of FMT on patients with RCC receiving ICIs and evaluating its role
in the improvement of treating or preventing immune-related toxicities (NCT04163289;
NCT04758507) [80]. However, the use of FMT in clinical practice is challenging because of
the stigma associated with providing or accepting stool samples [46].

5. Immunotherapy in Non-Clear Cell Renal Cell Carcinoma

Other kidney cancer subtypes, such as pRCC and chRCC, differ from ccRCC in the
prognosis and treatment strategies. These RCCs are included in the non-clear cell RCC
(nccRCC) group, and each type has unique molecular drivers that differ from those of
ccRCC [85]. For nccRCC patients, targeted treatments that are commonly used for ccRCC,
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including ICIs, have not significantly improved patient survival [86]. The heterogeneous
molecular background of nccRCC needs to be considered in the design of personalized
targeted strategies. Although recent clinical trials are selecting patients based on specific
disease histology and conducting fewer all-inclusive basket trials, new therapies are still
limited in the clinical practice [87]. A broad research approach is necessary to gain in-
sight into alterations other than genetic factors, such as the connections within the TME
and the role of the tumor microbiome, which will benefit patients diagnosed with these
rare cancers.

6. Conclusions

The clinical use of ICIs in mccRCC has limited benefits on the survival outcomes of
patients, and many patients experience resistance to ICIs. The response rates to ICIs are
even lower in other types of RCC. Predicting the response to ICIs and designing strategies
to overcome ICI resistance are unmet needs to improve the survival of RCC patients. The
dynamic interplay between the TME and treatment response has been a subject of interest
in recent years. The microbiome was identified as a novel component of the TME, and the
association of the microbiome with the response to anticancer therapy, as well as with the
incidence of adverse events, has been reported by several studies. This review discusses
the systemic therapies used to treat mRCC and the intimate relationship between the
microbiome and the response to immunotherapy for RCC. The microbiome participates
in host immune responses and regulates antigen presentation and T-cell initiation and
activation. Elucidating the immune mechanism of the microbiome and the dynamic in-
teractions between the microbiome and other factors in the TME is not only essential to
predict the prognosis of patients but also for the development of microbiota-based anti-
cancer immunotherapies for the treatment of different RCC histological types. Ultimately,
the objective of prospective studies is to validate novel biomarkers that can be used and
integrated into clinical practice. Furthermore, innovative biotechnological strategies are
needed for the clinical application of the microbiome as an anti-cancer treatment target.
Over the past few decades, the successful application of nanotechnology in cancer diagnosis
and treatment has made it possible to target specific oncogenic microbes by intervening
with the microbiome. This is an instant hit and brings the nascent field of microbiome
intervention in cancer, however, it still has many aspects that need to be improved.
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